-
3
-
-
84971236561
-
The increasing complexity of the ubiquitin code
-
Yau R, Rape M. (2016). The increasing complexity of the ubiquitin code. Cell Res. 18(6): 579-86
-
(2016)
Cell Res
, vol.18
, Issue.6
, pp. 579-586
-
-
Yau, R.1
Rape, M.2
-
4
-
-
84961743030
-
Ubiquitin modifications
-
Swatek KN, Komander D. (2016). Ubiquitin modifications. Cell Res. 26(4): 399-422
-
(2016)
Cell Res
, vol.26
, Issue.4
, pp. 399-422
-
-
Swatek, K.N.1
Komander, D.2
-
5
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44(2): 325-40
-
(2011)
Mol. Cell
, vol.44
, Issue.2
, pp. 325-340
-
-
Kim, W.1
Bennett, E.J.2
Huttlin, E.L.3
Guo, A.4
Li, J.5
-
6
-
-
80054033461
-
A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles
-
M111.013284
-
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. (2011). A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteom. 10(10): M111.013284
-
(2011)
Mol. Cell Proteom
, vol.10
, Issue.10
-
-
Wagner, S.A.1
Beli, P.2
Weinert, B.T.3
Nielsen, M.L.4
Cox, J.5
-
7
-
-
84940897506
-
Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response
-
Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA, et al. (2015). Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59(5): 867-81
-
(2015)
Mol. Cell
, vol.59
, Issue.5
, pp. 867-881
-
-
Elia, A.E.H.1
Boardman, A.P.2
Wang, D.C.3
Huttlin, E.L.4
Everley, R.A.5
-
8
-
-
84900337781
-
Enhanced protein degradation by branched ubiquitin chains
-
Meyer H-J, Rape M. (2014). Enhanced protein degradation by branched ubiquitin chains. Cell 157(4): 910-21
-
(2014)
Cell
, vol.157
, Issue.4
, pp. 910-921
-
-
Meyer, H.-J.1
Rape, M.2
-
9
-
-
84884345970
-
Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
-
Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA, et al. (2013). Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. PNAS 110(38): 15247-52
-
(2013)
PNAS
, vol.110
, Issue.38
, pp. 15247-15252
-
-
Emmerich, C.H.1
Ordureau, A.2
Strickson, S.3
Arthur, J.S.C.4
Pedrioli, P.G.A.5
-
10
-
-
84877313192
-
Assembly, analysis and architecture of atypical ubiquitin chains
-
Hospenthal MK, Freund SMV, Komander D. (2013). Assembly, analysis and architecture of atypical ubiquitin chains. Nat. Struct. Mol. Biol. 20(5): 555-65
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, Issue.5
, pp. 555-565
-
-
Hospenthal, M.K.1
Freund, S.M.V.2
Komander, D.3
-
11
-
-
84878944582
-
Sumoylation: A regulatory protein modification in health and disease
-
Flotho A, Melchior F. (2013). Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82: 357-85
-
(2013)
Annu. Rev. Biochem
, vol.82
, pp. 357-385
-
-
Flotho, A.1
Melchior, F.2
-
13
-
-
63649113699
-
Origin and function of ubiquitin-like proteins
-
Hochstrasser M. (2009). Origin and function of ubiquitin-like proteins. Nature 458(7237): 422-29
-
(2009)
Nature
, vol.458
, Issue.7237
, pp. 422-429
-
-
Hochstrasser, M.1
-
14
-
-
84925775745
-
Uncovering global SUMOylation signaling networks in a site-specific manner
-
Hendriks IA, D'Souza RCJ, Yang B, Verlaan-de Vries M, Mann M, Vertegaal ACO. (2014). Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21(10): 927-36
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, Issue.10
, pp. 927-936
-
-
Hendriks, I.A.1
D'Souza, R.C.J.2
Yang, B.3
Verlaan-De Vries, M.4
Mann, M.5
Vertegaal, A.C.O.6
-
15
-
-
68049103216
-
An additional role for SUMO in ubiquitin-mediated proteolysis
-
