메뉴 건너뛰기




Volumn 15, Issue 2, 2015, Pages 1-15

CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae

Author keywords

CRISPR Cas9; Genetic modification; gRNA; Plasmid; S. Cerevisiae; Webtool

Indexed keywords

GUIDE RNA; ENDONUCLEASE;

EID: 84930638003     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1093/femsyr/fov004     Document Type: Article
Times cited : (363)

References (76)
  • 1
    • 84897581176 scopus 로고    scopus 로고
    • Total synthesis of a functional designer eukaryotic chromosome
    • Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014;344: 55-8.
    • (2014) Science , vol.344 , pp. 55-58
    • Annaluru, N.1    Muller, H.2    Mitchell, L.A.3
  • 2
    • 84929572600 scopus 로고    scopus 로고
    • Homology-Integrated CRISPR - Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao Z, Xiao H, Liang J, et al. Homology-Integrated CRISPR - Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 2014, DOI: 10.1021 /sb500255k.
    • (2014) ACS Synth Biol
    • Bao, Z.1    Xiao, H.2    Liang, J.3
  • 3
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-12.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1    Fremaux, C.2    Deveau, H.3
  • 4
    • 84938872453 scopus 로고    scopus 로고
    • Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production
    • Beekwilder J, van Rossum HM, Koopman F, et al. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechnol 2014;192:383-92.
    • (2014) J Biotechnol , vol.192 , pp. 383-392
    • Beekwilder, J.1    van Rossum, H.M.2    Koopman, F.3
  • 5
    • 81255197643 scopus 로고    scopus 로고
    • Yeast: an experimental organism for 21st century biology
    • Botstein D, Fink GR. Yeast: an experimental organism for 21st century biology. Genetics 2011;189:695-704.
    • (2011) Genetics , vol.189 , pp. 695-704
    • Botstein, D.1    Fink, G.R.2
  • 6
    • 21244449939 scopus 로고    scopus 로고
    • Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III
    • Braglia P, Percudani R, Dieci G. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 2005;280:19551-62.
    • (2005) J Biol Chem , vol.280 , pp. 19551-19562
    • Braglia, P.1    Percudani, R.2    Dieci, G.3
  • 7
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008;321:960-4.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.J.1    Jore, M.M.2    Lundgren, M.3
  • 8
    • 80051535219 scopus 로고    scopus 로고
    • Genome engineering with zinc-finger nucleases
    • Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188:773-82.
    • (2011) Genetics , vol.188 , pp. 773-782
    • Carroll, D.1
  • 9
    • 84891760559 scopus 로고    scopus 로고
    • One-potDNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy
    • Casini A,MacDonald JT,De Jonghe J, et al. One-potDNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res 2014;42:e7.
    • (2014) Nucleic Acids Res , vol.42
    • Casini, A.1    MacDonald, J.T.2    De Jonghe, J.3
  • 10
    • 84907483760 scopus 로고    scopus 로고
    • Altered sterol composition renders yeast thermotolerant
    • Caspeta L, Chen Y, Ghiaci P, et al. Altered sterol composition renders yeast thermotolerant. Science 2014;346:75-8.
    • (2014) Science , vol.346 , pp. 75-78
    • Caspeta, L.1    Chen, Y.2    Ghiaci, P.3
  • 11
    • 84883333488 scopus 로고    scopus 로고
    • New and redesigned pRS Plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae
    • Chee MK, Haase SB. New and redesigned pRS Plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 (Bethesda) 2012;2:515-26.
    • (2012) G3 (Bethesda) , vol.2 , pp. 515-526
    • Chee, M.K.1    Haase, S.B.2
  • 12
    • 78951479577 scopus 로고    scopus 로고
    • Targeting DNA double-strand breaks with TAL effector nucleases
    • Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-61.
    • (2010) Genetics , vol.186 , pp. 757-761
    • Christian, M.1    Cermak, T.2    Doyle, E.L.3
  • 13
    • 0026512939 scopus 로고
    • Multifunctional yeast high-copy-number shuttle vectors
    • Christianson TW, Sikorski RS, Dante M, et al. Multifunctional yeast high-copy-number shuttle vectors. Gene 1992;110: 119-22.
    • (1992) Gene , vol.110 , pp. 119-122
    • Christianson, T.W.1    Sikorski, R.S.2    Dante, M.3
  • 14
    • 84859616870 scopus 로고    scopus 로고
    • Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis
    • De Kok S, Nijkamp JF, Oud B, et al. Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 2012;12:359-74.
