메뉴 건너뛰기




Volumn 47, Issue 3, 2015, Pages

A tutorial on multilabel learning

Author keywords

Classification; Data mining; Machine learning; Multilabel learning; Ranking

Indexed keywords

LEARNING SYSTEMS;

EID: 84929484765     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2716262     Document Type: Article
Times cited : (516)

References (184)
  • 1
    • 84866039840 scopus 로고    scopus 로고
    • Pattern classification of dermoscopy images: A perceptually uniform model
    • 2013
    • Qaisar Abbas, M. E. Celebi, Carmen Serrano, Irene Fondón, and Guangzhi Ma. 2013. Pattern classification of dermoscopy images: A perceptually uniform model. Pattern Recognition 46, 1 (2013), 86-97.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 86-97
    • Abbas, Q.1    Celebi, M.E.2    Serrano, C.3    Fondón, I.4    Ma, G.5
  • 5
    • 77954578177 scopus 로고    scopus 로고
    • Evolving multi-label classification rules with gene expression programming: A preliminary study
    • Springer, Berlin, Chapter 2
    • Jose L. Ávila, Eva. Gibaja, and Sebastián Ventura. 2010. Evolving multi-label classification rules with gene expression programming: A preliminary study. In Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, Vol. 6077. Springer, Berlin, Chapter 2, 9-16.
    • (2010) Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science , vol.6077 , pp. 9-16
    • Ávila, J.L.1    Gibaja, E.2    Ventura, S.3
  • 9
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • (Oxford, England), April
    • Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. 2006. Hierarchical multi-label prediction of gene function. Bioinformatics (Oxford, England) 22, 7 (April 2006), 830-836.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 13
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Sept
    • Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. 2004. Learning multi-label scene classification. Pattern Recognition 37, 9 (Sept. 2004), 1757-1771.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 16
    • 69549104852 scopus 로고    scopus 로고
    • On active learning in multi-label classification
    • Myra Spiliopoulou, Rudolf Kruse, Christian Borgelt, Andreas Nürnberger, and Wolfgang Gaul (Eds.) Springer, Berlin
    • Klaus Brinker. 2006. On active learning in multi-label classification. In From Data and Information Analysis to Knowledge Engineering, Myra Spiliopoulou, Rudolf Kruse, Christian Borgelt, Andreas Nürnberger, and Wolfgang Gaul (Eds.). Springer, Berlin, 206-213.
    • (2006) From Data and Information Analysis to Knowledge Engineering , pp. 206-213
    • Brinker, K.1
  • 24
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Sept 2009
    • Weiwei Cheng and Eyke Hüllermeier. 2009. Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3) (Sept. 2009), 211-225.
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 25
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • Everton Alvares Cherman, Jean Metz, and Maria Carolina Monard. 2012. Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Systems Applications 39, 2 (2012), 1647-1655.
    • (2012) Expert Systems Applications , vol.39 , Issue.2 , pp. 1647-1655
    • Cherman, E.A.1    Metz, J.2    Carolina Monard, M.3
  • 26
    • 79953316878 scopus 로고    scopus 로고
    • ILoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • 2011
    • Kuo-Chen Chou, Zhi-Cheng Wu, and Xuan Xiao. 2011. iLoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE 6, 3 (2011), e18258.
    • (2011) PLoS ONE , vol.6 , Issue.3 , pp. e18258
    • Chou, K.-C.1    Wu, Z.-C.2    Xiao, X.3
  • 30
    • 34248573429 scopus 로고    scopus 로고
    • Grouping of TRIZ inventive principles to facilitate automatic patent classification
    • He Cong and Loh H. Tong. 2008. Grouping of TRIZ inventive principles to facilitate automatic patent classification. Expert Systems with Applications 34, 1 (2008), 788-795.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 788-795
    • Cong, H.1    Tong, L.H.2
  • 31
    • 0142228873 scopus 로고    scopus 로고
    • A family of additive online algorithms for category ranking
    • March
    • Koby Crammer and Yoram Singer. 2003. A family of additive online algorithms for category ranking. Journal of Machine Learning Research 3 (March 2003), 1025-1058.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1025-1058
    • Crammer, K.1    Singer, Y.2
  • 35
    • 84865223006 scopus 로고    scopus 로고
    • On label dependence and loss minimization in multi-label classification
    • 2012
    • Krzysztof Dembczyński, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. 2012. On label dependence and loss minimization in multi-label classification. Machine Learning 88, 1 (2012), 5-45.