Geoffroy M-C, Hay RT. (2009). An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10(8): 564-68
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, Issue.8
, pp. 564-568
-
-
Geoffroy, M.-C.1
Hay, R.T.2
-
16
-
-
84879613791
-
Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
-
Swaney DL, Beltrao P, Starita L, Guo A, Rush J, et al. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10(7): 676-82
-
(2013)
Nat. Methods
, vol.10
, Issue.7
, pp. 676-682
-
-
Swaney, D.L.1
Beltrao, P.2
Starita, L.3
Guo, A.4
Rush, J.5
-
17
-
-
84941120469
-
Phospho site plus 2014: Mutations, ptms and recalibrations
-
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. (2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43(D1): D512-20
-
(2015)
Nucleic Acids Res
, vol.43
, Issue.D1
, pp. D512-D520
-
-
Hornbeck, P.V.1
Zhang, B.2
Murray, B.3
Kornhauser, J.M.4
Latham, V.5
Skrzypek, E.6
-
18
-
-
84921369563
-
The Roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell AM, Youle RJ. (2015). The Roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85(2): 257-73
-
(2015)
Neuron
, vol.85
, Issue.2
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
19
-
-
84964603365
-
Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
-
Bingol B, Sheng M. (2016). Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 100: 210-22
-
(2016)
Free Radic. Biol. Med
, vol.100
, pp. 210-222
-
-
Bingol, B.1
Sheng, M.2
-
20
-
-
84922241634
-
Ubiquitin acetylation inhibits polyubiquitin chain elongation
-
Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H, et al. (2015). Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep. 16(2): 192-201
-
(2015)
EMBO Rep
, vol.16
, Issue.2
, pp. 192-201
-
-
Ohtake, F.1
Saeki, Y.2
Sakamoto, K.3
Ohtake, K.4
Nishikawa, H.5
-
21
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, et al. (2015). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34(3): 307-25
-
(2015)
EMBO J.
, vol.34
, Issue.3
, pp. 307-325
-
-
Wauer, T.1
Swatek, K.N.2
Wagstaff, J.L.3
Gladkova, C.4
Pruneda, J.N.5
-
22
-
-
84978818907
-
Synthesis of isomeric phosphoubiquitin chains reveals that phosphorylation controls deubiquitinase activity and specificity
-
Huguenin-Dezot N, De Cesare V, Peltier J, Knebel A, Kristaryianto YA, et al. (2016). Synthesis of isomeric phosphoubiquitin chains reveals that phosphorylation controls deubiquitinase activity and specificity. Cell Rep. 16(4): 1-32
-
(2016)
Cell Rep
, vol.16
, Issue.4
, pp. 1-32
-
-
Huguenin-Dezot, N.1
De Cesare, V.2
Peltier, J.3
Knebel, A.4
Kristaryianto, Y.A.5
-
23
-
-
67349256160
-
Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways
-
Schulman BA, Harper JW. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10(5): 319-31
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, Issue.5
, pp. 319-331
-
-
Schulman, B.A.1
Harper, J.W.2
-
24
-
-
70350461507
-
Building ubiquitin chains: E2 enzymes at work
-
Ye Y, Rape M. (2009). Building ubiquitin chains: E2 enzymes at work.Nat. Rev. Mol. Cell Biol. 10(11): 755-64
-
(2009)
Nat Rev. Mol. Cell Biol
, vol.10
, Issue.11
, pp. 755-764
-
-
Ye, Y.1
Rape, M.2
-
25
-
-
84980329401
-
Structural insights into the catalysis and regulation of E3 ubiquitin ligases
-
Buetow L, Huang DT. (2016). Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17: 626-42
-
(2016)
Nat. Rev. Mol. Cell Biol
, vol.17
, pp. 626-642
-
-
Buetow, L.1
Huang, D.T.2