    • (2012) FEMS Yeast Res , vol.12 , pp. 359-374
    • De Kok, S.1    Nijkamp, J.F.2    Oud, B.3
  • 15
    • 80052022800 scopus 로고    scopus 로고
    • Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase
    • De Kok S, Yilmaz D, Suir E, et al. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 2011;13:518-26.
    • (2011) Metab Eng , vol.13 , pp. 518-526
    • De Kok, S.1    Yilmaz, D.2    Suir, E.3
  • 16
    • 0034636716 scopus 로고    scopus 로고
    • Exploring redundancy in the yeast genome: an improved strategy for use of the creloxP system
    • Delneri D, Tomlin GC, Wixon JL, et al. Exploring redundancy in the yeast genome: an improved strategy for use of the creloxP system. Gene 2000;252:127-35.
    • (2000) Gene , vol.252 , pp. 127-135
    • Delneri, D.1    Tomlin, G.C.2    Wixon, J.L.3
  • 17
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011;471:602-7.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1    Chylinski, K.2    Sharma, C.M.3
  • 18
    • 84890920555 scopus 로고    scopus 로고
    • Yeast oligo-mediated genome engineering (YOGE)
    • DiCarlo JE, Conley AJ, Penttilä M, et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol 2013a;2:741-9.
    • (2013) ACS Synth Biol , vol.2 , pp. 741-749
    • DiCarlo, J.E.1    Conley, A.J.2    Penttilä, M.3
  • 19
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013b;41:4336-43.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3
  • 20
    • 34247580875 scopus 로고    scopus 로고
    • 25 Yeast genetic strain and plasmid collections
    • Entian K-D, Kötter P. 25 Yeast genetic strain and plasmid collections. Method Microbiol 2007;36:629-66.
    • (2007) Method Microbiol , vol.36 , pp. 629-666
    • Entian, K.-D.1    Kötter, P.2
  • 21
    • 84885181396 scopus 로고    scopus 로고
    • Efficient genome editing in plants using a CRISPR/Cas system
    • Feng Z, Zhang B, DingW, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 2013;23:1229-32.
    • (2013) Cell Res , vol.23 , pp. 1229-1232
    • Feng, Z.1    Zhang, B.2    Ding, W.3
  • 22
    • 84897546295 scopus 로고    scopus 로고
    • Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
    • Gao Y, Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 2014;56:343-9.
    • (2014) J Integr Plant Biol , vol.56 , pp. 343-349
    • Gao, Y.1    Zhao, Y.2
  • 23
    • 39449112551 scopus 로고    scopus 로고
    • Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome
    • Gibson DG, Benders G a, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008;319:1215-20.
    • (2008) Science , vol.319 , pp. 1215-1220
    • Gibson, D.G.1    Benders, G.2    Andrews-Pfannkoch, C.3
  • 24
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz DR, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Method Enzymol 2002;350:87-96.
    • (2002) Method Enzymol , vol.350 , pp. 87-96
    • Gietz, D.R.1    Woods, R.A.2
  • 25
    • 84905905141 scopus 로고    scopus 로고
    • An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells
    • González F, Zhu Z, Shi Z-D, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 2014;15: 215-26.
    • (2014) Cell Stem Cell , vol.15 , pp. 215-226
    • González, F.1    Zhu, Z.2    Shi, Z.-D.3
  • 26
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • González-Ramos D, van den Broek M, van Maris AJ, et al. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 2013;6:48.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 48
    • González-Ramos, D.1    van den Broek, M.2    van Maris, A.J.3
  • 27
    • 84880088705 scopus 로고    scopus 로고
    • Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
    • Gratz SJ, Cummings AM, Nguyen JN, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013;194:1029-35.
    • (2013) Genetics , vol.194 , pp. 1029-1035
    • Gratz, S.J.1    Cummings, A.M.2    Nguyen, J.N.3
  • 28
    • 84883105931 scopus 로고    scopus 로고
    • Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast
    • Guadalupe-Medina V, Wisselink HW, Luttik MA, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels 2013;6:125.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 125
    • Guadalupe-Medina, V.1    Wisselink, H.W.2    Luttik, M.A.3
  • 29
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U, Heinisch J, Koehler GJ, et al. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 2002;30:e23.
    • (2002) Nucleic Acids Res , vol.30
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3
  • 30
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fielder T, et al. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996;24:2519-24.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fielder, T.3
  • 31
    • 80052919515 scopus 로고    scopus 로고
    • Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
    • Hegemann JH, Heick SB. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 2011;765:189-206.