    • (2012) Machine Learning , vol.88 , Issue.1 , pp. 5-45
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 37
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006), 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 45
    • 84874044012 scopus 로고    scopus 로고
    • Simultaneously combining multi-view multi-label learning with maximum margin classification
    • Zheng Fang and Zhongfei (Mark) Zhang. 2012. Simultaneously combining multi-view multi-label learning with maximum margin classification. In ICDM. IEEE Computer Society.
    • (2012) ICDM IEEE Computer Society
    • Fang, Z.1    Zhang, Z.2
  • 46
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • 1997
    • Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer System Sciences 55, 1 (1997), 119-139.
    • (1997) Journal of Computer System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 47
    • 52949105710 scopus 로고    scopus 로고
    • Multilabel classification via calibrated label ranking
    • 2008
    • Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and Klaus Brinker. 2008. Multilabel classification via calibrated label ranking. Machine Learning 73(2) (2008), 133-153.
    • (2008) Machine Learning , vol.73 , Issue.2 , pp. 133-153
    • Fürnkranz, J.1    Hüllermeier, E.2    Mencía, E.L.3    Brinker, K.4
  • 54
    • 84865269277 scopus 로고    scopus 로고
    • Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation
    • Jianjun He, Hong Gu, and Zhelong Wang. 2012. Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation. Information Sciences 190 (2012), 162-177.
    • (2012) Information Sciences , vol.190 , Issue.2012 , pp. 162-177
    • He, J.1    Gu, H.2    Wang, Z.3
  • 55
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta (Eds.)
    • Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. 2009. Multi-label prediction via compressed sensing. In Advances in Neural Information Processing Systems 22 (NIPS), Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta (Eds.). 772-780.
    • (2009) Advances in Neural Information Processing Systems 22 (NIPS) , pp. 772-780
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 59
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multilabel classification
    • 2010
    • Shuiwang Ji, Lei Tang, Shipeng Yu, and Jieping Ye. 2010. A shared-subspace learning framework for multilabel classification. ACM Transactions on Knowledge Discovery from Data 4, 2 (2010), 1-29.
    • (2010) ACM Transactions on Knowledge Discovery from Data , vol.4 , Issue.2 , pp. 1-29
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 62
    • 84912127051 scopus 로고    scopus 로고
    • Identification of the dual action antihypertensive drugs using TFS-based support vector machines
    • 2009
    • Kentaro Kawai and Yoshimasa Takahashi. 2009. Identification of the dual action antihypertensive drugs using TFS-based support vector machines. Chem-Bio Informatics Journal 4 (2009), 44-51.
    • (2009) Chem-Bio Informatics Journal , vol.4 , pp. 44-51
    • Kawai, K.1    Takahashi, Y.2
  • 63
    • 80053956207 scopus 로고    scopus 로고
    • PhD Dissertation. Jǒzef Stefan International Postgraduate School
    • Dragi Kocev. 2012. Ensembles for Predicting Structured Outputs. PhD Dissertation. Jǒzef Stefan International Postgraduate School.
    • (2012) Ensembles for Predicting Structured Outputs
    • Kocev, D.1
  • 69
    • 84868154922 scopus 로고    scopus 로고
    • Retrieved from
    • Ken Lang. 2008. The 20 Newsgroup Dataset. Retrieved from http://people.csail.mit.edu/jrennie/20Newsgroups/.
    • (2008) The 20 Newsgroup Dataset
    • Lang, K.1
  • 73
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • 2005
    • David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. 2005. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research 5 (2005), 361-397.
    • (2005) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 74
    • 84859209611 scopus 로고    scopus 로고
    • A model for multilabel classification and ranking of learning objects
    • 2012
    • Vivian F. López, Fernando de la Prieta, Mitsunori Ogihara, and Ding Ding Wong. 2012. A model for multilabel classification and ranking of learning objects. Expert Systems with Applications 39, 10 (2012), 8878-8884.
    • (2012) Expert Systems with Applications , vol.39 , Issue.10 , pp. 8878-8884
    • López, V.F.1    De La Prieta, F.2    Ogihara, M.3    Wong, D.D.4
  • 75
    • 84874008094 scopus 로고    scopus 로고
    • An evaluation of efficient multilabel classification algorithms for large-scale problems in the legal domain
    • Alexander Hinneburg (Ed.)
