메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

CRMAGE: CRISPR Optimized MAGE Recombineering

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATION; CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEAT; CODON; ESCHERICHIA COLI; MODULATION; MUTATION; PLASMID; PROTEIN SYNTHESIS; CELL DEATH; CRISPR CAS SYSTEM; GENE EXPRESSION REGULATION; GENETIC ENGINEERING; GENETICS; METABOLISM; NUCLEOTIDE MOTIF; PROCEDURES;

EID: 84955464550     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep19452     Document Type: Article
Times cited : (185)

References (57)
  • 1
    • 84887997172 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production
    • Chen, X. et al. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol. Adv. 31, 1200-1223 (2013).
    • (2013) Biotechnol. Adv. , vol.31 , pp. 1200-1223
    • Chen, X.1
  • 2
    • 0031664853 scopus 로고    scopus 로고
    • A new logic for DNA engineering using recombination in Escherichia coli
    • Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123-128 (1998).
    • (1998) Nat. Genet. , vol.20 , pp. 123-128
    • Zhang, Y.1    Buchholz, F.2    Muyrers, J.P.3    Stewart, A.F.4
  • 3
    • 0035199354 scopus 로고    scopus 로고
    • Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria
    • Karberg, M. et al. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat. Biotechnol. 19, 1162-1167 (2001).
    • (2001) Nat. Biotechnol. , vol.19 , pp. 1162-1167
    • Karberg, M.1
  • 4
    • 84860840542 scopus 로고    scopus 로고
    • Developing an extended genomic engineering approach based on recombineering to knock-in heterologous genes to Escherichia coli genome
    • Sukhija, K. et al. Developing an extended genomic engineering approach based on recombineering to knock-in heterologous genes to Escherichia coli genome. Mol. Biotechnol. 51, 109-118 (2012).
    • (2012) Mol. Biotechnol. , vol.51 , pp. 109-118
    • Sukhija, K.1
  • 5
    • 84884167957 scopus 로고    scopus 로고
    • Generalized bacterial genome editing using mobile group II introns and Cre-lox
    • Enyeart, P. J. et al. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol. Syst. Biol. 9, 685, doi: 10.1038/msb.2013.41 (2013).
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 685
    • Enyeart, P.J.1
  • 6
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97, 6640-6645 (2000).
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 7
    • 0034705144 scopus 로고    scopus 로고
    • An efficient recombination system for chromosome engineering in Escherichia coli
    • Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. 97, 5978-5983 (2000).
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , pp. 5978-5983
    • Yu, D.1
  • 8
    • 59849119654 scopus 로고    scopus 로고
    • Recombineering: A homologous recombination-based method of genetic engineering
    • Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206-223 (2009).
    • (2009) Nat. Protoc. , vol.4 , pp. 206-223
    • Sharan, S.K.1    Thomason, L.C.2    Kuznetsov, S.G.3    Court, D.L.4
  • 9
    • 49249139249 scopus 로고    scopus 로고
    • Rapid and efficient construction of markerless deletions in the Escherichia coli genome
    • Yu, B. J. et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res. 36, e84-e84 (2008).
    • (2008) Nucleic Acids Res. , vol.36 , pp. e84-e84
    • Yu, B.J.1
  • 10
    • 0345504146 scopus 로고    scopus 로고
    • Markerless gene replacement in Escherichia coli stimulated by a doublestrand break in the chromosome
    • Posfai, G., Kolisnychenko, V., Bereczki, Z. & Blattner, F. R. Markerless gene replacement in Escherichia coli stimulated by a doublestrand break in the chromosome. Nucleic Acids Res. 27, 4409-4415 (1999).
    • (1999) Nucleic Acids Res. , vol.27 , pp. 4409-4415
    • Posfai, G.1    Kolisnychenko, V.2    Bereczki, Z.3    Blattner, F.R.4
  • 11
    • 84902147306 scopus 로고    scopus 로고
    • High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage
    • Yang, J. et al. High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl. Environ. Microbiol. 80, 3826-3834 (2014).