    • (2011) Methods Mol Biol , vol.765 , pp. 189-206
    • Hegemann, J.H.1    Heick, S.B.2
  • 32
    • 79961072482 scopus 로고    scopus 로고
    • Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis
    • Hong K-K, Vongsangnak W, Vemuri GN, et al. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. P Natl Acad Sci USA 2011;108:12179-84.
    • (2011) P Natl Acad Sci USA , vol.108 , pp. 12179-12184
    • Hong, K.-K.1    Vongsangnak, W.2    Vemuri, G.N.3
  • 33
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-78.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 34
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013;31: 827-32.
    • (2013) Nat Biotechnol , vol.31 , pp. 827-832
    • Hsu, P.D.1    Scott, D.A.2    Weinstein, J.A.3
  • 35
    • 84874617789 scopus 로고    scopus 로고
    • Efficient genome editing in zebrafish using a CRISPR-Cas system
    • Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 2013;31:227-9.
    • (2013) Nat Biotechnol , vol.31 , pp. 227-229
    • Hwang, W.Y.1    Fu, Y.2    Reyon, D.3
  • 36
    • 84923050777 scopus 로고    scopus 로고
    • Implementation of the CRISPR-Cas9 system in fission yeast
    • Jacobs JZ, Ciccaglione KM, Tournier V, et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 2014;5:5344.
    • (2014) Nat Commun , vol.5 , pp. 5344
    • Jacobs, J.Z.1    Ciccaglione, K.M.2    Tournier, V.3
  • 37
    • 80052611955 scopus 로고    scopus 로고
    • A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253
    • Jung WS, Yoo YJ, Park JW, et al. A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 2011;91:1389-97.
    • (2011) Appl Microbiol Biotechnol , vol.91 , pp. 1389-1397
    • Jung, W.S.1    Yoo, Y.J.2    Park, J.W.3
  • 38
    • 84870540105 scopus 로고    scopus 로고
    • De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
    • Koopman F, Beekwilder J, Crimi B, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact 2012;11:155.
    • (2012) Microb Cell Fact , vol.11 , pp. 155
    • Koopman, F.1    Beekwilder, J.2    Crimi, B.3
  • 39
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak BU, van Rossum HM, Benjamin KR, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 2014a;21:46-59.
    • (2014) Metab Eng , vol.21 , pp. 46-59
    • Kozak, B.U.1    van Rossum, H.M.2    Benjamin, K.R.3
  • 40
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak BU, van Rossum HM, Luttik MAH, et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio 2014b;5:e01696-14.
    • (2014) mBio , vol.5 , pp. e01696-e1714
    • Kozak, B.U.1    van Rossum, H.M.2    Luttik, M.A.H.3
  • 41
    • 84887606266 scopus 로고    scopus 로고
    • One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae
    • Kuijpers NGA, Chroumpi S, Vos T, et al. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 2013a;13:769-81.
    • (2013) FEMS Yeast Res , vol.13 , pp. 769-781
    • Kuijpers, N.G.A.1    Chroumpi, S.2    Vos, T.3
  • 42
    • 84877272995 scopus 로고    scopus 로고
    • A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences
    • Kuijpers NGA, Solis-Escalante D, Bosman L, et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 2013b;12:47.
    • (2013) Microb Cell Fact , vol.12 , pp. 47
    • Kuijpers, N.G.A.1    Solis-Escalante, D.2    Bosman, L.3
  • 43
    • 0021827802 scopus 로고
    • Transformation of yeast with linearized plasmid DNA Formation of inverted dimers and recombinant plasmid products
    • Kunes S, Botstein D, Fox SM. Transformation of yeast with linearized plasmid DNA. Formation of inverted dimers and recombinant plasmid products. J Mol Biol 1985;184:375-87.
    • (1985) J Mol Biol , vol.184 , pp. 375-387
    • Kunes, S.1    Botstein, D.2    Fox, S.M.3
  • 44
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memoryefficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3
  • 45
    • 84903138336 scopus 로고    scopus 로고
    • CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
    • Lin Y, Cradick TJ, Brown MT, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 2014;42:7473-85.
    • (2014) Nucleic Acids Res , vol.42 , pp. 7473-7485
    • Lin, Y.1    Cradick, T.J.2    Brown, M.T.3
  • 47
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA
    • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. 2008;322:1843-5.
    • (2008) , vol.322 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 48
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011;29:143-8.
    • (2011) Nat Biotechnol , vol.29 , pp. 143-148
    • Miller, J.C.1    Tan, S.2    Qiao, G.3
  • 49
    • 84904813279 scopus 로고    scopus 로고
    • CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
    • Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 2014;42:W401-7.
