-
1
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712. http://dx.doi.org/10.1126/science.1138140.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
2
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle K, Barrangou R. 2015. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225-232. http://dx.doi.org/10.1016/j.tim.2015.01.008.
-
(2015)
Trends Microbiol
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
3
-
-
77249170201
-
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
-
Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181-190. http://dx.doi.org/10.1038/nrg2749.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
4
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. http://dx.doi.org/10.1038/nbt.2508.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
5
-
-
79953250082
-
CRISPR RNA maturationby trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturationby trans-encoded small RNA and host factor RNase III. Nature 471:602-607. http://dx.doi.org/10.1038/nature09886.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
6
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. http://dx.doi.org/10.1126/science.1225829.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
8
-
-
84880088705
-
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
-
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029-1035. http://dx.doi.org/10.1534/genetics.113.152710.
-
(2013)
Genetics
, vol.194
, pp. 1029-1035
-
-
Gratz, S.J.1
Cummings, A.M.2
Nguyen, J.N.3
Hamm, D.C.4
Donohue, L.K.5
Harrison, M.M.6
Wildonger, J.7
O'Connor-Giles, K.M.8
-
9
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723-728. http://dx.doi.org/10.1021/sb500351f.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
10
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-2514. http://dx.doi.org/10.1128/AEM.04023-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
11
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. 2015. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103-5114. http://dx.doi.org/10.1128/AEM.01248-15.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
12
-
-
84947930171
-
Exploiting CRISPR-Cas immune systems for genome editing in bacteria
-
Barrangou R, van Pijkeren J. 2016. Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr Opin Biotechnol 37:61-68. http://dx.doi.org/10.1016/j.copbio.2015.10.003.
-
(2016)
Curr Opin Biotechnol
, vol.37
, pp. 61-68
-
-
Barrangou, R.1
van Pijkeren, J.2
-
13
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh J, van Pijkeren J. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. http://dx.doi.org/10.1093/nar/gku623.
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.1
van Pijkeren, J.2
-
14
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y, Zhang Z, Seo S, Choi K, Lu T, Jin Y, Blaschek HP. 2015. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1-5. http://dx.doi.org/10.1016/j.jbiotec.2015.02.005.
-
(2015)
J Biotechnol
, vol.200
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z.2
Seo, S.3
Choi, K.4
Lu, T.5
Jin, Y.6
Blaschek, H.P.7
-
15
-
-
84978699037
-
Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example
-
26 April
-
Wang Y, Zhang Z, Seo S, Lynn P, Lu T, Jin Y, Blaschek HP. 26 April 2016. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol http://dx.doi.org/10.1021/acssynbio.6b00060.
-
(2016)
ACS Synth Biol
-
-
Wang, Y.1
Zhang, Z.2
Seo, S.3
Lynn, P.4
Lu, T.5
Jin, Y.6
Blaschek, H.P.7
-
16
-
-
84866010111
-
Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases
-
Mosberg JA, Gregg CJ, Lajoie MJ, Wang HH, Church GM. 2012. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One 7(9):e44638. http://dx.doi.org/10.1371/journal.pone.0044638.
-
(2012)
PLoS One
, vol.7
, Issue.9
-
-
Mosberg, J.A.1
Gregg, C.J.2
Lajoie, M.J.3
Wang, H.H.4
Church, G.M.5
-
17
-
-
84929446577
-
Chance and necessity in Bacillus subtilis development
-
Mirouze N, Dubnau D. 2013. Chance and necessity in Bacillus subtilis development. Microbiol Spectr 1:TBS-0004-2012. http://dx.doi.org/10.1128/microbiolspectrum.TBS-0004-2012.
-
(2013)
Microbiol Spectr
, vol.1
-
-
Mirouze, N.1
Dubnau, D.2
-
18
-
-
57549105056
-
Generation of multiple cell types in Bacillus subtilis
-
Lopez D, Vlamakis H, Kolter R. 2009. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152-163. http://dx.doi.org/10.1111/j.1574-6976.2008.00148.x.
-
(2009)
FEMS Microbiol Rev
, vol.33
, pp. 152-163
-
-
Lopez, D.1
Vlamakis, H.2
Kolter, R.3
-
19
-
-
1942538348
-
Developments in the use of Bacillus species for industrial production
-
Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1-17. http://dx.doi.org/10.1139/w03-076.
-
(2004)
Can J Microbiol
, vol.50
, pp. 1-17
-
-
Schallmey, M.1
Singh, A.2
Ward, O.P.3
-
20
-
-
0021943518
-
Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors
-
Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119. http://dx.doi.org/10.1016/0378-1119(85)90120-9.
-
(1985)
Gene
, vol.33
, pp. 103-119
-
-
Yanisch-Perron, C.1
Vieira, J.2
Messing, J.3
-
21
-
-
0021085263
-
Lambda replacement vectors carrying polylinker sequences
-
Frischauf AM, Lehrach H, Poustka A, Murray N. 1983. Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827-842. http://dx.doi.org/10.1016/S0022-2836(83)80190-9.
