-
2
-
-
0001882616
-
Fast algorithms for mining association rules
-
VLDB’94, Morgan Kaufmann
-
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB’94, pp. 487-499. Morgan Kaufmann (1994)
-
(1994)
Proceedings of 20Th International Conference on Very Large Data Bases
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
84879815802
-
Multiple instance classification: Review, taxonomy and comparative study
-
Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81-105 (2013)
-
(2013)
Artif. Intell
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
6
-
-
79955550286
-
Multi-dimensional classification with Bayesian networks
-
Bielza, C., Li, G., Larranaga, P.: Multi-dimensional classification with Bayesian networks. Int. J. Approximate Reasoning 52(6), 705-727 (2011)
-
(2011)
Int. J. Approximate Reasoning
, vol.52
, Issue.6
, pp. 705-727
-
-
Bielza, C.1
Li, G.2
Larranaga, P.3
-
7
-
-
0003802343
-
-
CRC press
-
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC press (1984)
-
(1984)
Classification and Regression Trees.
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
-
(1967)
IEEE Trans. Inf. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
12
-
-
33745952342
-
25 years of time series forecasting
-
De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443-473 (2006)
-
(2006)
Int. J. Forecast.
, vol.22
, Issue.3
, pp. 443-473
-
-
De Gooijer, J.G.1
Hyndman, R.J.2
-
14
-
-
0002283033
-
From data mining to knowledge discovery in databases
-
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37 (1996)
-
(1996)
AI Mag
, vol.17
, Issue.3
, pp. 37
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
16
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
-
(2011)
Pattern Recogn
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
18
-
-
84929484765
-
A tutorial on multi-label learning
-
Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3) (2015)
-
(2015)
ACM Comput. Surv
, vol.47
, Issue.3
-
-
Gibaja, E.1
Ventura, S.2
-
20
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53-87 (2004)
-
(2004)
Data Min. Knowl. Disc
, vol.8
, Issue.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
21
-
-
84946782393
-
Weak supervision and other non-standard classification problems: A taxonomy
-
Hernandez-Gonzalez, J., Inza, I., Lozano, J.A.: Weak supervision and other non-standard classification problems: a taxonomy. Pattern Recogn. Lett. 69, 49-55 (2016)
-
(2016)
Pattern Recogn. Lett
, vol.69
, pp. 49-55
-
-
Hernandez-Gonzalez, J.1
Inza, I.2
Lozano, J.A.3
-
24
-
-
84930630277
-
-
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436-444 (2015)
-
(2015)
Deep Learning. Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
25
-
-
61749084093
-
Supervised descriptive rule discovery: Aunifying survey of contrast set, emerging pattern and subgroup mining
-
Novak, P.K., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: aunifying survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res. 10, 377-403 (2009)
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 377-403
-
-
Novak, P.K.1
Lavrac, N.2
Webb, G.I.3
-
29
-
-
77956163078
-
Mining multi-label data
-
Springer
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667-685. Springer (2010)
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
31
-
-
84897109377
-
A review on multi-label learning algorithms
-
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819-1837 (2014)
-
(2014)
IEEE Trans. Knowl. Data Eng
, vol.26
, Issue.8
, pp. 1819-1837
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
32
-
-
80955134248
-
Multi-instance multi-label learning. Artif
-
Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance multi-label learning. Artif. Intell. 176(1), 2291-2320 (2012)
-
(2012)
Intell
, vol.176
, Issue.1
, pp. 2291-2320
-
-
Zhou, Z.H.1
Zhang, M.L.2
Huang, S.J.3
Li, Y.F.4
-
34
-
-
85006485608
-
-
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F: KEEL multi-label dataset repository. http://sci2s.ugr.es/keel/multilabel.php
-
KEEL Multi-Label Dataset Repository
-
-
Alcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garrfa, S.5
Sanchez, L.6
Herrera, F.7
-
35
-
-
79951829331
-
KEEL data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework
-
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-valued Log. Soft Comput. 17(2-3), 255-287 (2011)
-
(2011)
J. Mult-Valued Log. Soft Comput
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garrfa, S.5
Sanchez, L.6
Herrera, F.7
-
36
-
-
80054948724
-
Incorporating label dependency into the binary relevance framework for multi-label classification
-
Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
-
(2012)
Expert Syst. Appl
, vol.39
, Issue.2
, pp. 1647-1655
-
-
Alvares-Cherman, E.1
Metz, J.2
Monard, M.C.3
-
37
-
-
78650556770
-
-
Technical Report, California Institute of Technology
-
Aly, M.: Survey on multiclass classification methods. In: Technical Report, pp. 1-9. California Institute of Technology (2005)
-
(2005)
Survey on Multiclass Classification Methods
, pp. 1-9
-
-
Aly, M.1
-
38
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
-
(2004)
Pattern Recogn
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
39
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
40
-
-
84918783217
-
Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
-
Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J.K., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J. Acoust. Soc. Am. 131(6), 4640-4650 (2012)
-
(2012)
J. Acoust. Soc. Am
, vol.131
, Issue.6
, pp. 4640-4650
-
-
Briggs, F.1
Lakshminarayanan, B.2
Neal, L.3
Fern, X.Z.4
Raich, R.5
Hadley, S.J.K.6
Hadley, A.S.7
Betts, M.G.8
-
42
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121-167 (1998)
-
(1998)
Data Min. Knowl. Disc
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
44
-
-
84964054493
-
R Ultimate multilabel dataset repository
-
HAIS’16, Springer
-
Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R Ultimate multilabel dataset repository. In: Proceedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 487-499. Springer (2016)
-
(2016)
Proceedings of 11Th International Conference on Hybrid Artificial Intelligent Systems
, vol.9648
, pp. 487-499
-
-
Charte, F.1
Charte, D.2
Rivera, A.J.3
Del Jesus, M.J.4
Herrera, F.5
-
45
-
-
85006473423
-
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Multilabel classification. In: Problem Analysis, Metrics and Techniques Book Repository. https://github.com/fcharte/SM-MLC
-
Multilabel Classification. In: Problem Analysis, Metrics and Techniques Book Repository
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
46
-
-
84930273620
-
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
-
(2015)
Neurocomputing
, vol.163
, pp. 3-16
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
47
-
-
84944354565
-
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst. 89, 385-397 (2015)
-
(2015)
Knowl.-Based Syst.
, vol.89
, pp. 385-397
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
48
-
-
84961695915
-
QUINTA: A question tagging assistant to improve the answering ratio in electronic forums
-
EUROCON’15, IEEE
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: QUINTA: a question tagging assistant to improve the answering ratio in electronic forums. In: Proceedings of IEEE International Conference on Computer as a Tool, EUROCON’15, pp. 1-6. IEEE (2015)
-
(2015)
Proceedings of IEEE International Conference on Computer as a Tool
, pp. 1-6
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
49
-
-
38349079707
-
Efficient classification of multi-label and imbalanced data using min-max modular classifiers
-
IJCNN’06, pp
-
Chen, K., Lu, B., Kwok, J.: Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06, pp. 1770-1775 (2006)
-
(2006)
Proceedings of IEEE International Joint Conference on Neural Networks
, pp. 1770-1775
-
-
Chen, K.1
Lu, B.2
Kwok, J.3
-
50
-
-
85026358829
-
Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs
-
Chen, X., Zhan, Y., Ke, J., Chen, X.: Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimedia Tools Appl. 1-22 (2015)
-
(2015)
Multimedia Tools Appl
, pp. 1-22
-
-
Chen, X.1
Zhan, Y.2
Ke, J.3
Chen, X.4
-
52
-
-
34248573429
-
Grouping of triz inventive principles to facilitate automatic patent classification
-
Cong, H., Tong, L.H.: Grouping of triz inventive principles to facilitate automatic patent classification. Expert Syst. Appl. 34(1), 788-795 (2008)
-
(2008)
Expert Syst. Appl.