-
26
-
-
84861783400
-
Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
-
Husnjak K, Dikic I. (2012). Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81: 291-322
-
(2012)
Annu. Rev. Biochem
, vol.81
, pp. 291-322
-
-
Husnjak, K.1
Dikic, I.2
-
27
-
-
84880931087
-
Deubiquitylases from genes to organism
-
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. (2013). Deubiquitylases from genes to organism. Physiol. Rev. 93(3): 1289-1315
-
(2013)
Physiol. Rev
, vol.93
, Issue.3
, pp. 1289-1315
-
-
Clague, M.J.1
Barsukov, I.2
Coulson, J.M.3
Liu, H.4
Rigden, D.J.5
Urbé, S.6
-
28
-
-
68049084674
-
Breaking the chains: Structure and function of the deubiquitinases
-
Komander D, Clague MJ, Urbé S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10(8): 550-63
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, Issue.8
, pp. 550-563
-
-
Komander, D.1
Clague, M.J.2
Urbé, S.3
-
29
-
-
67650620318
-
Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
-
Reyes-Turcu FE, Ventii KH, Wilkinson KD. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78: 363-97
-
(2009)
Annu. Rev. Biochem
, vol.78
, pp. 363-397
-
-
Reyes-Turcu, F.E.1
Ventii, K.H.2
Wilkinson, K.D.3
-
30
-
-
84992409187
-
MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes
-
Rehman SAA, Kristariyanto YA, Choi S-Y, Nkosi PJ, Weidlich S, et al. (2016). MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63(1): 1-28
-
(2016)
Mol. Cell
, vol.63
, Issue.1
, pp. 1-28
-
-
Rehman, S.A.A.1
Kristariyanto, Y.A.2
Choi, S.-Y.3
Nkosi, P.J.4
Weidlich, S.5
-
32
-
-
84862798314
-
DeSUMOylating isopeptidase: A second class of SUMO protease
-
Shin EJ, Shin HM, Nam E, Kim WS, Kim J-H, et al. (2012). DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep. 13(4): 339-46
-
(2012)
EMBO Rep
, vol.13
, Issue.4
, pp. 339-346
-
-
Shin, E.J.1
Shin, H.M.2
Nam, E.3
Kim, W.S.4
Kim, J.-H.5
-
33
-
-
84937640135
-
The demographics of the ubiquitin system
-
Clague MJ, Heride C, Urbé S. (2015). The demographics of the ubiquitin system. Trends Cell Biol. 25(7): 417-26
-
(2015)
Trends Cell Biol
, vol.25
, Issue.7
, pp. 417-426
-
-
Clague, M.J.1
Heride, C.2
Urbé, S.3
-
34
-
-
84961757578
-
Substrate specificity of the ubiquitin and Ubl proteases
-
Ronau JA, Beckmann JF, Hochstrasser M. (2016). Substrate specificity of the ubiquitin and Ubl proteases. Cell Res. 26(4): 441-56
-
(2016)
Cell Res
, vol.26
, Issue.4
, pp. 441-456
-
-
Ronau, J.A.1
Beckmann, J.F.2
Hochstrasser, M.3
-
35
-
-
39849091629
-
Screen for ISG15-crossreactive deubiquitinases
-
Catic A, Fiebiger E, Korbel GA, Blom D, Galardy PJ, Ploegh HL. (2007). Screen for ISG15-crossreactive deubiquitinases. PLOS ONE 2: e679
-
(2007)
Plos One
, vol.2
, pp. e679
-
-
Catic, A.1
Fiebiger, E.2
Korbel, G.A.3
Blom, D.4
Galardy, P.J.5
Ploegh, H.L.6
-
36
-
-
79953314427
-
Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21
-
Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD, Komander D. (2011). Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12(4): 350-57
-
(2011)
EMBO Rep
, vol.12
, Issue.4
, pp. 350-357
-
-
Ye, Y.1
Akutsu, M.2
Reyes-Turcu, F.3
Enchev, R.I.4
Wilkinson, K.D.5
Komander, D.6
-
37
-
-
0033565867
-
Structural basis for the specificity of ubiquitin C-terminal hydrolases
-
Johnston SC, Riddle SM, Cohen RE, Hill CP. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18(14): 3877-87
-
(1999)
EMBO J.