-
(1983)
J Mol Biol
, vol.170
, pp. 827-842
-
-
Frischauf, A.M.1
Lehrach, H.2
Poustka, A.3
Murray, N.4
-
22
-
-
0024558335
-
One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution
-
Chung CT, Niemela SL, Miller RH. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172-2175. http://dx.doi.org/10.1073/pnas.86.7.2172.
-
(1989)
Proc Natl Acad Sci U S A
, vol.86
, pp. 2172-2175
-
-
Chung, C.T.1
Niemela, S.L.2
Miller, R.H.3
-
23
-
-
0001134202
-
Requirements for transformation in Bacillus subtilis
-
Anagnostopoulos C, Spizizen J. 1961. Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741-746.
-
(1961)
J Bacteriol
, vol.81
, pp. 741-746
-
-
Anagnostopoulos, C.1
Spizizen, J.2
-
24
-
-
84953878987
-
Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette
-
Rahmer R, Morabbi Heravi K, Altenbuchner J. 2015. Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Front Microbiol 6:1431. http://dx.doi.org/10.3389/fmicb.2015.01431.
-
(2015)
Front Microbiol
, vol.6
, pp. 1431
-
-
Rahmer, R.1
Morabbi Heravi, K.2
Altenbuchner, J.3
-
25
-
-
0004262043
-
-
A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Sambrook J, Russell DW. 2001. Molecular cloning. A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(2001)
Molecular cloning
-
-
Sambrook, J.1
Russell, D.W.2
-
26
-
-
84979500223
-
Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system
-
Wenzel M, Altenbuchner J. 2015. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. Microbiology 161:1942-1949. http://dx.doi.org/10.1099/mic.0.000150.
-
(2015)
Microbiology
, vol.161
, pp. 1942-1949
-
-
Wenzel, M.1
Altenbuchner, J.2
-
27
-
-
8744309111
-
New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria
-
Arnaud M, Chastanet A, Débarbouillé M. 2004. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70:6887-6891. http://dx.doi.org/10.1128/AEM.70.11.6887-6891.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 6887-6891
-
-
Arnaud, M.1
Chastanet, A.2
Débarbouillé, M.3
-
28
-
-
0030597337
-
Plasmids for ectopic integration in Bacillus subtilis
-
Guérout-Fleury AM, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57-61. http://dx.doi.org/10.1016/S0378-1119(96)00404-0.
-
(1996)
Gene
, vol.180
, pp. 57-61
-
-
Guérout-Fleury, A.M.1
Frandsen, N.2
Stragier, P.3
-
29
-
-
20844448557
-
Construction of vector system for molecular cloning in Bacillus subtilis and Escherichia coli
-
Lagodich AV, Cherva EA, Shtaniuk IV, Prokulevich VA, Fomichev IK, Prozorov AA, Titok MA. 2005. Construction of vector system for molecular cloning in Bacillus subtilis and Escherichia coli. Mol Biol 39:306-309. http://dx.doi.org/10.1007/s11008-005-0043-7.
-
(2005)
Mol Biol
, vol.39
, pp. 306-309
-
-
Lagodich, A.V.1
Cherva, E.A.2
Shtaniuk, I.V.3
Prokulevich, V.A.4
Fomichev, I.K.5
Prozorov, A.A.6
Titok, M.A.7
-
30
-
-
84866979472
-
Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis
-
Gimpel M, Brantl S. 2012. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis. J Microbiol Methods 91:312-317. http://dx.doi.org/10.1016/j.mimet.2012.09.003.
-
(2012)
J Microbiol Methods
, vol.91
, pp. 312-317
-
-
Gimpel, M.1
Brantl, S.2
-
31
-
-
76849112153
-
The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation
-
Jeske M, Altenbuchner J. 2010. The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl Microbiol Biotechnol 85:1923-1933. http://dx.doi.org/10.1007/s00253-009-2245-8.
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1923-1933
-
-
Jeske, M.1
Altenbuchner, J.2
-
32
-
-
80052802790
-
Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation
-
Wenzel M, Müller A, Siemann-Herzberg M, Altenbuchner J. 2011. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 77:6419-6425. http://dx.doi.org/10.1128/AEM.05219-11.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 6419-6425
-
-
Wenzel, M.1
Müller, A.2
Siemann-Herzberg, M.3
Altenbuchner, J.4
-
33
-
-
84961369072
-
Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor
-
Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J. 2015. Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 197:959-972. http://dx.doi.org/10.1128/JB.02431-14.