, vol.34
, Issue.1
, pp. 788-795
-
-
Cong, H.1
Tong, L.H.2
-
53
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
-
(1967)
IEEE Trans. Inf. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
54
-
-
46949103773
-
Automatic code assignment to medical text
-
BioNLP’07, Association for Computational Linguistics
-
Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code assignment to medical text. In: Proceedings of Workshop on Biological, Translational, and Clinical Language Processing, BioNLP’07, pp. 129-136. Association for Computational Linguistics (2007)
-
(2007)
Proceedings of Workshop on Biological, Translational, and Clinical Language Processing
, pp. 129-136
-
-
Crammer, K.1
Dredze, M.2
Ganchev, K.3
Talukdar, P.P.4
Carroll, S.5
-
55
-
-
79955570175
-
On label dependence in multilabel classification
-
Dembszynski, K., Waegeman, W., Cheng, W., Hullermeier, E.: On label dependence in multilabel classification. In: ICML Workshop on Learning from Multi-label data, pp. 5-12 (2010)
-
(2010)
ICML Workshop on Learning from Multi-Label Data
, pp. 5-12
-
-
Dembszynski, K.1
Waegeman, W.2
Cheng, W.3
Hullermeier, E.4
-
56
-
-
77957042586
-
Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
-
Springer
-
Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining, LNCS, vol. 5669, pp. 40-52. Springer (2010)
-
(2010)
New Frontiers in Applied Data Mining, LNCS
, vol.5669
, pp. 40-52
-
-
Dendamrongvit, S.1
Kubat, M.2
-
57
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer
-
Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems. LNCS, vol. 1857, pp. 1-15. Springer (2000)
-
(2000)
Multiple Classifier Systems. LNCS
, vol.1857
, pp. 1-15
-
-
Dietterich, T.1
-
58
-
-
33646536577
-
Protein classification with multiple algorithms
-
PCI’05, Springer
-
Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Proc. 10th Panhellenic Conference on Informatics, PCI’05, vol. 3746, pp. 448-456. Springer (2005)
-
(2005)
Proc. 10Th Panhellenic Conference on Informatics
, vol.3746
, pp. 448-456
-
-
Diplaris, S.1
Tsoumakas, G.2
Mitkas, P.3
Vlahavas, I.4
-
59
-
-
0003922190
-
Pattern Classification, 2nd edn
-
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley (2000)
-
(2000)
John Wiley
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
60
-
-
84889041820
-
Latent semantic indexing
-
TREC-4, NIST
-
Dumais, S., Furnas, G., Landauer, T., Deerwester, S., Deerwester, S., et al.: Latent semantic indexing. In: Proceedings of 4th Text Retrieval Conference, TREC-4, pp. 105-115. NIST (1995)
-
(1995)
Proceedings of 4Th Text Retrieval Conference
, pp. 105-115
-
-
Dumais, S.1
Furnas, G.2
Landauer, T.3
Deerwester, S.4
Deerwester, S.5
-
61
-
-
84937572644
-
Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
-
ECCV’02, Springer
-
Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of 7th European Conference on Computer Vision, ECCV’02, vol. 2353, pp. 97-112. Springer (2002)
-
(2002)
Proceedings of 7Th European Conference on Computer Vision
, vol.2353
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
De Freitas, J.3
Forsyth, D.4
-
63
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Furnkranz, J., Hullermeier, E., Loza Menrfa, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133-153 (2008)
-
(2008)
Mach. Learn
, vol.73
, pp. 133-153
-
-
Furnkranz, J.1
Hullermeier, E.2
Loza Menrfa, E.3
Brinker, K.4
-
64
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
-
(2011)
Pattern Recogn
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
65
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463-484 (2012)
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
67
-
-
84929484765
-
A tutorial on multi-label learning
-
Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3) (2015)
-
(2015)
ACM Comput. Surv
, vol.47
, Issue.3
-
-
Gibaja, E.1
Ventura, S.2
-
68
-
-
0346325840
-
A preliminary approach to the multilabel classification problem of Portuguese juridical documents
-
EPIA’03, Springer
-
Gonfalves, T., Quaresma, P.: A preliminary approach to the multilabel classification problem of Portuguese juridical documents. In: Proceedings of 11th Portuguese Conference on Artificial Intelligence, EPIA’03, pp. 435-444. Springer (2003)
-
(2003)
Proceedings of 11Th Portuguese Conference on Artificial Intelligence
, pp. 435-444
-
-
Gonfalves, T.1
Quaresma, P.2
-
69
-
-
84861443014
-
Multi-label classification using conditional dependency networks
-
Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks. In: Proceedings of 22th International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, pp. 1300-1305 (2011)
-
(2011)
Proceedings of 22Th International Joint Conference on Artificial Intelligence, IJCAI’11
, vol.2
, pp. 1300-1305
-
-
Guo, Y.1
Gu, S.2
-
70
-
-
0028737912
-
WEKA: A machine learning workbench
-
ANZIIS’02
-
Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench. In: Proceedings of 2nd Australian and New Zealand Conference on Intelligent Information Systems, ANZIIS’02, pp. 357-361 (2002)
-
(2002)
Proceedings of 2Nd Australian and New Zealand Conference on Intelligent Information Systems
, pp. 357-361
-
-
Holmes, G.1
Donkin, A.2
Witten, I.H.3
-
71
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
-
(2008)
Artif. Intell
, vol.172
, Issue.16
, pp. 1897-1916
-
-
Hullermeier, E.1
Furnkranz, J.2
Cheng, W.3
Brinker, K.4
-
73
-
-
77956208484
-
Multilabel text classification for automated tag suggestion
-
Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’08, pp. 75-83 (2008)
-
(2008)
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’0
, pp. 75-83
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
75
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
76
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
IEEE
-
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proc eedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995-1000. IEEE (2008)
-
(2008)
Proc Eedings of 8Th IEEE International Conference on Data Mining, ICDM’08
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
77
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
-
(2011)
Mach. Learn
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
79
-
-
84911429300
-
Pattern classification using ensemble methods
-
Rokach, L.: Pattern classification using ensemble methods. World Scientific (2009)
-
(2009)
World Scientific
-
-
Rokach, L.1
-
80
-
-
0020848262
-
Extended Boolean information retrieval
-
Salton, G., Fox, E.A., Wu, H.: Extended Boolean information retrieval. Commun. ACM 26(11), 1022-1036 (1983)
-
(1983)
Commun. ACM
, vol.26
, Issue.11
, pp. 1022-1036
-
-
Salton, G.1
Fox, E.A.2
Wu, H.3
-
81
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of 14th ACM International Conference on Multimedia, MULTIMEDIA’06, pp. 421-430 (2006)
-
(2006)
Proceedings of 14Th ACM International Conference on Multimedia, MULTIMEDIA’06
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
Van Gemert, J.C.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
82
-
-
77952636818
-
Classification of complex information: Inference of cooccurring affective states from their expressions in speech
-
Sobol-Shikler, T., Robinson, P.: Classification of complex information: Inference of cooccurring affective states from their expressions in speech. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1284-1297 (2010)
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.7
, pp. 1284-1297
-
-
Sobol-Shikler, T.1
Robinson, P.2
-
83
-
-
77956025040
-
Short text classification in twitter to improve information filtering
-
ACM
-
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 841-842. ACM (2010)
-
(2010)
Proceedings of 33Rd International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 841-842
-
-
Sriram, B.1
Fuhry, D.2
Demir, E.3
Ferhatosmanoglu, H.4
Demirbas, M.5
-
85
-
-
79955562745
-
Identification of label dependences for multilabel classification
-
Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of label dependences for multilabel classification. In: Proceedings of 2nd International Workshop on Learning from MultiLabel Data, MLD’10, pp. 53-60 (2010)
-
(2010)
Proceedings of 2Nd International Workshop on Learning from Multilabel Data, MLD’10
, pp. 53-60
-
-
Tenenboim-Chekina, L.1
Rokach, L.2
Shapira, B.3
-
86
-
-
77956163078
-
Mining multi-label data
-
Springer
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667-685. Springer (2010)
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
87
-
-
84885876585
-
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN multi-label dataset repository. http://mulan.sourceforge.net/datasets.html
-
MULAN Multi-Label Dataset Repository.
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
88
-
-
80052236046
-
MULAN: A java library for multi-label learning
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN: a java library for multi-label learning. J. Mach. Learn. Res. 12, 2411-2414 (2011)
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
89
-
-
57049092565
-
Semantic annotation and retrieval of music and sound effects
-
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467-476 (2008)
-
(2008)
IEEE Trans. Audio Speech Lang. Process
, vol.16
, Issue.2
, pp. 467-476
-
-
Turnbull, D.1
Barrington, L.2
Torres, D.3
Lanckriet, G.4
-
90
-
-
84890217212
-
Label ranking algorithms: A survey
-
Springer
-
Vembu, S., Gartner, T.: Label ranking algorithms: a survey. In: Preference learning, pp. 45-64. Springer (2011)
-
(2011)
Preference Learning
, pp. 45-64
-
-
Vembu, S.1
Gartner, T.2
-
91
-
-
70249151061
-
Multi-label classification of emotions in music
-
Wieczorkowska, A., Synak, P., Ras, Z.: Multi-label classification of emotions in music. In: Intelligent Information Processing and Web Mining. AISC, vol. 35, Chap. 30, pp. 307-315 (2006)
-
(2006)
Intelligent Information Processing and Web Mining. AISC
, vol.35
, pp. 307-315
-
-
Wieczorkowska, A.1
Synak, P.2
Ras, Z.3
-
95
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37-66 (1991)
-
(1991)
Mach. Learn.