, vol.18
, Issue.14
, pp. 3877-3887
-
-
Johnston, S.C.1
Riddle, S.M.2
Cohen, R.E.3
Hill, C.P.4
-
38
-
-
0037131242
-
Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of NEDD8 from CUL1
-
Cope GA, Suh GSB, Aravind L, Schwarz SE, Zipursky SL, et al. (2002). Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of NEDD8 from CUL1. Science 298(5593): 608-11
-
(2002)
Science
, vol.298
, Issue.5593
, pp. 608-611
-
-
Cope, G.A.1
Suh, G.S.B.2
Aravind, L.3
Schwarz, S.E.4
Zipursky, S.L.5
-
39
-
-
84867027501
-
Ubiquitinspecific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions
-
Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, et al. (2012). Ubiquitinspecific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13(10): 930-38
-
(2012)
EMBO Rep
, vol.13
, Issue.10
, pp. 930-938
-
-
Schulz, S.1
Chachami, G.2
Kozaczkiewicz, L.3
Winter, U.4
Stankovic-Valentin, N.5
-
40
-
-
0037155882
-
UBP43 (USP18) specifically removes ISG15 from conjugated proteins
-
Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang D-E. (2002). UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277(12): 9976-81
-
(2002)
J. Biol. Chem
, vol.277
, Issue.12
, pp. 9976-9981
-
-
Malakhov, M.P.1
Malakhova, O.A.2
Kim, K.I.3
Ritchie, K.J.4
Zhang, D.-E.5
-
41
-
-
85011655150
-
Structural basis of the specificity of USP18 toward ISG15
-
Basters A, Geurink PP, Röcker A, Witting KF, Tadayon R, et al. (2017). Structural basis of the specificity of USP18 toward ISG15. Nat. Struct. Mol. Biol. 24: 270-78
-
(2017)
Nat. Struct. Mol. Biol
, vol.24
, pp. 270-278
-
-
Basters, A.1
Geurink, P.P.2
Röcker, A.3
Witting, K.F.4
Tadayon, R.5
-
42
-
-
84978880194
-
The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases
-
Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, et al. (2016). The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63(2): 261-76
-
(2016)
Mol. Cell
, vol.63
, Issue.2
, pp. 261-276
-
-
Pruneda, J.N.1
Durkin, C.H.2
Geurink, P.P.3
Ovaa, H.4
Santhanam, B.5
-
43
-
-
84897381829
-
Viral OTU deubiquitinases: A structural and functional comparison
-
Bailey-Elkin BA, van Kasteren PB, Snijder EJ, Kikkert M, Mark BL. (2014). Viral OTU deubiquitinases: a structural and functional comparison. PLOS Pathog. 10(3): e1003894
-
(2014)
Plos Pathog
, vol.10
, Issue.3
, pp. e1003894
-
-
Bailey-Elkin, B.A.1
Van Kasteren, P.B.2
Snijder, E.J.3
Kikkert, M.4
Mark, B.L.5
-
44
-
-
72949102636
-
Dissection of USP catalytic domains reveals five common insertion points
-
Ye Y, Scheel H, Hofmann K, Komander D. (2009). Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5(12): 1797-808
-
(2009)
Mol. Biosyst
, vol.5
, Issue.12
, pp. 1797-1808
-
-
Ye, Y.1
Scheel, H.2
Hofmann, K.3
Komander, D.4
-
45
-
-
84555218153
-
The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types
-
Faesen AC, Luna-Vargas MPA, Geurink PP, Clerici M, Merkx R, et al. (2011). The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol. 18(12): 1550-61
-
(2011)
Chem. Biol
, vol.18
, Issue.12
, pp. 1550-1561
-
-
Faesen, A.C.1
Luna-Vargas, M.P.A.2
Geurink, P.P.3
Clerici, M.4
Merkx, R.5
-
46
-
-
84907358982
-
Screening of DUB activity and specificity by MALDI-TOF mass spectrometry
-
Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, et al. (2014). Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat. Commun. 5: 4763
-
(2014)
Nat. Commun
, vol.5
, pp. 4763
-
-
Ritorto, M.S.1
Ewan, R.2
Perez-Oliva, A.B.3
Knebel, A.4
Buhrlage, S.J.5
-
47
-
-
84878862687
-
OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
-
Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, et al. (2013). OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153(6): 1312-26
-
(2013)
Cell
, vol.153
, Issue.6
, pp. 1312-1326
-
-
Keusekotten, K.1
Elliott, P.R.2
Glockner, L.3
Fiil, B.K.4
Damgaard, R.B.5
-
48
-
-
84879390723
-
The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
-
Rivkin E, Almeida SM, Ceccarelli DF, Juang Y-C, MacLean TA, et al. (2013). The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498(7454): 318-24
-
(2013)
Nature
, vol.498
, Issue.7454
, pp. 318-324
-
-
Rivkin, E.1
Almeida, S.M.2
Ceccarelli, D.F.3
