메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1-194

Multilabel classification: Problem analysis, metrics and techniques

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SOFTWARE; REVIEWS;

EID: 85006335487     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-319-41111-8     Document Type: Book
Times cited : (216)

References (283)
  • 4
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81-105 (2013)
    • (2013) Artif. Intell , vol.201 , pp. 81-105
    • Amores, J.1
  • 6
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • Bielza, C., Li, G., Larranaga, P.: Multi-dimensional classification with Bayesian networks. Int. J. Approximate Reasoning 52(6), 705-727 (2011)
    • (2011) Int. J. Approximate Reasoning , vol.52 , Issue.6 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larranaga, P.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 12
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443-473 (2006)
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 14
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)
    • (1996) AI Mag , vol.17 , Issue.3 , pp. 37
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 16
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
    • (2011) Pattern Recogn , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 18
    • 84929484765 scopus 로고    scopus 로고
    • A tutorial on multi-label learning
    • Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3) (2015)
    • (2015) ACM Comput. Surv , vol.47 , Issue.3
    • Gibaja, E.1    Ventura, S.2
  • 20
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53-87 (2004)
    • (2004) Data Min. Knowl. Disc , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 21
    • 84946782393 scopus 로고    scopus 로고
    • Weak supervision and other non-standard classification problems: A taxonomy
    • Hernandez-Gonzalez, J., Inza, I., Lozano, J.A.: Weak supervision and other non-standard classification problems: a taxonomy. Pattern Recogn. Lett. 69, 49-55 (2016)
    • (2016) Pattern Recogn. Lett , vol.69 , pp. 49-55
    • Hernandez-Gonzalez, J.1    Inza, I.2    Lozano, J.A.3
  • 25
    • 61749084093 scopus 로고    scopus 로고
    • Supervised descriptive rule discovery: Aunifying survey of contrast set, emerging pattern and subgroup mining
    • Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: aunifying survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res. 10, 377-403 (2009)
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 377-403
    • Novak, P.K.1    Lavrac, N.2    Webb, G.I.3
  • 31
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819-1837 (2014)
    • (2014) IEEE Trans. Knowl. Data Eng , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.L.1    Zhou, Z.H.2
  • 32
    • 80955134248 scopus 로고    scopus 로고
    • Multi-instance multi-label learning. Artif
    • Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance multi-label learning. Artif. Intell. 176(1), 2291-2320 (2012)
    • (2012) Intell , vol.176 , Issue.1 , pp. 2291-2320
    • Zhou, Z.H.1    Zhang, M.L.2    Huang, S.J.3    Li, Y.F.4
  • 35
    • 79951829331 scopus 로고    scopus 로고
    • KEEL data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework
    • Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-valued Log. Soft Comput. 17(2-3), 255-287 (2011)
    • (2011) J. Mult-Valued Log. Soft Comput , vol.17 , Issue.2-3 , pp. 255-287
    • Alcala-Fdez, J.1    Fernandez, A.2    Luengo, J.3    Derrac, J.4    Garrfa, S.5    Sanchez, L.6    Herrera, F.7
  • 36
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
    • (2012) Expert Syst. Appl , vol.39 , Issue.2 , pp. 1647-1655
    • Alvares-Cherman, E.1    Metz, J.2    Monard, M.C.3
  • 37
    • 78650556770 scopus 로고    scopus 로고
    • Technical Report, California Institute of Technology
    • Aly, M.: Survey on multiclass classification methods. In: Technical Report, pp. 1-9. California Institute of Technology (2005)
    • (2005) Survey on Multiclass Classification Methods , pp. 1-9
    • Aly, M.1
  • 38
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 39
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 42
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121-167 (1998)
    • (1998) Data Min. Knowl. Disc , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 46
    • 84930273620 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