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
96
-
-
85006485608
-
-
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F: KEEL multi-label dataset repository. http://sci2s.ugr.es/keel/multilabel.php
-
KEEL Multi-Label Dataset Repository
-
-
Lcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garrfa, S.5
Sanchez, L.6
Herrera, F.7
-
97
-
-
5544244774
-
On the measurement of inequality
-
Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2(3), 244-263 (1970)
-
(1970)
J. Econ. Theory
, vol.2
, Issue.3
, pp. 244-263
-
-
Atkinson, A.B.1
-
98
-
-
0041876117
-
Matching words and pictures
-
Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107-1135 (2003)
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1107-1135
-
-
Barnard, K.1
Duygulu, P.2
Forsyth, D.3
De Freitas, N.4
Blei, D.M.5
Jordan, M.I.6
-
99
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
-
(2004)
Pattern Recogn
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
100
-
-
84918783217
-
Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
-
Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J.K., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J. Acoust. Soc. Am. 131(6), 4640-4650 (2012)
-
(2012)
J. Acoust. Soc. Am
, vol.131
, Issue.6
, pp. 4640-4650
-
-
Briggs, F.1
Lakshminarayanan, B.2
Neal, L.3
Fern, X.Z.4
Raich, R.5
Hadley, S.J.K.6
Hadley, A.S.7
Betts, M.G.8
-
101
-
-
29644434908
-
Incremental algorithms for hierarchical classification
-
Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classification. J. Mach. Learn. Res. 7, 31-54 (2006)
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 31-54
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Zaniboni, L.3
-
103
-
-
84964054493
-
R Ultimate multilabel dataset repository
-
Springer
-
Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R Ultimate multilabel dataset repository. In: Proceedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 487-499. Springer (2016)
-
(2016)
Proceedings of 11Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16
, vol.9648
, pp. 487-499
-
-
Charte, F.1
Charte, D.2
Rivera, A.J.3
Del Jesus, M.J.4
Herrera, F.5
-
104
-
-
84907817318
-
LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
-
Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1842-1854 (2014)
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst
, vol.25
, Issue.10
, pp. 1842-1854
-
-
Charte, F.1
Rivera, A.2
Del Jesus, M.J.3
Herrera, F.4
-
105
-
-
85006473423
-
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Multilabel classification. Problem analysis, metrics and techniques book repository. https://github.com/fcharte/SM-MLC
-
Multilabel Classification. Problem Analysis, Metrics and Techniques Book Repository.
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
106
-
-
84902509247
-
Concurrence among Imbalanced labels and its influence on multilabel resampling algorithms
-
Springer
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Concurrence among Imbalanced labels and its influence on multilabel resampling algorithms. In: Proceedings of 9th International Conference on Hybrid Artificial Intelligent Systems, HAIS’14, vol. 8480. Springer (2014)
-
(2014)
Proceedings of 9Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’14
, vol.8480
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
107
-
-
84930273620
-
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
-
(2015)
Neurocomputing
, vol.163
, pp. 3-16
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
108
-
-
84961695915
-
QUINTA: A question tagging assistant to improve the answering ratio in electronic forums
-
IEEE
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: QUINTA: a question tagging assistant to improve the answering ratio in electronic forums. In: Proceedings of IEEE International Conference on Computer as a Tool, EUROCON’15, pp. 1-6. IEEE (2015)
-
(2015)
Proceedings of IEEE International Conference on Computer as a Tool, EUROCON’15
, pp. 1-6
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
109
-
-
84964054564
-
On the impact of dataset complexity and sampling strategy in multilabel classifiers performance
-
Springer
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: On the impact of dataset complexity and sampling strategy in multilabel classifiers performance. In: Proceedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 500-511. Springer (2016)
-
(2016)
Proceedings of 11Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16
, vol.9648
, pp. 500-511
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
110
-
-
74049158146
-
NUS-WIDE: A real-world web image database from National University of Singapore
-
ACM
-
Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world web image database from National University of Singapore. In: Proceedings of 8th ACM international Conference on Image and Video Retrieval, CIVR’09, pp. 48:1-48:9. ACM (2009)
-
(2009)
Proceedings of 8Th ACM International Conference on Image and Video Retrieval, CIVR’09
, vol.48
, Issue.9
, pp. 1-48
-
-
Chua, T.S.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
111
-
-
46949103773
-
Automatic code assignment to medical text
-
Association for Computational Linguistics
-
Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code assignment to medical text. In: Proceedings of Workshop on Biological, Translational, and Clinical Language Processing, BioNLP’07, pp. 129-136. Association for Computational Linguistics (2007)
-
(2007)
Proceedings of Workshop on Biological, Translational, and Clinical Language Processing, BioNLP’07
, pp. 129-136
-
-
Crammer, K.1
Dredze, M.2
Ganchev, K.3
Talukdar, P.P.4
Carroll, S.5
-
112
-
-
33646536577
-
Protein classification with multiple algorithms
-
Springer
-
Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Proceedings of 10th Panhellenic Conference on Informatics, PCI’05, vol. 3746, pp. 448-456. Springer (2005)
-
(2005)
Proceedings of 10Th Panhellenic Conference on Informatics, PCI’05
, vol.3746
, pp. 448-456
-
-
Diplaris, S.1
Tsoumakas, G.2
Mitkas, P.3
Vlahavas, I.4
-
113
-
-
84937572644
-
Object recognition as machine translation: Learning a Lexicon for a fixed image vocabulary
-
Springer
-
Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a Lexicon for a fixed image vocabulary. In: Proceedings of 7th European Conference on Computer Vision, ECCV’02, vol. 2353, pp. 97-112. Springer (2002)
-
(2002)
Proceedings of 7Th European Conference on Computer Vision, ECCV’02
, vol.2353
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
De Freitas, J.3
Forsyth, D.4
-
116
-
-
7444230008
-
Discriminative methods for multi-labeled classification
-
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Min. 3056, 22-30 (2004)
-
(2004)
Adv. Knowl. Discov. Data Min
, vol.3056
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
117
-
-
84897716580
-
A genetic algorithm for optimizing the label ordering in multi-label classifier chains
-
IEEE
-
Gonfalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’13, pp. 469-476. IEEE (2013)
-
(2013)
Proceedings of 25Th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’13
, pp. 469-476
-
-
Gonfalves, E.C.1
Plastino, A.2
Freitas, A.A.3
-
118
-
-
84957069814
-
Text categorization with suport vector machines: Learning with many relevant features
-
Springer
-
Joachims, T.: Text categorization with suport vector machines: learning with many relevant features. In: Proceedings of 10th European Conference on Machine Learning, ECML’98, pp. 137-142. Springer (1998)
-
(1998)
Proceedings of 10Th European Conference on Machine Learning, ECML’98
, pp. 137-142
-
-
Joachims, T.1
-
119
-
-
77956208484
-
Multilabel text classification for automated tag suggestion
-
Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’08, pp. 75-83 (2008)
-
(2008)
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’08
, pp. 75-83
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
122
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
125
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
-
(2011)
Mach. Learn.
