-
1
-
-
84994569545
-
DeepSat - A learning framework for satellite imagery
-
(2015)
-
Saikat Basu, Sangram Ganguly, Supratik Mukhopadhyay, Robert DiBiano, Manohar Karki, and Ramakrishna R. Nemani. 2015. DeepSat - A Learning framework for Satellite Imagery. CoRR abs/1509.03602 (2015).
-
(2015)
CoRR Abs/1509.03602
-
-
Basu, S.1
Ganguly, S.2
Mukhopadhyay, S.3
DiBiano, R.4
Karki, M.5
Nemani, R.R.6
-
2
-
-
85020214070
-
Land use classification in remote sensing images by convolutional neural networks
-
(2015)
-
Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva. 2015. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. CoRR abs/1508.00092 (2015). http://arxiv.org/abs/1508.00092
-
(2015)
CoRR Abs/1508.00092
-
-
Castelluccio, M.1
Poggi, G.2
Sansone, C.3
Verdoliva, L.4
-
3
-
-
85011084618
-
Aerial image geolocalization from recognition and matching of roads and intersections
-
(2016)
-
Dragos Costea and Marius Leordeanu. 2016. Aerial image geolocalization from recognition and matching of roads and intersections. CoRR abs/1605.08323 (2016). http://arxiv.org/abs/1605.08323
-
(2016)
CoRR Abs/1605.08323
-
-
Costea, D.1
Leordeanu, M.2
-
4
-
-
84994666228
-
Are safer looking neighborhoods more lively?: A multimodal investigation into urban life
-
ACM, New York, NY, USA
-
Marco De Nadai, Radu Laurentiu Vieriu, Gloria Zen, Stefan Dragicevic, Nikhil Naik, Michele Caraviello, Cesar Augusto Hidalgo, Nicu Sebe, and Bruno Lepri. 2016. Are Safer Looking Neighborhoods More Lively?: A Multimodal Investigation into Urban Life. In Proceedings of the 2016 ACM on Multimedia Conference (MM '16). ACM, New York, NY, USA, 1127-1135. DOI: http://dx.doi.org/10.1145/2964284.2964312
-
(2016)
Proceedings of the 2016 ACM on Multimedia Conference (MM '16)
, pp. 1127-1135
-
-
De Nadai, M.1
Vieriu, R.L.2
Zen, G.3
Dragicevic, S.4
Naik, N.5
Caraviello, M.6
Hidalgo, C.A.7
Sebe, N.8
Lepri, B.9
-
5
-
-
84990055093
-
-
Springer International Publishing, Cham
-
Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A. Hidalgo. 2016. Deep Learning the City: Quantifying Urban Perception at a Global Scale. Springer International Publishing, Cham, 196-212. DOI: http://dx.doi.org/10.1007/978-3-319-46448-0-12
-
(2016)
Deep Learning the City: Quantifying Urban Perception at a Global Scale
, pp. 196-212
-
-
Dubey, A.1
Naik, N.2
Parikh, D.3
Raskar, R.4
Hidalgo, C.A.5
-
6
-
-
84940213368
-
-
Springer International Publishing, Cham
-
Sebastian Grauwin, Stanislav Sobolevsky, Simon Moritz, Istvân Gódor, and Carlo Ratti. 2015. Towards a Comparative Science of Cities: Using Mobile Traffic Records in New York, London, and Hong Kong. Springer International Publishing, Cham, 363-387. DOI: http://dx.doi.org/10.1007/978-3-319-11469-9-15
-
(2015)
Towards a Comparative Science of Cities: Using Mobile Traffic Records in New York, London, and Hong Kong
, pp. 363-387
-
-
Grauwin, S.1
Sobolevsky, S.2
Moritz, S.3
Gódor, I.4
Ratti, C.5
-
7
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NV, USA, June 27-30, 2016
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 770-778. DOI: http://dx.doi.org/10.1109/CVPR.2016.90
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
8
-
-
84990050094
-
Identity mappings in deep residual networks
-
Springer
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Mappings in Deep Residual Networks. In ECCV(4) (Lecture Notes in Computer Science), Vol. 9908. Springer, 630-645.
-
(2016)
ECCV(4) (Lecture Notes in Computer Science)
, vol.9908
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84983509249
-
Combining satellite imagery and machine learning to predict poverty
-
(2016)
-
Neal Jean, Marshall Burke, Michael Xie, W Matthew Davis, David B Lobell, and Stefano Ermon. 2016. Combining satellite imagery and machine learning to predict poverty. Science 353, 6301 (2016), 790-794.