    • (2014) Nucleic Acids Res , vol.42 , pp. W401-W407
    • Montague, T.G.1    Cruz, J.M.2    Gagnon, J.A.3
  • 50
    • 80053039555 scopus 로고    scopus 로고
    • A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
    • Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011;39:9283-93.
    • (2011) Nucleic Acids Res , vol.39 , pp. 9283-9293
    • Mussolino, C.1    Morbitzer, R.2    Lütge, F.3
  • 51
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals
    • Nielsen J, Larsson C, van Maris A, et al. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 2013;24:398-404.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    van Maris, A.3
  • 52
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
    • Nijkamp JF, van den Broek M, Datema E, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012;11:36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.F.1    van den Broek, M.2    Datema, E.3
  • 53
    • 0000422658 scopus 로고
    • Yeast recombination: the association between double-strand gap repair and crossing-over
    • Orr-Weaver TL, Szostak JW. Yeast recombination: the association between double-strand gap repair and crossing-over. P Natl Acad Sci USA 1983;80:4417-21.
    • (1983) P Natl Acad Sci USA , vol.80 , pp. 4417-4421
    • Orr-Weaver, T.L.1    Szostak, J.W.2
  • 54
    • 0020689374 scopus 로고
    • Genetic applications of yeast transformation with linear and gapped plasmids
    • Orr-Weaver TL, Szostak JW, Rothstein RJ. Genetic applications of yeast transformation with linear and gapped plasmids. Method Enzymol 1983;101:228-45.
    • (1983) Method Enzymol , vol.101 , pp. 228-245
    • Orr-Weaver, T.L.1    Szostak, J.W.2    Rothstein, R.J.3
  • 55
    • 84887294397 scopus 로고    scopus 로고
    • Genome duplication and mutations in ACE2 cause multicellular, fastsedimenting phenotypes in evolved Saccharomyces cerevisiae
    • Oud B, Guadalupe-Medina V, Nijkamp JF, et al. Genome duplication and mutations in ACE2 cause multicellular, fastsedimenting phenotypes in evolved Saccharomyces cerevisiae. P Natl Acad Sci USA 2013;110:E4223-31.
    • (2013) P Natl Acad Sci USA , vol.110 , pp. E4223-E4231
    • Oud, B.1    Guadalupe-Medina, V.2    Nijkamp, J.F.3
  • 56
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013;496:528-32.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1    Westfall, P.J.2    Pitera, D.J.3
  • 57
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk JT. Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microb 2002;68:2095-210.
    • (2002) Appl Environ Microb , vol.68 , pp. 2095-2210
    • Pronk, J.T.1
  • 58
    • 33645870422 scopus 로고    scopus 로고
    • Production of the antimalarial drug precursor artemisinic acid in engineered yeast
    • Ro D-K, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006;440:940-3.
    • (2006) Nature , vol.440 , pp. 940-943
    • Ro, D.-K.1    Paradise, E.M.2    Ouellet, M.3
  • 59
    • 17844400537 scopus 로고    scopus 로고
    • How restriction enzymes became the workhorses of molecular biology
    • Roberts RJ. How restriction enzymes became the workhorses of molecular biology. P Natl Acad Sci USA 2005;102:5905-8.
    • (2005) P Natl Acad Sci USA , vol.102 , pp. 5905-5908
    • Roberts, R.J.1
  • 60
    • 84911871184 scopus 로고    scopus 로고
    • Selection of chromosomal DNA libraries using a multiplex CRISPR system
    • Ryan OW, Skerker JM,MaurerMJ, et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife 2014;3: e03703.
    • (2014) Elife , vol.3
    • Ryan, O.W.1    Skerker, J.M.2    Maurer, M.J.3
  • 61
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2009;37:e16.
    • (2009) Nucleic Acids Res , vol.37
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 62
    • 84921424798 scopus 로고    scopus 로고
    • An overview on selection marker genes for transformation of Saccharomyces cerevisiae
    • Siewers V. An overview on selection marker genes for transformation of Saccharomyces cerevisiae. Methods Mol Biol 2014;1152:3-15.
    • (2014) Methods Mol Biol , vol.1152 , pp. 3-15
    • Siewers, V.1
  • 63
    • 84872424364 scopus 로고    scopus 로고
    • amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae
    • Solis-Escalante D, Kuijpers NGA, Bongaerts N, et al. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 2013;13:126-39.
    • (2013) FEMS Yeast Res , vol.13 , pp. 126-139
    • Solis-Escalante, D.1    Kuijpers, N.G.A.2    Bongaerts, N.3
  • 64
    • 84905577099 scopus 로고    scopus 로고
    • Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae
    • Solis-Escalante D, Kuijpers NGA, van der Linden FH, et al. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res 2014a;14:741-54.