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
127
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach. Learn. 39(2-3), 135-168 (2000)
-
(2000)
Mach. Learn
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
128
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of 14th ACM International Conference on Multimedia, MULTIMEDIA’06, pp. 421-430 (2006)
-
(2006)
Proceedings of 14Th ACM International Conference on Multimedia, MULTIMEDIA’06
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
Van Gemert, J.C.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
129
-
-
84907438731
-
A comprehensive study over vlad and product quantization in large-scale image retrieval
-
Spyromitros-Xioufis, E., Papadopoulos, S., Kompatsiaris, I.Y., Tsoumakas, G., Vlahavas, I.: A comprehensive study over vlad and product quantization in large-scale image retrieval. IEEE Trans. Multimedia 16(6), 1713-1728 (2014)
-
(2014)
IEEE Trans. Multimedia
, vol.16
, Issue.6
, pp. 1713-1728
-
-
Spyromitros-Xioufis, E.1
Papadopoulos, S.2
Kompatsiaris, I.Y.3
Tsoumakas, G.4
Vlahavas, I.5
-
130
-
-
33751524073
-
Discovering recurring anomalies in text reports regarding complex space systems
-
IEEE
-
Srivastava, A.N., Zane-Ulman, B.: Discovering recurring anomalies in text reports regarding complex space systems. In: Aerospace Conference, pp. 3853-3862. IEEE (2005)
-
(2005)
Aerospace Conference
, pp. 3853-3862
-
-
Srivastava, A.N.1
Zane-Ulman, B.2
-
131
-
-
84894202914
-
A framework to generate synthetic multi-label datasets
-
Tomas, J.T., Spolaor, N., Cherman, E.A., Monard, M.C.: A framework to generate synthetic multi-label datasets. Electron. Notes Theoret. Comput. Sci. 302, 155-176 (2014)
-
(2014)
Electron. Notes Theoret. Comput. Sci
, vol.302
, pp. 155-176
-
-
Tomas, J.T.1
Spolaor, N.2
Cherman, E.A.3
Monard, M.C.4
-
133
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08, pp. 30-44 (2008)
-
(2008)
Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
134
-
-
77956163078
-
Mining multi-label data
-
Springer
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667-685. Springer (2010)
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-668
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
135
-
-
38049123909
-
Random k-Labelsets: An ensemble method for multilabel classification
-
Springer
-
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: an ensemble method for multilabel classification. In: Proceedings of 18th European Conference on Machine Learning, ECML’07, vol. 4701, pp. 406-417. Springer (2007)
-
(2007)
Proceedings of 18Th European Conference on Machine Learning, ECML’07
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
136
-
-
84885876585
-
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN multi-label dataset repository. http://mulan.sourceforge.net/datasets.html
-
MULAN Multi-Label Dataset Repository
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
137
-
-
57049092565
-
Semantic annotation and retrieval of music and sound effects
-
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467-476 (2008)
-
(2008)
IEEE Trans. Audio Speech Lang. Process
, vol.16
, Issue.2
, pp. 467-476
-
-
Turnbull, D.1
Barrington, L.2
Torres, D.3
Lanckriet, G.4
-
138
-
-
84898032598
-
Automated annotation of functional imaging experiments via multi-label classification
-
Turner, M.D., Chakrabarti, C., Jones, T.B., Xu, J.F., Fox, P.T., Luger, G.F., Laird, A.R., Turner, J.A.: Automated annotation of functional imaging experiments via multi-label classification. Front. Neurosci. 7 (2013)
-
(2013)
Front. Neurosci
, pp. 7
-
-
Turner, M.D.1
Chakrabarti, C.2
Jones, T.B.3
Xu, J.F.4
Fox, P.T.5
Luger, G.F.6
Laird, A.R.7
Turner, J.A.8
-
139
-
-
0036648502
-
Musical genre classification of audio signals
-
Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293-302 (2002)
-
(2002)
IEEE Trans. Speech Audio Process
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
141
-
-
70249151061
-
Multi-label classification of emotions in music
-
Wieczorkowska, A., Synak, P., Ras, Z.: Multi-label classification of emotions in music. In: Intelligent Information Processing and Web Mining, AISC, vol. 35, chap. 30, pp. 307-315 (2006)
-
(2006)
Intelligent Information Processing and Web Mining, AISC
, vol.35
, pp. 307-315
-
-
Wieczorkowska, A.1
Synak, P.2
Ras, Z.3
-
142
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007)
-
(2007)
Pattern Recogn
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
143
-
-
80054948724
-
Incorporating label dependency into the binary relevance framework for multi-label classification
-
Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
-
(2012)
Expert Syst. Appl
, vol.39
, Issue.2
, pp. 1647-1655
-
-
Alvares-Cherman, E.1
Metz, J.2
Monard, M.C.3
-
144
-
-
85006474411
-
Review on various problem transformation methods for classifying multi-label data
-
Barot, P., Panchal, M.: Review on various problem transformation methods for classifying multi-label data. Int. J. Data Mining Emerg. Technol. 4(2), 45-52 (2014)
-
(2014)
Int. J. Data Mining Emerg. Technol
, vol.4
, Issue.2
, pp. 45-52
-
-
Barot, P.1
Panchal, M.2
-
145
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
-
(2004)
Pattern Recogn
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
146
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Furnkranz, J., Hullermeier, E., Loza Menrfa, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133-153 (2008)
-
(2008)
Mach. Learn
, vol.73
, pp. 133-153
-
-
Furnkranz, J.1
Hullermeier, E.2
Loza Menrfa, E.3
Brinker, K.4
-
147
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761-1776 (2011)
-
(2011)
Pattern Recogn
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
148
-
-
7444230008
-
Discriminative methods for multi-labeled classification
-
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Adv. Knowl. Discov. Data Mining 3056, 22-30 (2004)
-
(2004)
Adv. Knowl. Discov. Data Mining
, vol.3056
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
149
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
-
(2008)
Artif. Intell.
, vol.172
, Issue.16
, pp. 1897-1916
-
-
Hullermeier, E.1
Furnkranz, J.2
Cheng, W.3
Brinker, K.4
-
152
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
IEEE
-
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995-1000. IEEE (2008)
-
(2008)
Proceedings of 8Th IEEE International Conference on Data Mining, ICDM’08
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
153
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
-
(2011)
Mach. Learn
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
154
-
-
79955562745
-
Identification of label dependencies for multilabel classification
-
Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of label dependencies for multilabel classification. In: Working Notes of the Second International Workshop on Learning from Multi-Label Data, MLD’10, pp. 53-60 (2010)
-
(2010)
Working Notes of the Second International Workshop on Learning from Multi-Label Data, MLD’10
, pp. 53-60
-
-
Tenenboim-Chekina, L.1
Rokach, L.2
Shapira, B.3
-
155
-
-
77955908068
-
Correlation-based pruning of stacked binary relevance models for multi-label learning
-
Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of 1st International Workshop on Learning from Multi-Label Data, MLD’09, pp. 101-116(2009)
-
(2009)
Proceedings of 1St International Workshop on Learning from Multi-Label Data, MLD’09
, pp. 101-116
-
-
Tsoumakas, G.1
Dimou, A.2
Spyromitros, E.3
Mezaris, V.4
Kompatsiaris, I.5
Vlahavas, I.6
-
156
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08, pp. 30-44 (2008)
-
(2008)
Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
157
-
-
38049123909
-
Random k-Labelsets: An ensemble method for multilabel classification
-
Springer
-
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: an ensemble method for multilabel classification. In: Proceedings of 18th European Conference on Machine Learning, ECML’07, vol. 4701, pp. 406-417. Springer (2007)
-
(2007)
Proceedings of 18Th European Conference on Machine Learning, ECML’07
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
158
-
-
0001882616
-
Fast algorithms for mining association rules
-
Morgan Kaufmann
-
Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB’94, pp. 487-499. Morgan Kaufmann (1994)
-
(1994)
Proceedings of the 20Th International Conference on Very Large Data Bases, VLDB’94
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
159
-
-
84927714422
-
An Investigation of fuzzy PSO and fuzzy SVD based RBF neural network for multi-label classification
-
Springer
-
Agrawal, J., Agrawal, S., Kaur, S., Sharma, S.: An Investigation of fuzzy PSO and fuzzy SVD based RBF neural network for multi-label classification. In: Proceedings of the 3rd International Conference on Soft Computing for Problem Solving, SocProS’13, vol. 1, pp. 677-687. Springer (2014)
-
(2014)
Roceedings of the 3Rd International Conference on Soft Computing for Problem Solving, SocProS’13
, vol.1
, pp. 677-687
-
-
Agrawal, J.1
Agrawal, S.2
Kaur, S.3
Sharma, S.4
-
160
-
-
84946687573
-
Lacova: Atree-based multi-label classifier using label covariance as splitting criterion
-
IEEE
-
Al-Otaibi, R., Kull, M., Flach, P.: Lacova: atree-based multi-label classifier using label covariance as splitting criterion. In: Proceedings of the 13th International Conference on Machine Learning and Applications, ICMLA’14, pp. 74-79. IEEE (2014)
-
(2014)
Proceedings of the 13Th International Conference on Machine Learning and Applications, ICMLA’14
, pp. 74-79
-
-
Al-Otaibi, R.1
Kull, M.2
Flach, P.3
-
161
-
-
70350629613
-
Multi-label classification with gene expression programming
-
Springer
-
Avila, J., Gibaja, E., Ventura, S.: Multi-label classification with gene expression programming. In: Proceedings of the 4th International Conference on Hybrid Artificial Intelligence Systems, HAIS’09, pp. 629-637. Springer (2009)
-
(2009)
Proceedings of the 4Th International Conference on Hybrid Artificial Intelligence Systems, HAIS’09
, pp. 629-637
-
-
Avila, J.1
Gibaja, E.2
Ventura, S.3
-
162
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004)
-
(2004)
Pattern Recogn
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
163
-
-
84921770473
-
Improving knn multi-label classification in prototype selection scenarios using class proposals
-
Calvo-Zaragoza, J., Valero-Mas, J.J., Rico-Juan, J.R.: Improving knn multi-label classification in prototype selection scenarios using class proposals. Pattern Recogn. 48(5), 1608-1622 (2015)
-
(2015)
Pattern Recogn.