    • Eneldo Loza and Johannes Fürnkranz. 2007. An evaluation of efficient multilabel classification algorithms for large-scale problems in the legal domain. In Proceedings of the LWA 2007: Lernen -Wissen - Adaption, Alexander Hinneburg (Ed.). 126-132.
    • (2007) Proceedings of the LWA 2007: Lernen -Wissen - Adaption , pp. 126-132
    • Loza, E.1    Fürnkranz, J.2
  • 77
  • 82
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • 2012
    • Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski. 2012. An extensive experimental comparison of methods for multi-label learning. Pattern Recognition 45, 9 (2012), 3084-3104.
    • (2012) Pattern Recognition , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 83
    • 33845310880 scopus 로고    scopus 로고
    • The study of drug-reaction relationships using global optimization techniques
    • Feb 2007
    • M. A. Mammadov, A. M. Rubinov, and J. Yearwood. 2007. The study of drug-reaction relationships using global optimization techniques. Optimization Methods Software 22 (Feb. 2007), 99-126.
    • (2007) Optimization Methods Software , vol.22 , pp. 99-126
    • Mammadov, M.A.1    Rubinov, A.M.2    Yearwood, J.3
  • 88
    • 85206059442 scopus 로고    scopus 로고
    • MLKD.Retrieved from
    • MLKD. 2012.MLKD-Multilabel Library.Retrieved from http://www.citeulike.org/group/7105/tag/multilabel.
    • (2012) MLKD-Multilabel Library
  • 95
    • 70350446810 scopus 로고    scopus 로고
    • Improving multilabel analysis of music titles: A large-scale validation of the correction approach
    • 2009
    • François Pachet and Pierre Roy. 2009. Improving multilabel analysis of music titles: A large-scale validation of the correction approach. IEEE Transactions on Audio, Speech, and Language Processing 17, 2 (2009), 335-343.
    • (2009) IEEE Transactions on Audio, Speech, and Language Processing , vol.17 , Issue.2 , pp. 335-343
    • Pachet, F.1    Roy, P.2
  • 102
    • 69549086366 scopus 로고    scopus 로고
    • Two-dimensionalmultilabel active learning with an efficient online adaptationmodel for image classification
    • 2009
    • Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, and Hong-Jiang Zhang. 2009. Two-dimensionalmultilabel active learning with an efficient online adaptationmodel for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 10 (2009), 1880-1897.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.10 , pp. 1880-1897
    • Qi, G.-J.1    Hua, X.-S.2    Rui, Y.3    Tang, J.4    Zhang, H.-J.5
  • 104
    • 36049012235 scopus 로고    scopus 로고
    • A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation
    • 2008
    • Rafal Rak, Lukasz Kurgan, and Marek Reformat. 2008. A tree-projection-based algorithm for multi-label recurrent-item associative-classification rule generation. Data & Knowledge Engineering 64, 1 (2008), 171-197.
    • (2008) Data & Knowledge Engineering , vol.64 , Issue.1 , pp. 171-197
    • Rak, R.1    Kurgan, L.2    Reformat, M.3
  • 110
    • 84865207305 scopus 로고    scopus 로고
    • Scalable and efficient multi-label classification for evolving data streams
    • 2012
    • Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. 2012. Scalable and efficient multi-label classification for evolving data streams. Machine Learning 88, 1 (2012), 243-272.
    • (2012) Machine Learning , vol.88 , Issue.1 , pp. 243-272
    • Read, J.1    Bifet, A.2    Holmes, G.3    Pfahringer, B.4
  • 112
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • 2011
    • Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. 2011. Classifier chains for multi-label classification. Machine Learning 85, 3 (2011), 1-27.
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 1-27
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 113
    • 84904195795 scopus 로고    scopus 로고
    • Ensemble methods for multi-label classification
    • Nov. 2014
    • Lior Rokach, Alon Schclar, and Ehud Itach. 2014. Ensemble methods for multi-label classification. Expert Systems Applications 41, 16 (Nov. 2014), 7507-7523.
    • (2014) Expert Systems Applications , vol.41 , Issue.16 , pp. 7507-7523
    • Rokach, L.1    Schclar, A.2    Itach, E.3
  • 114
    • 84865237508 scopus 로고    scopus 로고
    • Statistical topic models for multi-label document classification
    • 2012
    • Timothy Rubin, America Chambers, Padhraic Smyth, and Mark Steyvers. 2012. Statistical topic models for multi-label document classification. Machine Learning 88, 1 (2012), 157-208.