    • (2014) FEMS Yeast Res , vol.14 , pp. 741-754
    • Solis-Escalante, D.1    Kuijpers, N.G.A.2    van der Linden, F.H.3
  • 65
    • 85005781392 scopus 로고    scopus 로고
    • The genome sequence of the popular hexose transport deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss
    • Solis-Escalante D, van den Broek M, Kuijpers NGA, et al. The genome sequence of the popular hexose transport deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res, 2014b;15: doi.org/10.1093/femsyr/fou004.
    • (2014) FEMS Yeast Res , vol.15
    • Solis-Escalante, D.1    van den Broek, M.2    Kuijpers, N.G.A.3
  • 66
    • 0033558377 scopus 로고    scopus 로고
    • A 2-micron DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae
    • Storici F, Coglievina M, Bruschi CV. A 2-micron DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae. Yeast 1999;15:271-83.
    • (1999) Yeast , vol.15 , pp. 271-283
    • Storici, F.1    Coglievina, M.2    Bruschi, C.V.3
  • 67
    • 0034903337 scopus 로고    scopus 로고
    • In vivo site-directedmutagenesis using oligonucleotides
    • Storici F, Lewis LK, ResnickMA. In vivo site-directedmutagenesis using oligonucleotides. Nat Biotechnol 2001;19:773-6.
    • (2001) Nat Biotechnol , vol.19 , pp. 773-776
    • Storici, F.1    Lewis, L.K.2    Resnick, M.A.3
  • 68
    • 3943076455 scopus 로고    scopus 로고
    • A wide-range integrative yeast expression vector system based on Arxula adeninivoransderived elements
    • Terentiev Y, Pico AH, Böer E, et al. A wide-range integrative yeast expression vector system based on Arxula adeninivoransderived elements. J Ind Microbiol Biot 2004;31:223-8.
    • (2004) J Ind Microbiol Biot , vol.31 , pp. 223-228
    • Terentiev, Y.1    Pico, A.H.2    Böer, E.3
  • 69
    • 77955867185 scopus 로고    scopus 로고
    • Genome editing with engineered zinc finger nucleases
    • Urnov FD, Rebar EJ, Holmes MC, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010;11:636-46.
    • (2010) Nat Rev Genet , vol.11 , pp. 636-646
    • Urnov, F.D.1    Rebar, E.J.2    Holmes, M.C.3
  • 70
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • Van den Berg MA, de Jong-Gubbels P, Kortland CJ, et al. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 1996;271:28953-9.
    • (1996) J Biol Chem , vol.271 , pp. 28953-28959
    • Van den Berg, M.A.1    de Jong-Gubbels, P.2    Kortland, C.J.3
  • 71
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, et al. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3
  • 72
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering
    • Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Casmediated genome engineering. Cell 2013;153:910-8.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1    Yang, H.2    Shivalila, C.S.3
  • 73
    • 43249119933 scopus 로고    scopus 로고
    • New methods enabling efficient incorporation of unnatural amino acids in yeast
    • Wang Q, Wang L. New methods enabling efficient incorporation of unnatural amino acids in yeast. J Am Chem Soc 2008;130:6066-7.
    • (2008) J Am Chem Soc , vol.130 , pp. 6066-6067
    • Wang, Q.1    Wang, L.2
  • 74
    • 0033373342 scopus 로고    scopus 로고
    • Concurrent knockout of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae
    • Wieczorke R, Krampe S, Weierstall T, et al. Concurrent knockout of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 1999;464: 123-8.
    • (1999) FEBS Lett , vol.464 , pp. 123-128
    • Wieczorke, R.1    Krampe, S.2    Weierstall, T.3
  • 75
    • 84924322903 scopus 로고    scopus 로고
    • CRISPR-Cas systems and methods for altering expression of gene products
    • US
    • Zhang F. CRISPR-Cas systems and methods for altering expression of gene products. US patent no. 8,697,359 B1, 2014.
    • (2014)
    • Zhang, F.1
  • 76
    • 84917705615 scopus 로고    scopus 로고
    • Construction of a quadruple auxotrophic mutant of an industrial polyploidy Saccharomyces cerevisiae using RNA-guided Cas9 nuclease
    • Zhang G, Kong II, Kim H, et al. Construction of a quadruple auxotrophic mutant of an industrial polyploidy Saccharomyces cerevisiae using RNA-guided Cas9 nuclease. Appl Environ Microb 2014;80:7694-701.
    • (2014) Appl Environ Microb , vol.80 , pp. 7694-7701
    • Zhang, G.1    Kong, I.I.2    Kim, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.