, vol.48
, Issue.5
, pp. 1608-1622
-
-
Calvo-Zaragoza, J.1
Valero-Mas, J.J.2
Rico-Juan, J.R.3
-
165
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2-3), 211-225 (2009)
-
(2009)
Mach. Learn
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hullermeier, E.2
-
166
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Cheng, W., Hullermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, ICML’10, pp. 279-286 (2010)
-
(2010)
Proceedings of the 27Th International Conference on Machine Learning, ICML’10
, pp. 279-286
-
-
Cheng, W.1
Hullermeier, E.2
Dembczynski, K.J.3
-
167
-
-
84943242305
-
Knowledge discovery in multi-label phenotype data
-
Springer
-
Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Proceedings of the 5th European Conference Principles on Data Mining and Knowledge Discovery, PKDD’01, vol. 2168, pp. 42-53. Springer (2001)
-
(2001)
Proceedings of the 5Th European Conference Principles on Data Mining and Knowledge Discovery, PKDD’01
, vol.2168
, pp. 42-53
-
-
Clare, A.1
King, R.D.2
-
168
-
-
8344282787
-
Learning multi-label alternating decision trees from texts and data
-
Springer
-
De Comite, F., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: Proceedings of the 3rd International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM’03, vol. 2734, pp. 35-49. Springer (2003)
-
(2003)
Proceedings of the 3Rd International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM’03
, vol.2734
, pp. 35-49
-
-
De Comite, F.1
Gilleron, R.2
Tommasi, M.3
-
171
-
-
10644274066
-
Gene expression programming in problem solving
-
Springer
-
Ferreira, C.: Gene expression programming in problem solving. In: Soft Computing and Industry, pp. 635-653. Springer (2002)
-
(2002)
Soft Computing and Industry
, pp. 635-653
-
-
Ferreira, C.1
-
173
-
-
84911488854
-
An improved multi-label classification algorithm BRkNN
-
Genga, X., Tanga, Y., Zhua, Y., Chengb, G.: An improved multi-label classification algorithm BRkNN. J. Inf. Comput. Sci. 11(16), 5927-5936 (2014)
-
(2014)
J. Inf. Comput. Sci
, vol.11
, Issue.16
, pp. 5927-5936
-
-
Genga, X.1
Tanga, Y.2
Zhua, Y.3
Chengb, G.4
-
175
-
-
84897716580
-
A genetic algorithm for optimizing the label ordering in multi-label classifier chains
-
IEEE
-
Gonfalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label ordering in multi-label classifier chains. In: Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’13, pp. 469-476. IEEE (2013)
-
(2013)
Proceedings of the 25Th IEEE International Conference on Tools with Artificial Intelligence, ICTAI’13
, pp. 469-476
-
-
Gonfalves, E.C.1
Plastino, A.2
Freitas, A.A.3
-
176
-
-
56449130630
-
Improved multilabel classification with neural networks
-
Springer
-
Grodzicki, R., Mandziuk, J., Wang, L.: Improved multilabel classification with neural networks. In: Proceedings of the 10th International Conference on Parallel Problem Solving from Nature, PPSN X, pp. 409-416. Springer (2008)
-
(2008)
Proceedings of the 10Th International Conference on Parallel Problem Solving from Nature, PPSN X
, pp. 409-416
-
-
Grodzicki, R.1
Mandziuk, J.2
Wang, L.3
-
178
-
-
84954318613
-
Conditional restricted boltzmann machines for multi-label learning with incomplete labels
-
Li, X., Zhao, F., Guo, Y.: Conditional restricted boltzmann machines for multi-label learning with incomplete labels. In: Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, AISTATS’15, pp. 635-643 (2015)
-
(2015)
Proceedings of the 18Th International Conference on Artificial Intelligence and Statistics, AISTATS’15
, pp. 635-643
-
-
Li, X.1
Zhao, F.2
Guo, Y.3
-
179
-
-
84894210020
-
Multi-label classification based on particle swarm algorithm
-
IEEE
-
Liang, Q., Wang, Z., Fan, Y., Liu, C., Yan, X., Hu, C., Yao, H.: Multi-label classification based on particle swarm algorithm. In: Proceedings of the 9th IEEE International Conference on Mobile Ad-hoc and Sensor Networks, MSN’13, pp. 421-424. IEEE (2013)
-
(2013)
Proceedings of the 9Th IEEE International Conference on Mobile Ad-Hoc and Sensor Networks, MSN’13
, pp. 421-424
-
-
Liang, Q.1
Wang, Z.2
Fan, Y.3
Liu, C.4
Yan, X.5
Hu, C.6
Yao, H.7
-
180
-
-
0036670786
-
Data mining with an ant colony optimization algorithm
-
Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321-332 (2002)
-
(2002)
IEEE Trans. Evol. Comput
, vol.6
, Issue.4
, pp. 321-332
-
-
Parpinelli, R.S.1
Lopes, H.S.2
Freitas, A.A.3
-
182
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297-336 (1999)
-
(1999)
Mach. Learn
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
184
-
-
55349142147
-
An empirical study of lazy multilabel classification algorithms
-
Springer
-
Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel classification algorithms. In: Artificial Intelligence: Theories, Models and Applications, pp. 401-406. Springer (2008)
-
(2008)
Artificial Intelligence: Theories, Models and Applications
, pp. 401-406
-
-
Spyromitros, E.1
Tsoumakas, G.2
Vlahavas, I.3
-
185
-
-
84897644389
-
Multilabel classification with bayesian network-based chain classifiers
-
Sucar, L.E., Bielza, C., Morales, E.F., Hernandez-Leal, P., Zaragoza, J.H., Larranaga, P.: Multilabel classification with bayesian network-based chain classifiers. Pattern Recogn. Lett. 41, 14-22(2014)
-
(2014)
Pattern Recogn. Lett
, vol.41
, pp. 14-22
-
-
Sucar, L.E.1
Bielza, C.2
Morales, E.F.3
Hernandez-Leal, P.4
Zaragoza, J.H.5
Larranaga, P.6
-
186
-
-
65449185036
-
Hypergraph spectral learning for multi-label classification
-
ACM
-
Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining, ACM SIGKDD’08, pp. 668-676. ACM (2008)
-
(2008)
Proceedings of the 14Th International Conference on Knowledge Discovery and Data Mining, ACM SIGKDD’08
, pp. 668-676
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
187
-
-
80052236046
-
MULAN: A java library for multi-label learning
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN: a java library for multi-label learning. J. Mach. Learn. Res. 12, 2411-2414 (2011)
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
189
-
-
38049177740
-
Multi-label lazy associative classification
-
Springer
-
Veloso, A., Meira Jr, W., Gonfalves, M., Zaki, M.: Multi-label lazy associative classification. In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD’07, pp. 605-612. Springer (2007)
-
(2007)
Proceedings of the 11Th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD’07
, pp. 605-612
-
-
Veloso, A.1
Meira, W.2
Gonfalves, M.3
Zaki, M.4
-
190
-
-
84914812551
-
Simplified constraints Rank-SVM for multilabel classification
-
Springer
-
Wang, J., Feng, J., Sun, X., Chen, S., Chen, B.: Simplified constraints Rank-SVM for multilabel classification. In: Proceedings of the 6th Chinese Conference on Pattern Recognition, CCPR’14, pp. 229-236. Springer (2014)
-
(2014)
Proceedings of the 6Th Chinese Conference on Pattern Recognition, CCPR’14
, pp. 229-236
-
-
Wang, J.1
Feng, J.2
Sun, X.3
Chen, S.4
Chen, B.5
-
191
-
-
85027921685
-
Ml-tree: A tree-structure-based approach to multilabel learning
-
Wu, Q., Ye, Y., Zhang, H., Chow, T.W., Ho, S.S.: Ml-tree: a tree-structure-based approach to multilabel learning. IEEE Trans. Neural Networks Learn. Syst. 26(3), 430-443 (2015)
-
(2015)
IEEE Trans. Neural Networks Learn. Syst
, vol.26
, Issue.3
, pp. 430-443
-
-
Wu, Q.1
Ye, Y.2
Zhang, H.3
Chow, T.W.4
Ho, S.S.5
-
192
-
-
84870243552
-
Fast multi-label core vector machine
-
Xu, J.: Fast multi-label core vector machine. Pattern Recogn. 46(3), 885-898 (2013)
-
(2013)
Pattern Recogn
, vol.46
, Issue.3
, pp. 885-898
-
-
Xu, J.1
-
193
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
Zhang, M.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338-1351 (2006)
-
(2006)
IEEE Trans. Knowl. Data Eng
, vol.18
, Issue.10
, pp. 1338-1351
-
-
Zhang, M.1
-
194
-
-
62649132781
-
Ml-rbf: RBF neural networks for multi-label learning
-
Zhang, M.: Ml-rbf: RBF neural networks for multi-label learning. Neural Process. Lett. 29, 61-74(2009)
-
(2009)
Neural Process. Lett.