    • (2012) Machine Learning , vol.88 , Issue.1 , pp. 157-208
    • Rubin, T.1    Chambers, A.2    Smyth, P.3    Steyvers, M.4
  • 115
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • 1999
    • Robert E. Schapire and Yoram Singer. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3) (1999), 297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 116
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • 2000
    • Robert E. Schapire and Yoram Singer. 2000. BoosTexter: A boosting-based system for text categorization. Machine Learning 39, 2/3 (2000), 135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 117
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • March 2002
    • Fabrizio Sebastiani. 2002. Machine learning in automated text categorization. ACM Computing Survey 34, 1 (March 2002), 1-47.
    • (2002) ACM Computing Survey , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 120
    • 84878305264 scopus 로고    scopus 로고
    • Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine
    • 2010
    • Huan Shao, GuoZheng Li, GuoPing Liu, and YiQin Wang. 2010. Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine. Science China Information Sciences 1 (2010), 1-13.
    • (2010) Science China Information Sciences , vol.1 , pp. 1-13
    • Shao, H.1    Li, G.2    Liu, G.3    Wang, Y.4
  • 121
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • 2009
    • Jamie Shotton, JohnWinn, Carsten Rother, and Antonio Criminisi. 2009. TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision 81 (2009), 2-23.
    • (2009) International Journal of Computer Vision , vol.81 , pp. 2-23
    • Shotton, J.1    Carsten Rother, J.2    Criminisi, A.3
  • 124
    • 77952636818 scopus 로고    scopus 로고
    • Classification of complex information: Inference of co-occurring affective states from their expressions in speech
    • 2010
    • Tal Sobol-Shikler and Peter Robinson. 2010. Classification of complex information: Inference of co-occurring affective states from their expressions in speech. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 7 (2010), 1284-1297.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , Issue.7 , pp. 1284-1297
    • Sobol-Shikler, T.1    Robinson, P.2
  • 125
    • 79951867458 scopus 로고    scopus 로고
    • Automatic tag recommendation algorithms for social recommender systems
    • 2011
    • Yang Song, Lu Zhang, and C. Lee Giles. 2011. Automatic tag recommendation algorithms for social recommender systems. ACM Transactions on the Web 5, 1 (2011), 4:1-4:31.
    • (2011) ACM Transactions on the Web , vol.5 , Issue.1 , pp. 41-431
    • Song, Y.1    Zhang, L.2    Lee Giles, C.3
  • 129
  • 136
    • 34047263437 scopus 로고    scopus 로고
    • A greedy classification algorithm based on association rule
    • Fadi A. Thabtah and Peter L. Cowling. 2007. A greedy classification algorithm based on association rule. Applied Soft Computing 7, 3 (2007), 1102-1111.
    • (2007) Applied Soft Computing , vol.7 , Issue.3 , pp. 1102-1111
    • Thabtah, F.A.1    Cowling, P.L.2
  • 145
  • 148
    • 85206060847 scopus 로고    scopus 로고
    • Retrieved from
    • Naonori Ueda and Kazumi Saito. 2002b. Yahoo Dataset. Retrieved from http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz.
    • (2002) Yahoo Dataset
    • Ueda, N.1    Saito, K.2
  • 150
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • 2008
    • Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik Blockeel. 2008. Decision trees for hierarchical multi-label classification. Machine Learning 73, 2 (2008), 185-214.
    • (2008) Machine Learning , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2    Schietgat, L.3    Džeroski, S.4    Blockeel, H.5
  • 151
    • 79251628147 scopus 로고    scopus 로고
    • Ontology-based multi-label classification of economic articles
    • 2011
    • Sergeja Vogrincic and Zoran Bosnic. 2011. Ontology-based multi-label classification of economic articles. Computer Science and Information Systems 8, 1 (2011), 101-119.
    • (2011) Computer Science and Information Systems , vol.8 , Issue.1 , pp. 101-119
    • Vogrincic, S.1    Bosnic, Z.2
  • 152
    • 79958844204 scopus 로고    scopus 로고
    • A transductive multi-label learning approach for video concept detection
    • 2010
    • Jingdong Wang, Yinghai Zhao, Xiuqing Wu, and Xian-Sheng Hua. 2010. A transductive multi-label learning approach for video concept detection. Pattern Recognition 44 (2010), 2274-2286.