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 3826-3834
    • Yang, J.1
  • 12
    • 79957530428 scopus 로고    scopus 로고
    • Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering
    • Wang, H. H. & Church, G. M. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol. 498, 409-426 (2011).
    • (2011) Methods Enzymol. , vol.498 , pp. 409-426
    • Wang, H.H.1    Church, G.M.2
  • 13
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898 (2009).
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1
  • 15
    • 84866050528 scopus 로고    scopus 로고
    • Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection
    • Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 40, e132-e132 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. e132-e132
    • Carr, P.A.1
  • 16
    • 0346103663 scopus 로고    scopus 로고
    • Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants
    • Costantino, N. & Court, D. L. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. 100, 15748-15753 (2003).
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , pp. 15748-15753
    • Costantino, N.1    Court, D.L.2
  • 17
    • 78951480559 scopus 로고    scopus 로고
    • Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate
    • Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791-799 (2010).
    • (2010) Genetics , vol.186 , pp. 791-799
    • Mosberg, J.A.1    Lajoie, M.J.2    Church, G.M.3
  • 18
    • 0035810938 scopus 로고    scopus 로고
    • High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
    • Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. 98, 6742-6746 (2001).
    • (2001) Proc. Natl. Acad. Sci. , vol.98 , pp. 6742-6746
    • Ellis, H.M.1    Yu, D.2    DiTizio, T.3    Court, D.L.4
  • 19
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 20
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. doi: 10.1128/AEM.01248-15 (2015).
    • (2015) Appl. Environ. Microbiol.
    • Pyne, M.E.1    Moo-Young, M.2    Chung, D.A.3    Chou, C.P.4
  • 21
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81, 2506-2514 (2015).
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 2506-2514
    • Jiang, Y.1
  • 22
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes
    • Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synth. Biol. 4(9), 1020-9, doi: 10.1021/acssynbio.5b00038 (2015).
    • (2015) ACS Synth. Biol. , vol.4 , Issue.9 , pp. 1020-1029
    • Tong, Y.1    Charusanti, P.2    Zhang, L.3    Weber, T.4    Lee, S.Y.5
  • 23
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system
    • Cobb, R. E., Wang, Y. & Zhao, H. High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System. ACS Synth. Biol. 4, 723-728 (2015).
    • (2015) ACS Synth. Biol. , vol.4 , pp. 723-728
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 24
    • 84926466507 scopus 로고    scopus 로고
    • One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang, H., Zheng, G., Jiang, W., Hu, H. & Lu, Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. (Shanghai). 47, 231-243 (2015).
    • (2015) Acta Biochim. Biophys. Sin. (Shanghai) , vol.47 , pp. 231-243
    • Huang, H.1    Zheng, G.2    Jiang, W.3    Hu, H.4    Lu, Y.5
  • 25
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh, J. H. & van Pijkeren, J. P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131-e131 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. e131-e131
    • Oh, J.H.1    Van Pijkeren, J.P.2
  • 26
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336-4343 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1
  • 27
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR/Cas (HI-CRISPR) system for one-step multigene disruption in saccharomyces cerevisiae
    • Bao, Z. et al. Homology-Integrated CRISPR/Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 4(5), 585-94, doi: 10.1021/sb500255k (2015).
    • (2015) ACS Synth. Biol. , vol.4 , Issue.5 , pp. 585-594
    • Bao, Z.1
  • 28
    • 84935513637 scopus 로고    scopus 로고
    • Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
    • Horwitz, A. A., Walter, J. M., Schubert, M. G. & Kung, S. H. Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas. Cell Syst. 1(1), p88-96, doi: http://dx.doi.org/10.1016/j.cels.2015.02.001 (2015).
    • (2015) Cell Syst. , vol.1 , Issue.1 , pp. 88-96
    • Horwitz, A.A.1    Walter, J.M.2    Schubert, M.G.3    Kung, S.H.4
  • 29
    • 84923021733 scopus 로고    scopus 로고
    • Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    • Jakočiunas, T. et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, p213-222, doi: 10.1016/j.ymben.2015.01.008 (2015).