, vol.29
, pp. 61-74
-
-
Zhang, M.1
-
195
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007)
-
(2007)
Pattern Recogn
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
196
-
-
77955908068
-
Correlation-based pruning of stacked binary relevance models for multi-label learning
-
Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of 1st International Workshop on Learning from Multi-Label Data, MLD’09, pp. 101-116(2009)
-
(2009)
Proceedings of 1St International Workshop on Learning from Multi-Label Data, MLD’09
, pp. 101-116
-
-
Tsoumakas, G.1
Dimou, A.2
Spyromitros, E.3
Mezaris, V.4
Kompatsiaris, I.5
Vlahavas, I.6
-
197
-
-
80054948724
-
Incorporating label dependency into the binary relevance framework for multi-label classification
-
Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647-1655 (2012)
-
(2012)
Expert Syst. Appl
, vol.39
, Issue.2
, pp. 1647-1655
-
-
Alvares-Cherman, E.1
Metz, J.2
Monard, M.C.3
-
198
-
-
83155175374
-
Classifier chains for multi-label classification
-
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011)
-
(2011)
Mach. Learn
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
199
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Hullermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008)
-
(2008)
Artif. Intell
, vol.172
, Issue.16
, pp. 1897-1916
-
-
Hullermeier, E.1
Furnkranz, J.2
Cheng, W.3
Brinker, K.4
-
200
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Furnkranz, J., Hullermeier, E., Loza Menrfa, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133-153 (2008)
-
(2008)
Mach. Learn
, vol.73
, pp. 133-153
-
-
Furnkranz, J.1
Hullermeier, E.2
Loza Menrfa, E.3
Brinker, K.4
-
201
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
IEEE
-
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995-1000. IEEE (2008)
-
(2008)
Proceedings of 8Th IEEE International Conference on Data Mining, ICDM’08
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
202
-
-
38049123909
-
Random k-Labelsets: An ensemble method for multilabel classification
-
Springer
-
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An ensemble method for multilabel classification. In: Proceedings of 18th European Conference on Machine Learning, ECML’07, vol. 4701, pp. 406-417. Springer (2007)
-
(2007)
Proceedings of 18Th European Conference on Machine Learning, ECML’07
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
203
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08, pp. 30-44 (2008)
-
(2008)
Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
204
-
-
79955562745
-
Identification of label dependencies for multilabel classification
-
Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of label dependencies for multilabel classification. In: Working Notes of the Second International Workshop on Learning from Multi-Label Data, MLD’10, pp. 53-60 (2010)
-
(2010)
Working Notes of the Second International Workshop on Learning from Multi-Label Data, MLD’10
, pp. 53-60
-
-
Tenenboim-Chekina, L.1
Rokach, L.2
Shapira, B.3
-
205
-
-
38049132551
-
Ensembles of multi-objective decision trees
-
Springer
-
Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Ensembles of multi-objective decision trees. In: Proceedings of 18th European Conference on Machine Learning, ECML’07, pp. 624-631. Springer (2007)
-
(2007)
Proceedings of 18Th European Conference on Machine Learning, ECML’07
, pp. 624-631
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Dzeroski, S.4
-
206
-
-
84855780778
-
Multilabel classification using heterogeneous ensemble of multi-label classifiers
-
Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513-523 (2012)
-
(2012)
Pattern Recogn. Lett
, vol.33
, Issue.5
, pp. 513-523
-
-
Tahir, M.A.1
Kittler, J.2
Bouridane, A.3
-
207
-
-
84925368172
-
Scalable multi-output label prediction: From classifier chains to classifier trellises
-
Read, J., Martino, L., Olmos, P.M., Luengo, D.: Scalable multi-output label prediction: from classifier chains to classifier trellises. Pattern Recogn. 48(6), 2096-2109 (2015)
-
(2015)
Pattern Recogn
, vol.48
, Issue.6
, pp. 2096-2109
-
-
Read, J.1
Martino, L.2
Olmos, P.M.3
Luengo, D.4
-
208
-
-
79959921825
-
Dual layer voting method for efficient multi-label classification
-
Springer
-
Madjarov, G., Gjorgjevikj, D., Dzeroski, S.: Dual layer voting method for efficient multi-label classification. In: Proceedings of 5th Iberian Conference, IbPRIA’11, pp. 232-239. Springer (2011)
-
(2011)
Proceedings of 5Th Iberian Conference, IbPRIA’11
, pp. 232-239
-
-
Madjarov, G.1
Gjorgjevikj, D.2
Dzeroski, S.3
-
209
-
-
77649237436
-
Efficient voting prediction for pairwise multilabel classification
-
Menda, E.L., Park, S., Furnkranz, J.: Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7), 1164-1176 (2010)
-
(2010)
Neurocomputing
, vol.73
, Issue.7
, pp. 1164-1176
-
-
Menda, E.L.1
Park, S.2
Furnkranz, J.3
-
210
-
-
80052965571
-
Multilabel classifiers with a probabilistic thresholding strategy
-
Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn. 45(2), 876-883 (2012)
-
(2012)
Pattern Recogn
, vol.45
, Issue.2
, pp. 876-883
-
-
Quevedo, J.R.1
Luaces, O.2
Bahamonde, A.3
-
213
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
214
-
-
84907817318
-
LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
-
Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification. IEEE Trans. Neural Networks Learn. Syst. 25(10), 1842-1854 (2014)
-
(2014)
IEEE Trans. Neural Networks Learn. Syst
, vol.25
, Issue.10
, pp. 1842-1854
-
-
Charte, F.1
Rivera, A.2
Del Jesus, M.J.3
Herrera, F.4
-
216
-
-
0013326060
-
Feature selection for classification
-
Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131-156 (1997)
-
(1997)
Intell. Data Anal
, vol.1
, Issue.3
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
217
-
-
79955570175
-
On label dependence in multilabel classification
-
Dembszynski, K., Waegeman, W., Cheng, W., Hullermeier, E.: On label dependence in multilabel classification. In: ICML Workshop on Learning from Multi-label Data, pp. 5-12 (2010)
-
(2010)
ICML Workshop on Learning from Multi-Label Data
, pp. 5-12
-
-
Dembszynski, K.1
Waegeman, W.2
Cheng, W.3
Hullermeier, E.4
-
218
-
-
84884203069
-
Mutual information-based feature selection for multilabel classification
-
Doquire, G., Verleysen, M.: Mutual information-based feature selection for multilabel classification. Neurocomputing 122, 148-155 (2013)
-
(2013)
Neurocomputing
, vol.122
, pp. 148-155
-
-
Doquire, G.1
Verleysen, M.2
-
219
-
-
0001474381
-
The statistical utilization of multiple measurements
-
Fisher, R.A.: The statistical utilization of multiple measurements. Ann. Eugenics 8(4), 376-386 (1938)
-
(1938)
Ann. Eugenics
, vol.8
, Issue.4
, pp. 376-386
-
-
Fisher, R.A.1
-
220
-
-
33646245707
-
Multivariate non-linear feature selection with kernel multiplicative updates and Gram-Schmidt relief
-
Guyon, I., Bitter, H.M., Ahmed, Z., Brown, M., Heller, J.: Multivariate non-linear feature selection with kernel multiplicative updates and Gram-Schmidt relief. In: Proceedings of International Joint Workshop on Soft Computing for Internet and Bioinformatics, BISC Flint-CIBI’03, pp. 1-11 (2003)
-
(2003)
Proceedings of International Joint Workshop on Soft Computing for Internet and Bioinformatics, BISC Flint-CIBI’03
, pp. 1-11
-
-
Guyon, I.1
Bitter, H.M.2
Ahmed, Z.3
Brown, M.4
Heller, J.5
-
221
-
-
33745891586
-
-
Springer
-
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction: Foundations and Applications. Springer (2008)
-
(2008)
Feature Extraction: Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
222
-
-
84896534098
-
Relations between two sets of variates
-
Springer
-
Hotelling, H.: Relations between two sets of variates. In: Breakthroughs in Statistics, pp. 162-190. Springer (1992)
-
(1992)
Breakthroughs in Statistics
, pp. 162-190
-
-
Hotelling, H.1
-
223