    • (2015) Neurocomputing , vol.163 , pp. 3-16
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 47
    • 84944354565 scopus 로고    scopus 로고
    • MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst. 89, 385-397 (2015)
    • (2015) Knowl.-Based Syst. , vol.89 , pp. 385-397
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 49
    • 38349079707 scopus 로고    scopus 로고
    • Efficient classification of multi-label and imbalanced data using min-max modular classifiers
    • IJCNN’06, pp
    • Chen, K., Lu, B., Kwok, J.: Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06, pp. 1770-1775 (2006)
    • (2006) Proceedings of IEEE International Joint Conference on Neural Networks , pp. 1770-1775
    • Chen, K.1    Lu, B.2    Kwok, J.3
  • 50
    • 85026358829 scopus 로고    scopus 로고
    • Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs
    • Chen, X., Zhan, Y., Ke, J., Chen, X.: Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimedia Tools Appl. 1-22 (2015)
    • (2015) Multimedia Tools Appl , pp. 1-22
    • Chen, X.1    Zhan, Y.2    Ke, J.3    Chen, X.4
  • 52
    • 34248573429 scopus 로고    scopus 로고
    • Grouping of triz inventive principles to facilitate automatic patent classification
    • Cong, H., Tong, L.H.: Grouping of triz inventive principles to facilitate automatic patent classification. Expert Syst. Appl. 34(1), 788-795 (2008)
    • (2008) Expert Syst. Appl. , vol.34 , Issue.1 , pp. 788-795
    • Cong, H.1    Tong, L.H.2
  • 53
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 56
    • 77957042586 scopus 로고    scopus 로고
    • Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
    • Springer
    • Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining, LNCS, vol. 5669, pp. 40-52. Springer (2010)
    • (2010) New Frontiers in Applied Data Mining, LNCS , vol.5669 , pp. 40-52
    • Dendamrongvit, S.1    Kubat, M.2
  • 57
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer
    • Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems. LNCS, vol. 1857, pp. 1-15. Springer (2000)
    • (2000) Multiple Classifier Systems. LNCS , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 61
  • 64
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
    • (2011) Pattern Recogn , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 67
    • 84929484765 scopus 로고    scopus 로고
    • A tutorial on multi-label learning
    • Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3) (2015)
    • (2015) ACM Comput. Surv , vol.47 , Issue.3
    • Gibaja, E.1    Ventura, S.2
  • 68
    • 0346325840 scopus 로고    scopus 로고
    • A preliminary approach to the multilabel classification problem of Portuguese juridical documents
    • EPIA’03, Springer
    • Gonfalves, T., Quaresma, P.: A preliminary approach to the multilabel classification problem of Portuguese juridical documents. In: Proceedings of 11th Portuguese Conference on Artificial Intelligence, EPIA’03, pp. 435-444. Springer (2003)
    • (2003) Proceedings of 11Th Portuguese Conference on Artificial Intelligence , pp. 435-444
    • Gonfalves, T.1    Quaresma, P.2
  • 71
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
    • (2008) Artif. Intell , vol.172 , Issue.16 , pp. 1897-1916
    • Hullermeier, E.1    Furnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 75
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 77
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
    • (2011) Mach. Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 79
    • 84911429300 scopus 로고    scopus 로고
    • Pattern classification using ensemble methods
    • Rokach, L.: Pattern classification using ensemble methods. World Scientific (2009)
    • (2009) World Scientific
    • Rokach, L.1
  • 80
    • 0020848262 scopus 로고
    • Extended Boolean information retrieval
    • Salton, G., Fox, E.A., Wu, H.: Extended Boolean information retrieval. Commun. ACM 26(11), 1022-1036 (1983)
    • (1983) Commun. ACM , vol.26 , Issue.11 , pp. 1022-1036
    • Salton, G.1    Fox, E.A.2    Wu, H.3
  • 82
    • 77952636818 scopus 로고    scopus 로고
    • Classification of complex information: Inference of cooccurring affective states from their expressions in speech
    • Sobol-Shikler, T., Robinson, P.: Classification of complex information: Inference of cooccurring affective states from their expressions in speech. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1284-1297 (2010)