    • (2015) Metab. Eng. , vol.28 , pp. 213-222
    • Jakočiunas, T.1
  • 30
    • 84927920113 scopus 로고    scopus 로고
    • CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
    • Stovicek, V., Borodina, I. & Forster, J. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2, 13-22 (2015).
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 13-22
    • Stovicek, V.1    Borodina, I.2    Forster, J.3
  • 31
    • 84935426318 scopus 로고    scopus 로고
    • CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
    • Ronda, C. et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 14, 97, doi: 10.1186/s12934-015-0288-3 (2015).
    • (2015) Microb. Cell Fact. , vol.14 , pp. 97
    • Ronda, C.1
  • 32
    • 85042815594 scopus 로고    scopus 로고
    • Targeted genome modification of crop plants using a CRISPR-Cas system
    • Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 686-688
    • Shan, Q.1
  • 33
    • 84886926151 scopus 로고    scopus 로고
    • Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
    • Jiang, W. et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188-e188 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. e188-e188
    • Jiang, W.1
  • 34
    • 84889080192 scopus 로고    scopus 로고
    • The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori
    • Wang, Y. et al. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res. 23, 1414-1416 (2013).
    • (2013) Cell Res. , vol.23 , pp. 1414-1416
    • Wang, Y.1
  • 35
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J.-L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220-228 (2013).
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1    Tibbit, C.2    Ponting, C.P.3    Liu, J.-L.4
  • 36
    • 84876409836 scopus 로고    scopus 로고
    • Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos
    • Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res 23, 465-472 (2013).
    • (2013) Cell Res , vol.23 , pp. 465-472
    • Chang, N.1
  • 37
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819-823 (2013).
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 38
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science. 339, 823-826 (2013).
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 39
    • 84903118288 scopus 로고    scopus 로고
    • Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool
    • Ronda, C. et al. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol. Bioeng. 111, 1604-1616 (2014).
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 1604-1616
    • Ronda, C.1
  • 40
    • 84923667065 scopus 로고    scopus 로고
    • Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway
    • Lee, J. S., Kallehauge, T. B., Pedersen, L. E. & Kildegaard, H. F. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 5, 8572, doi: 10.1038/srep08572 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 8572
    • Lee, J.S.1    Kallehauge, T.B.2    Pedersen, L.E.3    Kildegaard, H.F.4
  • 41
    • 84940601641 scopus 로고    scopus 로고
    • One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment
    • Grav, L. M. et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J. 10(9), 1446-1456 (2015).
    • (2015) Biotechnol. J. , vol.10 , Issue.9 , pp. 1446-1456
    • Grav, L.M.1
  • 42
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 43
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 44
    • 84865279828 scopus 로고    scopus 로고
    • Directed evolution: An evolving and enabling synthetic biology tool
    • Cobb, R. E., Si, T. & Zhao, H. Directed evolution: an evolving and enabling synthetic biology tool. Curr. Opin. Chem. Biol. 16, 1-3: 285-291, doi: 10.1016/j.cbpa.2012.05.186 (2012).
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , Issue.1-3 , pp. 285-291
    • Cobb, R.E.1    Si, T.2    Zhao, H.3
  • 45
    • 84873800970 scopus 로고    scopus 로고
    • Genome-scale engineering for systems and synthetic biology
    • Esvelt, K. M. & Wang, H. H. Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 641, doi: 10.1038/msb.2012.66. (2013).
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 641
    • Esvelt, K.M.1    Wang, H.H.2
  • 46
    • 84937538704 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
    • Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31, 13-21 (2015).
    • (2015) Metab. Eng. , vol.31 , pp. 13-21
    • Li, Y.1
  • 47
    • 0019367342 scopus 로고
    • Escherichia coli K-12 clones that overproduce dam methylase are hypermutable
    • Herman, G. E. & Modrich, P. Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J. Bacteriol. 145, 644-646 (1981).