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Proceedings of 22th Annual Conference on Advances in Neural Information Processing Systems, NIPS’09, vol. 22, pp. 772-780 (2009)
-
(2009)
Proceedings of 22Th Annual Conference on Advances in Neural Information Processing Systems, NIPS’09
, vol.22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.2
Langford, J.3
Zhang, T.4
-
224
-
-
0003946510
-
Principal Component Analysis
-
Springer, Berlin
-
Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics, vol. 1. Springer, Berlin (1986)
-
(1986)
Springer Series in Statistics
, vol.1
-
-
Jolliffe, I.1
-
226
-
-
0031381525
-
Wrappers for feature subset selection. Artif
-
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273-324 (1997)
-
(1997)
Intell
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
227
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Machine Learning: ECML-94, pp. 171-182 (1994)
-
(1994)
Machine Learning: ECML-94
, pp. 171-182
-
-
Kononenko, I.1
-
228
-
-
84910651885
-
Mutual information-based multi-label feature selection using interaction information
-
Lee, J.S., Kim, D.W.: Mutual information-based multi-label feature selection using interaction information. Expert Syst. Appl. 42, 2013-2025 (2015)
-
(2015)
Expert Syst. Appl
, vol.42
, pp. 2013-2025
-
-
Lee, J.S.1
Kim, D.W.2
-
231
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
IEEE
-
Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995-1000. IEEE (2008)
-
(2008)
Proceedings of 8Th IEEE International Conference on Data Mining, ICDM’08
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
232
-
-
84875172457
-
A comparison of multi-label feature selection methods using the problem transformation approach
-
Spolaor, N., Cherman, E.A., Monard, M.C., Lee, H.D.: A comparison of multi-label feature selection methods using the problem transformation approach. Electron. Notes Theor. Comput. Sci. 292, 135-151 (2013)
-
(2013)
Electron. Notes Theor. Comput. Sci
, vol.292
, pp. 135-151
-
-
Spolaor, N.1
Cherman, E.A.2
Monard, M.C.3
Lee, H.D.4
-
233
-
-
65449185036
-
Hypergraph spectral learning for multi-label classification
-
ACM
-
Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification. In: Proceedings of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 668-676. ACM (2008)
-
(2008)
Proceedings of 14Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 668-676
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
235
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08, pp. 30-44 (2008)
-
(2008)
Proceedings of ECML/PKDD Workshop on Mining Multidimensional Data, MMD’08
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
236
-
-
38049123909
-
Random k-Labelsets: An ensemble method for multilabel classification
-
Springer
-
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: an ensemble method for multilabel classification. In: Proceedings of 18th European Conference on Machine Learning, ECML’07, vol. 4701, pp. 406-417. Springer (2007)
-
(2007)
Proceedings of 18Th European Conference on Machine Learning, ECML’07
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
237
-
-
84898971943
-
Kernel dependency estimation
-
Weston, J., Chapelle, O., Elisseeff, A., Scholkopf, B., Vapnik, V.: Kernel dependency estimation. In: Proceedings of 16th Annual Conference on Advances in Neural Information Processing Systems, NIPS’02, vol. 15, pp. 873-880 (2002)
-
(2002)
Proceedings of 16Th Annual Conference on Advances in Neural Information Processing Systems, NIPS’02
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Scholkopf, B.4
Vapnik, V.5
-
238
-
-
0019094381
-
A critical evaluation of intrinsic dimensionality algorithms
-
Wyse, N., Dubes, R., Jain, A.K.: A critical evaluation of intrinsic dimensionality algorithms. Pattern Recogn. Pract. 415-425 (1980)
-
(1980)
Pattern Recogn. Pract
, pp. 415-425
-
-
Wyse, N.1
Dubes, R.2
Jain, A.K.3
-
239
-
-
84885640929
-
Multi-label informed latent semantic indexing
-
ACM
-
Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Proceedings of 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258-265. ACM (2005)
-
(2005)
Proceedings of 28Th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 258-265
-
-
Yu, K.1
Yu, S.2
Tresp, V.3
-
240
-
-
84897109377
-
A review on multi-label learning algorithms
-
Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819-1837 (2014)
-
(2014)
IEEE Trans. Knowl. Data Eng
, vol.26
, Issue.8
, pp. 1819-1837
-
-
Zhang, M.1
Zhou, Z.2
-
241
-
-
78049346655
-
Multilabel dimensionality reduction via dependence maximization. ACM Trans. Knowl
-
Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maximization. ACM Trans. Knowl. Discovery Data (TKDD) 4(3), 14 (2010)
-
(2010)
Discovery Data (TKDD)
, vol.4
, Issue.3
, pp. 14
-
-
Zhang, Y.1
Zhou, Z.H.2
-
243
-
-
84865275504
-
Compressed labeling on distilled labelsets for multi-label learning. Mach
-
Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn. 88(1-2), 69-126 (2012)
-
(2012)
Learn
, vol.88
, Issue.1-2
, pp. 69-126
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
244
-
-
84958533469
-
Resampling multilabel datasets by decoupling highly imbalanced labels
-
Springer
-
Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Resampling multilabel datasets by decoupling highly imbalanced labels. In: Proceedings of 10th International Conference on Hybrid Artificial Intelligent Systems, HAIS’15, vol. 9121, pp. 489-501. Springer (2015)
-
(2015)
Proceedings of 10Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’15
, vol.9121
, pp. 489-501
-
-
Charte, F.1
Rivera, A.2
Del Jesus, M.J.3
Herrera, F.4
-
245
-
-
84884913245
-
A first approach to deal with imbalance in multi-label datasets
-
Springer
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: A first approach to deal with imbalance in multi-label datasets. In: Proceedings of 8th International Conference on Hybrid Artificial Intelligent Systems, HAIS’13, vol. 8073, pp. 150-160. Springer (2013)
-
(2013)
Proceedings of 8Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’13
, vol.8073
, pp. 150-160
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
246
-
-
84902509247
-
Concurrence among imbalanced labels and its influence on multilabel resampling algorithms
-
Springer
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Concurrence among imbalanced labels and its influence on multilabel resampling algorithms. In: Proceedings of 9th International Conference on Hybrid Artificial Intelligent Systems, HAIS’14, vol. 8480. Springer (2014)
-
(2014)
Proceedings of 9Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’14
, vol.8480
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
247
-
-
84958553194
-
MLeNN: A first approach to heuristic multilabel undersampling
-
Springer
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLeNN: a first approach to heuristic multilabel undersampling. In: Proceedings of 15th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL’14, vol. 8669, pp. 1-9. Springer (2014)
-
(2014)
Proceedings of 15Th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL’14
, vol.8669
, pp. 1-9
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
248
-
-
84930273620
-
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015)
-
(2015)
Neurocomputing
, vol.163
, pp. 3-16
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
249
-
-
84944354565
-
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. Knowl
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl. Based Syst. 89, 385-397 (2015)
-
(2015)
Based Syst
, vol.89
, pp. 385-397
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
250
-
-
85006473423
-
-
Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Multilabel Classification. Problem analysis, metrics and techniques book repository. https://github.com/fcharte/SM-MLC
-
Multilabel Classification. Problem Analysis, Metrics and Techniques Book Repository.
