-
1
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013; 41:4336-43.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
2
-
-
84911871184
-
Selection of chromosomal DNA libraries using a multiplex CRISPR system
-
Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JHD: Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife. 2014; doi: 10.7554/eLife.03703
-
(2014)
Elife
-
-
Ryan, O.W.1
Skerker, J.M.2
Maurer, M.J.3
Li, X.4
Tsai, J.C.5
Poddar, S.6
Lee, M.E.7
DeLoache, W.8
Dueber, J.E.9
Arkin, A.P.10
Cate, J.H.D.11
-
3
-
-
84929572600
-
Homologyintegrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homologyintegrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2014;4:585-94.
-
(2014)
ACS Synth Biol
, vol.4
, pp. 585-594
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
4
-
-
84927920113
-
CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
-
Stovicek V, Borodina I, Forster J. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun. 2015;2:13-22.
-
(2015)
Metab Eng Commun
, vol.2
, pp. 13-22
-
-
Stovicek, V.1
Borodina, I.2
Forster, J.3
-
5
-
-
84930638003
-
CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran J-MG: CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015; doi: 10.1093/femsyr/fov004
-
(2015)
FEMS Yeast Res
-
-
Mans, R.1
van Rossum, H.M.2
Wijsman, M.3
Backx, A.4
Kuijpers, N.G.A.5
van den Broek, M.6
Daran-Lapujade, P.7
Pronk, J.T.8
van Maris, A.J.A.9
Daran, J.-M.G.10
-
6
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
Jakociunas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng. 2015;28:213-22.
-
(2015)
Metab Eng
, vol.28
, pp. 213-222
-
-
Jakociunas, T.1
Bonde, I.2
Herrgård, M.3
Harrison, S.J.4
Kristensen, M.5
Pedersen, L.E.6
Jensen, M.K.7
Keasling, J.D.8
-
7
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, Newman JD. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1:88-96.
-
(2015)
Cell Syst
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
Kung, S.H.4
Hawkins, K.5
Platt, D.M.6
Hernday, A.D.7
Mahatdejkul-Meadows, T.8
Szeto, W.9
Chandran, S.S.10
Newman, J.D.11
-
8
-
-
84935426318
-
CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
-
Ronda C, Maury J, Jakociunas T, Baallal Jacobsen SA, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:97.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 97
-
-
Ronda, C.1
Maury, J.2
Jakociunas, T.3
Baallal Jacobsen, S.A.4
Germann, S.M.5
Harrison, S.J.6
Borodina, I.7
Keasling, J.D.8
Jensen, M.K.9
Nielsen, A.T.10
-
9
-
-
84927537696
-
Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genomeshuffled yeast
-
Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ. Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genomeshuffled yeast. Biotechnol Biofuels. 2015;8:53.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 53
-
-
Pinel, D.1
Colatriano, D.2
Jiang, H.3
Lee, H.4
Martin, V.J.5
-
10
-
-
84880570576
-
Highfrequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden J, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. Highfrequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822-6.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
11
-
-
84942013003
-
A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly
-
Lee ME, DeLoache WC, Cervantes B, Dueber JE. A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth Biol. 2015;4:975-86.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 975-986
-
-
Lee, M.E.1
DeLoache, W.C.2
Cervantes, B.3
Dueber, J.E.4
-
12
-
-
84907219050
-
I, Wang J, Muench MO, Kan YW: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac
-
Xie F, Ye L, Chang JC, Beyer a. I, Wang J, Muench MO, Kan YW: Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; doi: 10.1101/gr.173427.114
-
(2014)
Genome Res
-
-
Xie, F.1
Ye, L.2
Chang, J.C.3
Beyer, A.4
-
13
-
-
0034903337
-
In vivo site-directed mutagenesis using oligonucleotides
-
Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19(8):773-6.
-
(2001)
Nat Biotechnol
, vol.19
, Issue.8
, pp. 773-776
-
-
Storici, F.1
Lewis, L.K.2
Resnick, M.A.3
-
14
-
-
0033948226
-
Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans
-
Pascon RC, Miller BL. Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Mol Microbiol. 2000;36:1250-64.
-
(2000)
Mol Microbiol
, vol.36
, pp. 1250-1264
-
-
Pascon, R.C.1
Miller, B.L.2
-
15
-
-
0030698635
-
Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis
-
Gautier T, Bergès T, Tollervey D, Hurt E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997;17:7088-98.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 7088-7098
-
-
Gautier, T.1
Bergès, T.2
Tollervey, D.3
Hurt, E.4
-
16
-
-
0025278472
-
Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae
-
Kistler M, Maier K, Eckardt-Schupp F. Genetic and biochemical analysis of glutathione-deficient mutants of Saccharomyces cerevisiae. Mutagenesis. 1990;5:39-44.
-
(1990)
Mutagenesis
, vol.5
, pp. 39-44
-
-
Kistler, M.1
Maier, K.2
Eckardt-Schupp, F.3
-
17
-
-
0026338492
-
Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae
-
Ohtake Y, Yabuuchi S. Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae. Yeast. 1991;7:953-61.
-
(1991)
Yeast
, vol.7
, pp. 953-961
-
-
Ohtake, Y.1
Yabuuchi, S.2
|