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.7 , pp. 1284-1297
    • Sobol-Shikler, T.1    Robinson, P.2
  • 90
    • 84890217212 scopus 로고    scopus 로고
    • Label ranking algorithms: A survey
    • Springer
    • Vembu, S., Gartner, T.: Label ranking algorithms: a survey. In: Preference learning, pp. 45-64. Springer (2011)
    • (2011) Preference Learning , pp. 45-64
    • Vembu, S.1    Gartner, T.2
  • 92
  • 95
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37-66 (1991)
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 97
    • 5544244774 scopus 로고
    • On the measurement of inequality
    • Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2(3), 244-263 (1970)
    • (1970) J. Econ. Theory , vol.2 , Issue.3 , pp. 244-263
    • Atkinson, A.B.1
  • 99
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 101
  • 104
    • 84907817318 scopus 로고    scopus 로고
    • LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
    • Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1842-1854 (2014)
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.10 , pp. 1842-1854
    • Charte, F.1    Rivera, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 107
    • 84930273620 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
    • (2015) Neurocomputing , vol.163 , pp. 3-16
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 116
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Min. 3056, 22-30 (2004)
    • (2004) Adv. Knowl. Discov. Data Min , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 118
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with suport vector machines: Learning with many relevant features
    • Springer
    • Joachims, T.: Text categorization with suport vector machines: learning with many relevant features. In: Proceedings of 10th European Conference on Machine Learning, ECML’98, pp. 137-142. Springer (1998)
    • (1998) Proceedings of 10Th European Conference on Machine Learning, ECML’98 , pp. 137-142
    • Joachims, T.1
  • 122
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 125
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
    • (2011) Mach. Learn. , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 127
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach. Learn. 39(2-3), 135-168 (2000)
    • (2000) Mach. Learn , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 130
    • 33751524073 scopus 로고    scopus 로고
    • Discovering recurring anomalies in text reports regarding complex space systems
    • IEEE
    • Srivastava, A.N., Zane-Ulman, B.: Discovering recurring anomalies in text reports regarding complex space systems. In: Aerospace Conference, pp. 3853-3862. IEEE (2005)
    • (2005) Aerospace Conference , pp. 3853-3862
    • Srivastava, A.N.1    Zane-Ulman, B.2
  • 132
  • 139
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293-302 (2002)
    • (2002) IEEE Trans. Speech Audio Process , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 142
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007)
    • (2007) Pattern Recogn , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 143
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
    • (2012) Expert Syst. Appl , vol.39 , Issue.2 , pp. 1647-1655
    • Alvares-Cherman, E.1    Metz, J.2    Monard, M.C.3
  • 144
    • 85006474411 scopus 로고    scopus 로고
    • Review on various problem transformation methods for classifying multi-label data
    • Barot, P., Panchal, M.: Review on various problem transformation methods for classifying multi-label data. Int. J. Data Mining Emerg. Technol. 4(2), 45-52 (2014)
    • (2014) Int. J. Data Mining Emerg. Technol , vol.4 , Issue.2 , pp. 45-52
    • Barot, P.1    Panchal, M.2
  • 145
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 147
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
    • (2011) Pattern Recogn , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 148
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Mining 3056, 22-30 (2004)
    • (2004) Adv. Knowl. Discov. Data Mining , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 149
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
    • (2008) Artif. Intell. , vol.172 , Issue.16 , pp. 1897-1916
    • Hullermeier, E.1    Furnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 153