    • (2010) Pattern Recognition , vol.44 , pp. 2274-2286
    • Wang, J.1    Zhao, Y.2    Wu, X.3    Hua, X.4
  • 155
    • 0026692226 scopus 로고
    • Stacked generalization
    • David H. Wolpert. 1992. Stacked generalization. Neural Networks 5 (1992), 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 156
    • 84855909023 scopus 로고    scopus 로고
    • An efficient multi-label support vector machine with a zero label
    • 2012
    • Jianhua Xu. 2012. An efficient multi-label support vector machine with a zero label. Expert Systems with Applications 39, 5 (2012), 4796-4804.
    • (2012) Expert Systems with Applications , vol.39 , Issue.5 , pp. 4796-4804
    • Xu, J.1
  • 157
    • 84870243552 scopus 로고    scopus 로고
    • Fast multi-label core vector machine
    • 2013
    • Jianhua Xu. 2013a. Fast multi-label core vector machine. Pattern Recognition 46, 3 (2013), 885-898.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 885-898
    • Xu, J.1
  • 161
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • 1999
    • Yiming Yang. 1999. An evaluation of statistical approaches to text categorization. Information Retrieval 1, 1-2 (1999), 69-90.
    • (1999) Information Retrieval , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 163
    • 84865211737 scopus 로고    scopus 로고
    • Multilabel classification with meta-level features in a learning-torank framework
    • 2012
    • Yiming Yang and Siddharth Gopal. 2012. Multilabel classification with meta-level features in a learning-torank framework. Machine Learning 88, 1 (2012) 47-68
    • (2012) Machine Learning , vol.88 , Issue.1 , pp. 47-68
    • Yang, Y.1    Gopal, S.2
  • 165
    • 33745882632 scopus 로고    scopus 로고
    • Prediction of protein subcellularmulti-locations with a min-maxmodular support vector machine
    • Springer, Berlin
    • Yang Yang and Bao-Liang Lu. 2006. Prediction of protein subcellularmulti-locations with a min-maxmodular support vector machine. In Advances in Neural Networks (ISNN'06). Lecture Notes in Computer Science, Vol. 3973. Springer, Berlin, 667-673.
    • (2006) Advances in Neural Networks (ISNN'06). Lecture Notes in Computer Science , vol.3973 , pp. 667-673
    • Yang, Y.1    Lu, B.2
  • 170
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf: RBF neural networks for multi-label learning
    • 2009
    • Min-Ling Zhang. 2009. Ml-rbf: RBF neural networks for multi-label learning. Neural Processing Letters 29, 2 (2009), 61-74.
    • (2009) Neural Processing Letters , vol.29 , Issue.2 , pp. 61-74
    • Zhang, M.1
  • 171
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Min-Ling Zhang, José M. Peña, and Victor Robles. 2009. Feature selection for multi-label naive Bayes classification. Information Sciences 179, 19 (2009), 3218-3229.
    • (2009) Information Sciences , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.-L.1    Peña, J.M.2    Robles, V.3
  • 174
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • 2006
    • Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18, 10 (2006), 1338-1351.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 175
    • 36349028595 scopus 로고    scopus 로고
    • Multi-label learning by instance differentiation
    • Min L. Zhang and Zhi H. Zhou. 2007. Multi-label learning by instance differentiation. In AAAI. 669-674.
    • (2007) AAAI , pp. 669-674
    • Zhang, M.L.1    Zhou, Z.H.2
  • 180
  • 181
    • 84865275504 scopus 로고    scopus 로고
    • Compressed labeling on distilled labelsets for multi-label learning
    • 2012
    • Tianyi Zhou, Dacheng Tao, and XindongWu. 2012a. Compressed labeling on distilled labelsets for multi-label learning. Machine Learning 88, 1-2 (2012), 69-126.
    • (2012) Machine Learning , vol.88 , Issue.1-2 , pp. 69-126
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 182
    • 85108375679 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Bernhard Schölkopf, John C. Platt, and Thomas Hoffman (Eds.)
    • Zhi H. Zhou and Min L. Zhang. 2006. Multi-instance multi-label learning with application to scene classification. In Advances in Neural Information Processing Systems 19 (NIPS'06), Bernhard Schölkopf, John C. Platt, and Thomas Hoffman (Eds.). 1609-1616.
    • (2006) Advances in Neural Information Processing Systems 19 (NIPS'06) , pp. 1609-1616
    • Zhou, Z.H.1    Zhang, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.