메뉴 건너뛰기




Volumn 27, Issue 12, 2017, Pages 2591-2600

Cost-Effective Active Learning for Deep Image Classification

Author keywords

Active learning (AL); deep neural nets; image classification; incremental learning

Indexed keywords

ALUMINUM; ARTIFICIAL INTELLIGENCE; COST EFFECTIVENESS; COSTS; DEEP LEARNING; DEEP NEURAL NETWORKS; FACE RECOGNITION; IMAGE CLASSIFICATION; ITERATIVE METHODS; NEURAL NETWORKS;

EID: 85031935078     PISSN: 10518215     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCSVT.2016.2589879     Document Type: Article
Times cited : (699)

References (42)
  • 1
    • 84906331113 scopus 로고    scopus 로고
    • Cross-age reference coding for age-invariant face recognition and retrieval
    • B.-C. Chen, C.-S. Chen, and W. H. Hsu, "Cross-age reference coding for age-invariant face recognition and retrieval, " in Proc. ECCV, 2014, pp. 768-783.
    • (2014) Proc. ECCV , pp. 768-783
    • Chen, B.-C.1    Chen, C.-S.2    Hsu, W.H.3
  • 3
    • 84921031076 scopus 로고    scopus 로고
    • A novel active learning method in relevance feedback for content-based remote sensing image retrieval
    • May
    • B. Demir and L. Bruzzone, "A novel active learning method in relevance feedback for content-based remote sensing image retrieval, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2323-2334, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2323-2334
    • Demir, B.1    Bruzzone, L.2
  • 4
    • 85040947035 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker, "Incorporating diversity in active learning with support vector machines, " in Proc. ICML, 2003, pp. 1-8.
    • (2003) Proc. ICML , pp. 1-8
    • Brinker, K.1
  • 6
    • 70450181250 scopus 로고    scopus 로고
    • Multi-class active learning for image classification
    • Jun.
    • A. J. Joshi, F. Porikli, and N. Papanikolopoulos, "Multi-class active learning for image classification, " in Proc. CVPR, Jun. 2009, pp. 2372-2379.
    • (2009) Proc. CVPR , pp. 2372-2379
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 7
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with Gaussian processes for object categorization
    • Oct.
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, "Active learning with Gaussian processes for object categorization, " in Proc. ICCV, Oct. 2007, pp. 1-8.
    • (2007) Proc. ICCV , pp. 1-8
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 8
    • 84860189970 scopus 로고    scopus 로고
    • Which faces to tag: Adding prior constraints into active learning
    • A. Kapoor, G. Hua, A. Akbarzadeh, and S. Baker, "Which faces to tag: Adding prior constraints into active learning, " in Proc. ICCV, Sep./Oct. 2009, pp. 1058-1065.
    • (2009) Proc. ICCV, Sep./Oct. , pp. 1058-1065
    • Kapoor, A.1    Hua, G.2    Akbarzadeh, A.3    Baker, S.4
  • 9
    • 43749112531 scopus 로고    scopus 로고
    • Minimax bounds for active learning
    • May
    • R. M. Castro and R. D. Nowak, "Minimax bounds for active learning, " IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 2339-2353, May 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.5 , pp. 2339-2353
    • Castro, R.M.1    Nowak, R.D.2
  • 10
    • 84887354642 scopus 로고    scopus 로고
    • Adaptive active learning for image classification
    • Jun.
    • X. Li and Y. Guo, "Adaptive active learning for image classification, " in Proc. CVPR, Jun. 2013, pp. 859-866.
    • (2013) Proc. CVPR , pp. 859-866
    • Li, X.1    Guo, Y.2
  • 12
    • 84976725310 scopus 로고
    • A sequential algorithm for training text classifiers: Corrigendum and additional data
    • D. D. Lewis, "A sequential algorithm for training text classifiers: Corrigendum and additional data, " ACM SIGIR Forum, vol. 29, no. 2, pp. 13-19, 1995.
    • (1995) ACM SIGIR Forum , vol.29 , Issue.2 , pp. 13-19
    • Lewis, D.D.1
  • 13
    • 84906337325 scopus 로고    scopus 로고
    • Multi-level adaptive active learning for scene classification
    • X. Li and Y Guo, "Multi-level adaptive active learning for scene classification, " in Proc. ECCV, 2014, pp. 234-249.
    • (2014) Proc. ECCV , pp. 234-249
    • Li, X.1    Guo, Y.2
  • 14
    • 84897712481 scopus 로고    scopus 로고
    • Multilabel image classification via high-order label correlation driven active learning
    • Mar.
    • B. Zhang, Y Wang, and F. Chen, "Multilabel image classification via high-order label correlation driven active learning, " IEEE Trans. Image Process., vol. 23, no. 3, pp. 1430-1441, Mar. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.3 , pp. 1430-1441
    • Zhang, B.1    Wang, Y.2    Chen, F.3
  • 15
    • 84927783752 scopus 로고    scopus 로고
    • Robust multi-label image classification with semi-supervised learning and active learning
    • F. Sun, M. Xu, and X. Jiang, "Robust multi-label image classification with semi-supervised learning and active learning, " in Proc. 21st Int. Conf. MultiMedia Modeling, 2015, pp. 512-523.
    • (2015) Proc. 21st Int. Conf. MultiMedia Modeling , pp. 512-523
    • Sun, F.1    Xu, M.2    Jiang, X.3
  • 16