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
    • (2011) Mach. Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 162
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 163
    • 84921770473 scopus 로고    scopus 로고
    • Improving knn multi-label classification in prototype selection scenarios using class proposals
    • Calvo-Zaragoza, J., Valero-Mas, J.J., Rico-Juan, J.R.: Improving knn multi-label classification in prototype selection scenarios using class proposals. Pattern Recogn. 48(5), 1608-1622 (2015)
    • (2015) Pattern Recogn. , vol.48 , Issue.5 , pp. 1608-1622
    • Calvo-Zaragoza, J.1    Valero-Mas, J.J.2    Rico-Juan, J.R.3
  • 165
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2-3), 211-225 (2009)
    • (2009) Mach. Learn , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hullermeier, E.2
  • 171
    • 10644274066 scopus 로고    scopus 로고
    • Gene expression programming in problem solving
    • Springer
    • Ferreira, C.: Gene expression programming in problem solving. In: Soft Computing and Industry, pp. 635-653. Springer (2002)
    • (2002) Soft Computing and Industry , pp. 635-653
    • Ferreira, C.1
  • 173
    • 84911488854 scopus 로고    scopus 로고
    • An improved multi-label classification algorithm BRkNN
    • Genga, X., Tanga, Y., Zhua, Y., Chengb, G.: An improved multi-label classification algorithm BRkNN. J. Inf. Comput. Sci. 11(16), 5927-5936 (2014)
    • (2014) J. Inf. Comput. Sci , vol.11 , Issue.16 , pp. 5927-5936
    • Genga, X.1    Tanga, Y.2    Zhua, Y.3    Chengb, G.4
  • 182
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297-336 (1999)
    • (1999) Mach. Learn , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 192
    • 84870243552 scopus 로고    scopus 로고
    • Fast multi-label core vector machine
    • Xu, J.: Fast multi-label core vector machine. Pattern Recogn. 46(3), 885-898 (2013)
    • (2013) Pattern Recogn , vol.46 , Issue.3 , pp. 885-898
    • Xu, J.1
  • 193
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang, M.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338-1351 (2006)
    • (2006) IEEE Trans. Knowl. Data Eng , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.1
  • 194
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf: RBF neural networks for multi-label learning
    • Zhang, M.: Ml-rbf: RBF neural networks for multi-label learning. Neural Process. Lett. 29, 61-74(2009)
    • (2009) Neural Process. Lett. , vol.29 , pp. 61-74
    • Zhang, M.1
  • 195
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007)
    • (2007) Pattern Recogn , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 197
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
    • (2012) Expert Syst. Appl , vol.39 , Issue.2 , pp. 1647-1655
    • Alvares-Cherman, E.1    Metz, J.2    Monard, M.C.3
  • 198
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
    • (2011) Mach. Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 199
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
    • (2008) Artif. Intell , vol.172 , Issue.16 , pp. 1897-1916
    • Hullermeier, E.1    Furnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 206
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513-523 (2012)
    • (2012) Pattern Recogn. Lett , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 207
    • 84925368172 scopus 로고    scopus 로고
    • Scalable multi-output label prediction: From classifier chains to classifier trellises
    • Read, J., Martino, L., Olmos, P.M., Luengo, D.: Scalable multi-output label prediction: from classifier chains to classifier trellises. Pattern Recogn. 48(6), 2096-2109 (2015)
    • (2015) Pattern Recogn , vol.48 , Issue.6 , pp. 2096-2109
    • Read, J.1    Martino, L.2    Olmos, P.M.3    Luengo, D.4
  • 209
    • 77649237436 scopus 로고    scopus 로고
    • Efficient voting prediction for pairwise multilabel classification
    • Menda, E.L., Park, S., Furnkranz, J.: Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7), 1164-1176 (2010)
    • (2010) Neurocomputing , vol.73 , Issue.7 , pp. 1164-1176
    • Menda, E.L.1    Park, S.2    Furnkranz, J.3
  • 210
    • 80052965571 scopus 로고    scopus 로고
    • Multilabel classifiers with a probabilistic thresholding strategy
    • Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn. 45(2), 876-883 (2012)
    • (2012) Pattern Recogn , vol.45 , Issue.2 , pp. 876-883