-
(2015)
J Bacteriol
, vol.197
, pp. 959-972
-
-
Morabbi Heravi, K.1
Lange, J.2
Watzlawick, H.3
Kalinowski, J.4
Altenbuchner, J.5
-
34
-
-
84889846455
-
Improved soluble expression of the gene encoding amylolytic enzyme Amo45 by fusion with the mobile-loop-region of co-chaperonin GroES in Escherichia coli
-
Wang L, Watzlawick H, Fridjonsson O, Hreggvidsson G, Altenbuchner J. 2013. Improved soluble expression of the gene encoding amylolytic enzyme Amo45 by fusion with the mobile-loop-region of co-chaperonin GroES in Escherichia coli. Biocatal Biotransformation 31:335-342. http://dx.doi.org/10.3109/10242422.2013.858712.
-
(2013)
Biocatal Biotransformation
, vol.31
, pp. 335-342
-
-
Wang, L.1
Watzlawick, H.2
Fridjonsson, O.3
Hreggvidsson, G.4
Altenbuchner, J.5
-
35
-
-
77950641537
-
Characterization of a mannose utilization system in Bacillus subtilis
-
Sun T, Altenbuchner J. 2010. Characterization of a mannose utilization system in Bacillus subtilis. J Bacteriol 192:2128-2139. http://dx.doi.org/10.1128/JB.01673-09.
-
(2010)
J Bacteriol
, vol.192
, pp. 2128-2139
-
-
Sun, T.1
Altenbuchner, J.2
-
36
-
-
0642334593
-
One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid
-
Tsuge K, Matsui K, Itaya M. 2003. One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31:e133. http://dx.doi.org/10.1093/nar/gng133.
-
(2003)
Nucleic Acids Res
, vol.31
-
-
Tsuge, K.1
Matsui, K.2
Itaya, M.3
-
37
-
-
84962978225
-
Potential pitfalls of CRISPR/Cas9-mediated genome editing
-
Peng R, Lin G, Li J. 2016. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 283:1218-1231. http://dx.doi.org/10.1111/febs.13586.
-
(2016)
FEBS J
, vol.283
, pp. 1218-1231
-
-
Peng, R.1
Lin, G.2
Li, J.3
-
38
-
-
84957605863
-
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
-
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184-191. http://dx.doi.org/10.1038/nbt.3437.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 184-191
-
-
Doench, J.G.1
Fusi, N.2
Sullender, M.3
Hegde, M.4
Vaimberg, E.W.5
Donovan, K.F.6
Smith, I.7
Tothova, Z.8
Wilen, C.9
Orchard, R.10
Virgin, H.W.11
Listgarten, J.12
Root, D.E.13
-
39
-
-
84942254891
-
Genome engineering using a synthetic gene circuit in Bacillus subtilis
-
Jeong D, Park S, Pan J, Kim E, Choi S. 2015. Genome engineering using a synthetic gene circuit in Bacillus subtilis. Nucleic Acids Res 43:e42. http://dx.doi.org/10.1093/nar/gku1380.
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Jeong, D.1
Park, S.2
Pan, J.3
Kim, E.4
Choi, S.5
-
40
-
-
0029908131
-
A general system for generating unlabelled gene replacements in bacterial chromosomes
-
Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J. 1996. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217-224. http://dx.doi.org/10.1007/s004380050315.
-
(1996)
Mol Gen Genet
, vol.253
, pp. 217-224
-
-
Leenhouts, K.1
Buist, G.2
Bolhuis, A.3
ten Berge, A.4
Kiel, J.5
Mierau, I.6
Dabrowska, M.7
Venema, G.8
Kok, J.9
-
41
-
-
33646081787
-
An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes
-
Bloor AE, Cranenburgh RM. 2006. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 72:2520-2525. http://dx.doi.org/10.1128/AEM.72.4.2520-2525.2006.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 2520-2525
-
-
Bloor, A.E.1
Cranenburgh, R.M.2
-
42
-
-
0029824860
-
Direct selection of cloned DNA in Bacillus subtilis based on sucrose-induced lethality
-
Bramucci MG, Nagarajan V. 1996. Direct selection of cloned DNA in Bacillus subtilis based on sucrose-induced lethality. Appl Environ Microbiol 62:3948-3953.
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 3948-3953
-
-
Bramucci, M.G.1
Nagarajan, V.2
-
43
-
-
0036034078
-
A new mutation delivery system for genome-scale approaches in Bacillus subtilis
-
Fabret C, Ehrlich SD, Noirot P. 2002. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25-36. http://dx.doi.org/10.1046/j.1365-2958.2002.03140.x.
-
(2002)
Mol Microbiol
, vol.46
, pp. 25-36
-
-
Fabret, C.1
Ehrlich, S.D.2
Noirot, P.3
-
44
-
-
33646943851
-
mazF, a novel counterselectable marker for unmarked chromosomal manipulation in Bacillus subtilis
-
Zhang X, Yan X, Cui Z, Hong Q, Li S. 2006. mazF, a novel counterselectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34:e71. http://dx.doi.org/10.1093/nar/gkl358.
-
(2006)
Nucleic Acids Res
, vol.34
-
-
Zhang, X.1
Yan, X.2
Cui, Z.3
Hong, Q.4
Li, S.5
|