    • (1981) J. Bacteriol. , vol.145 , pp. 644-646
    • Herman, G.E.1    Modrich, P.2
  • 48
    • 3142628359 scopus 로고    scopus 로고
    • Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach
    • Yang, H., Wolff, E., Kim, M., Diep, A. & Miller, J. H. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol. Microbiol. 53, 283-295 (2004).
    • (2004) Mol. Microbiol. , vol.53 , pp. 283-295
    • Yang, H.1    Wolff, E.2    Kim, M.3    Diep, A.4    Miller, J.H.5
  • 49
    • 26444530070 scopus 로고    scopus 로고
    • Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli
    • Robbins-Manke, J. L., Zdraveski, Z. Z., Marinus, M. & Essigmann, J. M. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J. Bacteriol. 187, 7027-7037 (2005).
    • (2005) J. Bacteriol. , vol.187 , pp. 7027-7037
    • Robbins-Manke, J.L.1    Zdraveski, Z.Z.2    Marinus, M.3    Essigmann, J.M.4
  • 50
    • 0037462826 scopus 로고    scopus 로고
    • Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo
    • Stohl, E. A. et al. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J. Biol. Chem. 278, 2278-2285 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 2278-2285
    • Stohl, E.A.1
  • 51
    • 11144222919 scopus 로고    scopus 로고
    • Inhibition of RecA protein by the Escherichia coli RecX protein: Modulation by the RecA C terminus and filament functional state
    • Drees, J. C., Lusetti, S. L. & Cox, M. M. Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state. J. Biol. Chem. 279, 52991-52997 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 52991-52997
    • Drees, J.C.1    Lusetti, S.L.2    Cox, M.M.3
  • 52
    • 84885703039 scopus 로고    scopus 로고
    • Probing the limits of genetic recoding in essential genes
    • Lajoie, M. J. et al. Probing the Limits of Genetic Recoding in Essential Genes. Science. 342, 361-363 (2013).
    • (2013) Science , vol.342 , pp. 361-363
    • Lajoie, M.J.1
  • 53
    • 17444400486 scopus 로고    scopus 로고
    • New tool for metabolic pathway engineering in Escherichia coli: One-step method to modulate expression of chromosomal genes
    • Meynial-Salles, I., Cervin, M. A. & Soucaille, P. New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl. Environ. Microbiol. 71, 2140-2144 (2005).
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 2140-2144
    • Meynial-Salles, I.1    Cervin, M.A.2    Soucaille, P.3
  • 54
    • 84907269737 scopus 로고    scopus 로고
    • Evolution of Escherichia coli to 42 °c and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations
    • Sandberg, T. & Pedersen, M. Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations. Biol. Evol. 31(10), 2647-2662, doi: 10.1093/molbev/msu209 (2014).
    • (2014) Biol. Evol. , vol.31 , Issue.10 , pp. 2647-2662
    • Sandberg, T.1    Pedersen, M.2
  • 55
    • 84952697170 scopus 로고    scopus 로고
    • Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects
    • Lennen, R. M., Nilsson Wallin, A. I., Pedersen, M., Bonde M., Luo, H., Herrgård, J. M. & Sommer, M. O. A. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic acids Res. doi: 10.1093/nar/gkv1090 (2015).
    • (2015) Nucleic Acids Res.
    • Lennen, R.M.1    Nilsson Wallin, A.I.2    Pedersen, M.3    Bonde, M.4    Luo, H.5    Herrgård, J.M.6    Sommer, M.O.A.7
  • 56
    • 0030861452 scopus 로고    scopus 로고
    • Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
    • Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203-1210 (1997).
    • (1997) Nucleic Acids Res. , vol.25 , pp. 1203-1210
    • Lutz, R.1    Bujard, H.2
  • 57
    • 77956941760 scopus 로고    scopus 로고
    • USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories
    • Nour-Eldin, H. H., Geu-Flores, F. & Halkier, B. A. USER cloning and USER fusion: The ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 643, 185-200 (2010).
    • (2010) Methods Mol. Biol. , vol.643 , pp. 185-200
    • Nour-Eldin, H.H.1    Geu-Flores, F.2    Halkier, B.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.