    • Quevedo, J.R.1    Luaces, O.2    Bahamonde, A.3
  • 213
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 214
    • 84907817318 scopus 로고    scopus 로고
    • LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
    • Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification. IEEE Trans. Neural Networks Learn. Syst. 25(10), 1842-1854 (2014)
    • (2014) IEEE Trans. Neural Networks Learn. Syst , vol.25 , Issue.10 , pp. 1842-1854
    • Charte, F.1    Rivera, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 216
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131-156 (1997)
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 218
    • 84884203069 scopus 로고    scopus 로고
    • Mutual information-based feature selection for multilabel classification
    • Doquire, G., Verleysen, M.: Mutual information-based feature selection for multilabel classification. Neurocomputing 122, 148-155 (2013)
    • (2013) Neurocomputing , vol.122 , pp. 148-155
    • Doquire, G.1    Verleysen, M.2
  • 219
    • 0001474381 scopus 로고
    • The statistical utilization of multiple measurements
    • Fisher, R.A.: The statistical utilization of multiple measurements. Ann. Eugenics 8(4), 376-386 (1938)
    • (1938) Ann. Eugenics , vol.8 , Issue.4 , pp. 376-386
    • Fisher, R.A.1
  • 222
    • 84896534098 scopus 로고
    • Relations between two sets of variates
    • Springer
    • Hotelling, H.: Relations between two sets of variates. In: Breakthroughs in Statistics, pp. 162-190. Springer (1992)
    • (1992) Breakthroughs in Statistics , pp. 162-190
    • Hotelling, H.1
  • 224
    • 0003946510 scopus 로고
    • Principal Component Analysis
    • Springer, Berlin
    • Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics, vol. 1. Springer, Berlin (1986)
    • (1986) Springer Series in Statistics , vol.1
    • Jolliffe, I.1
  • 226
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection. Artif
    • Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273-324 (1997)
    • (1997) Intell , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 227
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Machine Learning: ECML-94, pp. 171-182 (1994)
    • (1994) Machine Learning: ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 228
    • 84910651885 scopus 로고    scopus 로고
    • Mutual information-based multi-label feature selection using interaction information
    • Lee, J.S., Kim, D.W.: Mutual information-based multi-label feature selection using interaction information. Expert Syst. Appl. 42, 2013-2025 (2015)
    • (2015) Expert Syst. Appl , vol.42 , pp. 2013-2025
    • Lee, J.S.1    Kim, D.W.2
  • 232
    • 84875172457 scopus 로고    scopus 로고
    • A comparison of multi-label feature selection methods using the problem transformation approach
    • Spolaor, N., Cherman, E.A., Monard, M.C., Lee, H.D.: A comparison of multi-label feature selection methods using the problem transformation approach. Electron. Notes Theor. Comput. Sci. 292, 135-151 (2013)
    • (2013) Electron. Notes Theor. Comput. Sci , vol.292 , pp. 135-151
    • Spolaor, N.1    Cherman, E.A.2    Monard, M.C.3    Lee, H.D.4
  • 238
    • 0019094381 scopus 로고
    • A critical evaluation of intrinsic dimensionality algorithms
    • Wyse, N., Dubes, R., Jain, A.K.: A critical evaluation of intrinsic dimensionality algorithms. Pattern Recogn. Pract. 415-425 (1980)
    • (1980) Pattern Recogn. Pract , pp. 415-425
    • Wyse, N.1    Dubes, R.2    Jain, A.K.3
  • 240
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819-1837 (2014)
    • (2014) IEEE Trans. Knowl. Data Eng , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.1    Zhou, Z.2
  • 241
    • 78049346655 scopus 로고    scopus 로고
    • Multilabel dimensionality reduction via dependence maximization. ACM Trans. Knowl
    • Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maximization. ACM Trans. Knowl. Discovery Data (TKDD) 4(3), 14 (2010)
    • (2010) Discovery Data (TKDD) , vol.4 , Issue.3 , pp. 14
    • Zhang, Y.1    Zhou, Z.H.2
  • 243
    • 84865275504 scopus 로고    scopus 로고
    • Compressed labeling on distilled labelsets for multi-label learning. Mach
    • Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn. 88(1-2), 69-126 (2012)
    • (2012) Learn , vol.88 , Issue.1-2 , pp. 69-126
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 248