    • 34250745927 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, "Batch mode active learning and its application to medical image classification, " in Proc. ICML, 2006, pp. 417-424.
    • (2006) Proc. ICML , pp. 417-424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 17
    • 77952583758 scopus 로고    scopus 로고
    • Correction to 'active learning methods for remote sensing image classification'
    • Jun.
    • D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W J. Emery, "Correction to 'active learning methods for remote sensing image classification, "' IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, p. 2767, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2767
    • Tuia, D.1    Ratle, F.2    Pacifici, F.3    Kanevski, M.F.4    Emery, W.J.5
  • 18
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Mar.
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification, " J. Mach. Learn. Res., vol. 2, pp. 45-66, Mar. 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 19
    • 0000314722 scopus 로고    scopus 로고
    • Employing em and pool-based active learning for text classification
    • A. McCallum and K. Nigam, "Employing EM and pool-based active learning for text classification, " in Proc. ICML, 1998, pp. 350-358.
    • (1998) Proc. ICML , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 20
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines, " in Proc. ICML, 2000, pp. 1-8.
    • (2000) Proc. ICML , pp. 1-8
    • Schohn, G.1    Cohn, D.2
  • 21
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • Jun.
    • S. Vijayanarasimhan and K. Grauman, "Large-scale live active learning: Training object detectors with crawled data and crowds, " in Proc. CVPR, Jun. 2011, pp. 1449-1456.
    • (2011) Proc. CVPR , pp. 1449-1456
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. NIPS, 2012, pp. 1097-1105.
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • Jun.
    • D. Cireşan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification, " in Proc. CVPR, Jun. 2012, pp. 3642-3649.
    • (2012) Proc. CVPR , pp. 3642-3649
    • Cireşan, D.1    Meier, U.2    Schmidhuber, J.3
  • 25
    • 72249100259 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Jun.
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database, " in Proc. CVPR, Jun. 2009, pp. 248-255.
    • (2009) Proc. CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 26
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " in Proc. ICLR, 2015, pp. 1-14.
    • (2015) Proc. ICLR , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 31
    • 68949137209 scopus 로고    scopus 로고
    • Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648
    • B. Settles, "Active learning literature survey, " Comput. Sci. Dept., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648, 2009.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 32
    • 84958546669 scopus 로고    scopus 로고
    • Active hidden Markov models for information extraction
    • T. Scheffer, C. Decomain, and S. Wrobel, "Active hidden Markov models for information extraction, " in Proc. IDA, 2001, pp. 309-318.
    • (2001) Proc. IDA , pp. 309-318
    • Scheffer, T.1    Decomain, C.2    Wrobel, S.3
  • 33
  • 34
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M. P. Kumar, B. Packer, and D. Koller, "Self-paced learning for latent variable models, " in Proc. NIPS, 2010, pp. 1189-1197.
    • (2010) Proc. NIPS , pp. 1189-1197
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 36
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y Freund, H. S. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm, " Mach. Learn., vol. 28, no. 2, pp. 133-168, 1997.
    • (1997) Mach. Learn. , vol.28 , Issue.2 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 38
    • 84887383859 scopus 로고    scopus 로고
    • Supervised descent method and its applications to face alignment
    • Jun.
    • X. Xiong and F De la Torre, "Supervised descent method and its applications to face alignment, " in Proc. CVPR, Jun. 2013, pp. 532-539.
    • (2013) Proc. CVPR , pp. 532-539
    • Xiong, X.1    De La Torre, F.2
  • 39
    • 84990059834 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in Proc. ICML, 2010, pp. 1-8.
    • (2010) Proc. ICML , pp. 1-8
    • Nair, V.1    Hinton, G.E.2
  • 40
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition chal-lenge
    • Dec.
    • O. Russakovsky et al, "ImageNet large scale visual recognition chal-lenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 41
    • 84919881041 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • Jun.
    • J. Donahue et al, "DeCAF: A deep convolutional activation feature for generic visual recognition, " in Proc. 31st Int. Conf. Mach. Learn. (ICML), Beijing, China, Jun. 2014, pp. 21-26.
    • (2014) Proc. 31st Int. Conf. Mach. Learn. (ICML), Beijing, China , pp. 21-26
    • Donahue, J.1
  • 42
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embed-ding
    • Y Jia et al, "Caffe: Convolutional architecture for fast feature embed-ding, " in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. 22nd ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.