-
(2016)
Science
, vol.353
, Issue.6301
, pp. 790-794
-
-
Jean, N.1
Burke, M.2
Xie, M.3
Matthew Davis, W.4
Lobell, D.B.5
Ermon, S.6
-
10
-
-
84958069194
-
Comparing and modelling land use organization in cities
-
(2015) arXiv: http://rsos.royalsocietypublishing.org/content/2/12/150449.full.pdf
-
Maxime Lenormand, Miguel Picornell, Oliva G. Cantú-Ros, Thomas Louail, Ricardo Herranz, Marc Barthelemy, Enrique Frías-Martínez, Maxi San Miguel, and José J. Ramasco. 2015. Comparing and modelling land use organization in cities. Royal Society Open Science 2, 12 (2015). DOI: http://dx.doi.org/10.1098/rsos.150449 arXiv: http://rsos.royalsocietypublishing.org/content/2/12/150449.full.pdf
-
(2015)
Royal Society Open Science
, vol.2
, pp. 12
-
-
Lenormand, M.1
Picornell, M.2
Cantú-Ros, O.G.3
Louail, T.4
Herranz, R.5
Barthelemy, M.6
Frías-Martínez, E.7
Miguel, M.S.8
Ramasco, J.J.9
-
11
-
-
85029114702
-
Learning multi-scale deep features for high-resolution satellite image classification
-
(2016)
-
Qingshan Liu, Renlong Hang, Huihui Song, and Zhi Li. 2016. Learning Multi-Scale Deep Features for High-Resolution Satellite Image Classification. CoRR abs/1611.03591 (2016). http://arxiv.org/abs/1611.03591
-
(2016)
CoRR Abs/1611.03591
-
-
Liu, Q.1
Hang, R.2
Song, H.3
Li, Z.4
-
12
-
-
85017603808
-
-
ArXiv e-prints (Dec. 2016). arXiv: cs.CV/1612.01337
-
D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U. Stilla. 2016. Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection. ArXiv e-prints (Dec. 2016). arXiv: cs.CV/1612.01337
-
(2016)
Classification with an Edge: Improving Semantic Image Segmentation with Boundary Detection
-
-
Marmanis, D.1
Schindler, K.2
Wegner, J.D.3
Galliani, S.4
Datcu, M.5
Stilla, U.6
-
14
-
-
84978701105
-
Cities are physical too: Using computer vision to measure the quality and impact of urban appearance
-
(May 2016)
-
Nikhil Naik, Ramesh Raskar, and Csar A. Hidalgo. 2016. Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance. American Economic Review 106, 5 (May 2016), 128-32. DOI: http://dx.doi.org/10.1257/aer.p20161030
-
(2016)
American Economic Review
, vol.106
, Issue.5
, pp. 128-132
-
-
Naik, N.1
Raskar, R.2
Hidalgo, C.A.3
-
16
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
-
(2011)
Journal of Machine Learning Research
, vol.12
, Issue.2011
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
18
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
(March 2016)
-
A. Romero, C. Gatta, and G. Camps-Valls. 2016. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing 54, 3 (March 2016), 1349-1362. DOI: http://dx.doi.org/10.1109/TGRS.2015.2478379
-
(2016)
IEEE Transactions on Geoscience and Remote Sensing
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-Valls, G.3
-
19
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
(2014)
-
Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556
-
(2014)
CoRR Abs/1409.1556
-
-
Simonyan, K.1
Zisserman, A.2
-
20
-
-
84866008013
-
Inferring land use from mobile phone activity
-
ACM, New York, NY, USA
-
Jameson L. Toole, Michael Ulm, Marta C. Gonzalez, and Dietmar Bauer. 2012. Inferring Land Use from Mobile Phone Activity. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp '12). ACM, New York, NY, USA, 1-8. DOI: http://dx.doi.org/10.1145/2346496.2346498
-
(2012)
Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp '12)
, pp. 1-8
-
-
Toole, J.L.1
Ulm, M.2
Gonzalez, M.C.3
Bauer, D.4
-
24
-
-
85029109203
-
Wide-area image geolocalization with aerial reference imagery
-
(2015)
-
Scott Workman, Richard Souvenir, and Nathan Jacobs. 2015. Wide-Area Image Geolocalization with Aerial Reference Imagery. CoRR abs/1510.03743 (2015).
-
(2015)
CoRR Abs/1510.03743
-
-
Workman, S.1
Souvenir, R.2
Jacobs, N.3
-
25
-
-
78650593938
-
Bag-of-visual-words and spatial extensions for land-use classification
-
ACM, New York, NY, USA
-
Yi Yang and Shawn Newsam. 2010. Bag-of-visual-words and Spatial Extensions for Land-use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS '10). ACM, New York, NY, USA, 270-279. DOI: http://dx.doi.org/10.1145/1869790.1869829
-
(2010)
Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS '10)
, pp. 270-279
-
-
Yang, Y.1
Newsam, S.2
-
26
-
-
84930423638
-
Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
-
(2015) arXiv: http://dx.doi.org/10.1080/2150704X.2015.1047045
-
Jun Yue, Wenzhi Zhao, Shanjun Mao, and Hui Liu. 2015. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters 6, 6 (2015), 468-477. DOI: http://dx.doi.org/10.1080/2150704X.2015.1047045 arXiv: http://dx.doi.org/10.1080/2150704X.2015.1047045
-
(2015)
Remote Sensing Letters
, vol.6
, Issue.6
, pp. 468-477
-
-
Yue, J.1
Zhao, W.2
Mao, S.3
Liu, H.4
-
28
-
-
84961213927
-
Land use classification using convolutional neural networks applied to ground-level images
-
ACM, New York, NY, USA
-
Yi Zhu and Shawn Newsam. 2015. Land Use Classification Using Convolutional Neural Networks Applied to Ground-level Images. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '15). ACM, New York, NY, USA, Article 61, 4 pages. DOI: http://dx.doi.org/10.1145/2820783.2820851
-
(2015)
Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '15)
-
-
Zhu, Y.1
Newsam, S.2
|