    • 84930273620 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
    • (2015) Neurocomputing , vol.163 , pp. 3-16
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 249
    • 84944354565 scopus 로고    scopus 로고
    • MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. Knowl
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl. Based Syst. 89, 385-397 (2015)
    • (2015) Based Syst , vol.89 , pp. 385-397
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 252
    • 77957042586 scopus 로고    scopus 로고
    • Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
    • Springer
    • Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining. LNCS, vol. 5669, pp. 40-52. Springer (2010)
    • (2010) New Frontiers in Applied Data Mining. LNCS , vol.5669 , pp. 40-52
    • Dendamrongvit, S.1    Kubat, M.2
  • 253
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Fernandez, A., Lopez, V., Galar, M., del Jesus, M.J., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42, 97-110 (2013)
    • (2013) Knowl. Based Syst , vol.42 , pp. 97-110
    • Fernandez, A.1    Lopez, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 254
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. pattern Recogn. 44(8), 1761-1776 (2011)
    • (2011) Pattern Recogn , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 256
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284 (2009)
    • (2009) IEEE Trans. Knowl. Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 257
    • 84862027781 scopus 로고    scopus 로고
    • Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
    • He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS One 7(6), 7155 (2012)
    • (2012) Plos One , vol.7 , Issue.6 , pp. 7155
    • He, J.1    Gu, H.2    Liu, W.3
  • 258
    • 84878774850 scopus 로고    scopus 로고
    • Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples
    • Li, C., Shi, G.: Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples. J. Inf. Sci. Eng. 29(4), 765-776 (2013)
    • (2013) J. Inf. Sci. Eng , vol.29 , Issue.4 , pp. 765-776
    • Li, C.1    Shi, G.2
  • 259
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • Lopez, V., Fernandez, A., Garda, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113-141 (2013)
    • (2013) Inf. Sci , vol.250 , pp. 113-141
    • Lopez, V.1    Fernandez, A.2    Garda, S.3    Palade, V.4    Herrera, F.5
  • 260
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • Lu, B., Ito, M.: Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Trans. Neural Netw. 10(5), 1244-1256 (1999)
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.1    Ito, M.2
  • 262
    • 84942249246 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • Prati, R.C., Batista, G.E., Silva, D.F.: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45(1), 247-270 (2015)
    • (2015) Knowl. Inf. Syst , vol.45 , Issue.1 , pp. 247-270
    • Prati, R.C.1    Batista, G.E.2    Silva, D.F.3
  • 266
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513-523 (2012)
    • (2012) Pattern Recogn. Lett , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 267
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 45(10), 3738-3750 (2012)
    • (2012) Pattern Recogn , vol.45 , Issue.10 , pp. 3738-3750
    • Tahir, M.A.1    Kittler, J.2    Yan, F.3
  • 269
    • 69249202332 scopus 로고    scopus 로고
    • MIMLRBF: RBF neural networks for multi-instance multi-label learning
    • Zhang, M., Wang, Z.: MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing 72(16), 3951-3956 (2009)
    • (2009) Neurocomputing , vol.72 , Issue.16 , pp. 3951-3956
    • Zhang, M.1    Wang, Z.2
  • 272
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: A Library for support vector machines
    • Chang, C.C., Lin, C.J.: Libsvm: a Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1-27 (2011)
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 273
    • 79951829331 scopus 로고    scopus 로고
    • KEEL data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework
    • Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-Valued Log. Soft Comput. 17(2-3), 255-287 (2011)
    • (2011) J. Mult-Valued Log. Soft Comput , vol.17 , Issue.2-3 , pp. 255-287
    • Alcala-Fdez, J.1    Fernandez, A.2    Luengo, J.3    Derrac, J.4    Garrfa, S.5    Sanchez, L.6    Herrera, F.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.