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
251
-
-
38349079707
-
Efficient classification of multi-label and imbalanced data using min-max modular classifiers
-
Chen, K., Lu, B., Kwok, J.: Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06, pp. 1770-1775 (2006)
-
(2006)
Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06
, pp. 1770-1775
-
-
Chen, K.1
Lu, B.2
Kwok, J.3
-
252
-
-
77957042586
-
Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
-
Springer
-
Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining. LNCS, vol. 5669, pp. 40-52. Springer (2010)
-
(2010)
New Frontiers in Applied Data Mining. LNCS
, vol.5669
, pp. 40-52
-
-
Dendamrongvit, S.1
Kubat, M.2
-
253
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
-
Fernandez, A., Lopez, V., Galar, M., del Jesus, M.J., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42, 97-110 (2013)
-
(2013)
Knowl. Based Syst
, vol.42
, pp. 97-110
-
-
Fernandez, A.1
Lopez, V.2
Galar, M.3
Del Jesus, M.J.4
Herrera, F.5
-
254
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. pattern Recogn. 44(8), 1761-1776 (2011)
-
(2011)
Pattern Recogn
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
255
-
-
84893190862
-
Managing imbalanced data sets in multi-label problems: A case study with the SMOTE algorithm
-
Springer
-
Giraldo-Forero, A.F., Jaramillo-Garzon, J.A., Ruiz-Munoz, J.F., Castellanos-Dommguez, C.G.: Managing imbalanced data sets in multi-label problems: a case study with the SMOTE algorithm. In: Proceedings of 18th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP’13, vol. 8258, pp. 334-342. Springer (2013)
-
(2013)
Proceedings of 18Th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP’13
, vol.8258
, pp. 334-342
-
-
Giraldo-Forero, A.F.1
Jaramillo-Garzon, J.A.2
Ruiz-Munoz, J.F.3
Castellanos-Dommguez, C.G.4
-
256
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284 (2009)
-
(2009)
IEEE Trans. Knowl. Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
257
-
-
84862027781
-
Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
-
He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS One 7(6), 7155 (2012)
-
(2012)
Plos One
, vol.7
, Issue.6
, pp. 7155
-
-
He, J.1
Gu, H.2
Liu, W.3
-
258
-
-
84878774850
-
Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples
-
Li, C., Shi, G.: Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples. J. Inf. Sci. Eng. 29(4), 765-776 (2013)
-
(2013)
J. Inf. Sci. Eng
, vol.29
, Issue.4
, pp. 765-776
-
-
Li, C.1
Shi, G.2
-
259
-
-
84883447718
-
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
-
Lopez, V., Fernandez, A., Garda, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113-141 (2013)
-
(2013)
Inf. Sci
, vol.250
, pp. 113-141
-
-
Lopez, V.1
Fernandez, A.2
Garda, S.3
Palade, V.4
Herrera, F.5
-
260
-
-
0032594843
-
Task decomposition and module combination based on class relations: A modular neural network for pattern classification
-
Lu, B., Ito, M.: Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Trans. Neural Netw. 10(5), 1244-1256 (1999)
-
(1999)
IEEE Trans. Neural Netw
, vol.10
, Issue.5
, pp. 1244-1256
-
-
Lu, B.1
Ito, M.2
-
261
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Nitesh, V.C., Kevin, W.B., Lawrence, O.H., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357 (2002)
-
(2002)
J. Artif. Intell. Res
, vol.16
, pp. 321-357
-
-
Nitesh, V.C.1
Kevin, W.B.2
Lawrence, O.H.3
Kegelmeyer, W.P.4
-
262
-
-
84942249246
-
Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
-
Prati, R.C., Batista, G.E., Silva, D.F.: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45(1), 247-270 (2015)
-
(2015)
Knowl. Inf. Syst
, vol.45
, Issue.1
, pp. 247-270
-
-
Prati, R.C.1
Batista, G.E.2
Silva, D.F.3
-
265
-
-
67650706774
-
Classification of imbalanced data: A review
-
Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(4), 687-719 (2009)
-
(2009)
Int. J. Pattern Recogn. Artif. Intell
, vol.23
, Issue.4
, pp. 687-719
-
-
Sun, Y.1
Wong, A.K.C.2
Kamel, M.S.3
-
266
-
-
84855780778
-
Multilabel classification using heterogeneous ensemble of multi-label classifiers
-
Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513-523 (2012)
-
(2012)
Pattern Recogn. Lett
, vol.33
, Issue.5
, pp. 513-523
-
-
Tahir, M.A.1
Kittler, J.2
Bouridane, A.3
-
267
-
-
84861810464
-
Inverse random under sampling for class imbalance problem and its application to multi-label classification
-
Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 45(10), 3738-3750 (2012)
-
(2012)
Pattern Recogn
, vol.45
, Issue.10
, pp. 3738-3750
-
-
Tahir, M.A.1
Kittler, J.2
Yan, F.3
-
269
-
-
69249202332
-
MIMLRBF: RBF neural networks for multi-instance multi-label learning
-
Zhang, M., Wang, Z.: MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing 72(16), 3951-3956 (2009)
-
(2009)
Neurocomputing
, vol.72
, Issue.16
, pp. 3951-3956
-
-
Zhang, M.1
Wang, Z.2
-
270
-
-
80052236046
-
MULAN: A Java Library for multi-label learning
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN: A Java Library for multi-label learning. J. Mach. Learn. Res. 12, 2411-2414 (2011)
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
272
-
-
79955702502
-
Libsvm: A Library for support vector machines
-
Chang, C.C., Lin, C.J.: Libsvm: a Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1-27 (2011)
-
(2011)
ACM Trans. Intell. Syst. Technol
, vol.2
, Issue.3
, pp. 1-27
-
-
Chang, C.C.1
Lin, C.J.2
-
273
-
-
79951829331
-
KEEL data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework
-
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-Valued Log. Soft Comput. 17(2-3), 255-287 (2011)
-
(2011)
J. Mult-Valued Log. Soft Comput
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garrfa, S.5
Sanchez, L.6
Herrera, F.7
-
274
-
-
85006460374
-
-
Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R Ultimate Multilabel Dataset Repository. https://github.com/fcharte/mldr.datasets
-
R Ultimate Multilabel Dataset Repository
-
-
Charte, F.1
Charte, D.2
Rivera, A.J.3
Del Jesus, M.J.4
Herrera, F.5
-
275
-
-
84885876585
-
-
Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN multi-label dataset repository. http://mulan.sourceforge.net/datasets.html
-
MULAN Multi-Label Dataset Repository
-
-
Tsoumakas, G.1
Xioufis, E.S.2
Vilcek, J.3
Vlahavas, I.4
-
277
-
-
85006485608
-
-
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garrfa, S., Sanchez, L., Herrera, F: KEEL multi-label dataset repository. http://sci2s.ugr.es/keel/multilabel.php
-
KEEL Multi-Label Dataset Repository
-
-
Alcala-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
Garrfa, S.5
Sanchez, L.6
Herrera, F.7
-
278
-
-
84964054493
-
R ultimate multilabel dataset repository
-
Springer
-
Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R ultimate multilabel dataset repository. In: Proceeedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 487-499. Springer (2016)
-
(2016)
Proceeedings of 11Th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16
, vol.9648
, pp. 487-499
-
-
Charte, F.1
Charte, D.2
Rivera, A.J.3
Del Jesus, M.J.4
Herrera, F.5
-
281
-
-
84894202914
-
A framework to generate synthetic multi-label datasets
-
Tomas, J.T., Spolaor, N., Cherman, E.A., Monard, M.C.: A framework to generate synthetic multi-label datasets. Electron. Notes Theor. Comput. Sci. 302, 155-176 (2014)
-
(2014)
Electron. Notes Theor. Comput. Sci
, vol.302
, pp. 155-176
-
-
Tomas, J.T.1
Spolaor, N.2
Cherman, E.A.3
Monard, M.C.4
-
282
-
-
84908471073
-
Generating synthetic multi-label data streams
-
Read, J., Pfahringer, B., Holmes, G.: Generating synthetic multi-label data streams. In: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’09, pp. 69-84 (2009)
-
(2009)
Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’09
, pp. 69-84
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
|