Juang, Y.-C.4
MacLean, T.A.5
-
49
-
-
84878832998
-
OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
-
Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, et al. (2013). OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154(1): 169-84
-
(2013)
Cell
, vol.154
, Issue.1
, pp. 169-184
-
-
Mevissen, T.E.T.1
Hospenthal, M.K.2
Geurink, P.P.3
Elliott, P.R.4
Akutsu, M.5
-
50
-
-
84965002376
-
Nonhydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets
-
Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TET, et al. (2016). Nonhydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem. Biol. 23(4): 472-82
-
(2016)
Cell Chem. Biol
, vol.23
, Issue.4
, pp. 472-482
-
-
Flierman, D.1
Van Der, H.2
Van Noort, G.J.3
Ekkebus, R.4
Geurink, P.P.5
Mevissen, T.E.T.6
-
51
-
-
85010576749
-
A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains
-
Kristariyanto YA, Abdul Rehman SA, Weidlich S, Knebel A, Kulathu Y. (2017). A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains. EMBO Rep. 18(3): 392-402
-
(2017)
EMBO Rep
, vol.18
, Issue.3
, pp. 392-402
-
-
Kristariyanto, Y.A.1
Abdul Rehman, S.A.2
Weidlich, S.3
Knebel, A.4
Kulathu, Y.5
-
52
-
-
33646066025
-
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
-
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. (2006). The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124(6): 1197-1208
-
(2006)
Cell
, vol.124
, Issue.6
, pp. 1197-1208
-
-
Reyes-Turcu, F.E.1
Horton, J.R.2
Mullally, J.E.3
Heroux, A.4
Cheng, X.5
Wilkinson, K.D.6
-
53
-
-
50349102579
-
Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T
-
Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. (2008). Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283(28): 19581-92
-
(2008)
J. Biol. Chem
, vol.283
, Issue.28
, pp. 19581-19592
-
-
Reyes-Turcu, F.E.1
Shanks, J.R.2
Komander, D.3
Wilkinson, K.D.4
-
54
-
-
84877576390
-
Mixed-linkage ubiquitin chains send mixed messages
-
Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D. (2013). Mixed-linkage ubiquitin chains send mixed messages. Structure 21(5): 727-40
-
(2013)
Structure
, vol.21
, Issue.5
, pp. 727-740
-
-
Nakasone, M.A.1
Livnat-Levanon, N.2
Glickman, M.H.3
Cohen, R.E.4
Fushman, D.5
-
55
-
-
84949989892
-
Assembly and specific recognition of k29-and k33-linked polyubiquitin
-
Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, et al. (2015). Assembly and specific recognition of k29-and k33-linked polyubiquitin. Mol. Cell 58(1): 95-109
-
(2015)
Mol. Cell
, vol.58
, Issue.1
, pp. 95-109
-
-
Michel, M.A.1
Elliott, P.R.2
Swatek, K.N.3
Simicek, M.4
Pruneda, J.N.5
-
56
-
-
84961288441
-
K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin
-
Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C, et al. (2015). K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol. Cell 58(1): 83-94
-
(2015)
Mol. Cell
, vol.58
, Issue.1
, pp. 83-94
-
-
Kristariyanto, Y.A.1
Abdul Rehman, S.A.2
Campbell, D.G.3
Morrice, N.A.4
Johnson, C.5
-
57
-
-
84992381687
-
Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne
-
Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, et al. (2016). Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 538(7625): 402-5
-
(2016)
Nature
, vol.538
, Issue.7625
, pp. 402-405
-
-
Mevissen, T.E.T.1
Kulathu, Y.2
Mulder, M.P.C.3
Geurink, P.P.4
Maslen, S.L.5
-
58
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, et al. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510(7505): 370-75
-
(2014)
Nature
, vol.510
, Issue.7505
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
-
59
-
-
84960153228
-
USP7 is a SUMO deubiquitinase essential for DNA replication
-
Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, et al. (2016). USP7 is a SUMO deubiquitinase essential for DNA replication. Nat. Struct. Mol. Biol. 23(4): 270-77
-
(2016)
Nat. Struct. Mol. Biol
, vol.23
, Issue.4
, pp. 270-277
-
-
Lecona, E.1
Rodriguez-Acebes, S.2
Specks, J.3
Lopez-Contreras, A.J.4
Ruppen, I.5
-
60
-
-
33746827805
-
Structural basis of ubiquitin recognition by the deubiquitinating protease USP2
-
Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, et al. (2006). Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14(8): 1293-1302
-
(2006)
Structure
, vol.14
, Issue.8
, pp. 1293-1302
-
-
Renatus, M.1
Parrado, S.G.2
D'Arcy, A.3
Eidhoff, U.4
Gerhartz, B.5
-
61
-
-
84871031152
-
Ubiquitin chain conformation regulates recognition and activity of interacting proteins
-
Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, et al. (2012). Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492(7428): 266-70
-
(2012)
Nature
, vol.492
, Issue.7428
, pp. 266-270
-
-
Ye, Y.1
Blaser, G.2
Horrocks, M.H.3
Ruedas-Rama, M.J.4
Ibrahim, S.5
-
62
-
-
84455173201
-
Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes
-
Schaefer JB, Morgan DO. (2011). Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J. Biol. Chem. 286(52): 45186-96
-
(2011)
J. Biol. Chem
, vol.286
, Issue.52
, pp. 45186-45196
-
-
Schaefer, J.B.1
Morgan, D.O.2
-
63
-
-
84925949741
-
Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (ubicrest
-
Hospenthal MK, Mevissen TET, Komander D. (2015). Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat. Protoc. 10(2): 349-61
-
(2015)
Nat. Protoc
, vol.10
, Issue.2
, pp. 349-361
-
-
Hospenthal, M.K.1
Mevissen, T.E.T.2
Komander, D.3
-
65
-
-
84957916919
-
Structural basis for histone H2B deubiquitination by the SAGA DUB module
-
Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. (2016). Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351(6274): 725-28
-
(2016)
Science
, vol.351
, Issue.6274
, pp. 725-728
-
-
Morgan, M.T.1
Haj-Yahya, M.2
Ringel, A.E.3
Bandi, P.4
Brik, A.5
Wolberger, C.6
-
66
-
-
4143080425
-
AMSH is an endosome-associated ubiquitin isopeptidase
-
McCullough J, Clague MJ, Urbé S. (2004). AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166(4): 487-92
-
(2004)
J. Cell Biol
, vol.166
, Issue.4
, pp. 487-492
-
-
McCullough, J.1
Clague, M.J.2
Urbé, S.3
-
67
-
-
62649104153
-
K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1
-
Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. (2009). K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28(6): 621-31
-
(2009)
EMBO J.
, vol.28
, Issue.6
, pp. 621-631
-
-
Cooper, E.M.1
Cutcliffe, C.2
Kristiansen, T.Z.3
Pandey, A.4
Pickart, C.M.5
Cohen, R.E.6
-
68
-
-
52149103164
-
Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains
-
Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, et al. (2008). Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455(7211): 358-62
-
(2008)
Nature
, vol.455
, Issue.7211
, pp. 358-362
-
-
Sato, Y.1
Yoshikawa, A.2
Yamagata, A.3
Mimura, H.4
Yamashita, M.5
-
69
-
-
67349231313
-
Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains
-
Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D. (2009). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10(5): 466-73
-
(2009)
EMBO Rep
, vol.10
, Issue.5
, pp. 466-473
-
-
Komander, D.1
Reyes-Turcu, F.2
Licchesi, J.D.F.3
Odenwaelder, P.4
Wilkinson, K.D.5
Barford, D.6
-
70
-
-
55549086868
-
The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains
-
Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, et al. (2008). The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 283(39): 26436-43
-
(2008)
J. Biol. Chem
, vol.283
, Issue.39
, pp. 26436-26443
-
-
Winborn, B.J.1
Travis, S.M.2
Todi, S.V.3
Scaglione, K.M.4
Xu, P.5
-
71
-
-
77449150629
-
CYLD: A tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes
-
Sun S-C. (2010). CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ. 17(1): 25-34
-
(2010)
Cell Death Differ
, vol.17
, Issue.1
, pp. 25-34
-
-
Sun, S.-C.1
-
72
-
-
39549106692
-
The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module
-
Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, et al. (2008). The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29(4): 451-64
-
(2008)
Mol. Cell
, vol.29
, Issue.4
, pp. 451-464
-
-
Komander, D.1
Lord, C.J.2
Scheel, H.3
Swift, S.4
Hofmann, K.5
-
73
-
-
84924269252
-
Structures of CYLD USP withMet1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity
-
Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, et al. (2015). Structures of CYLD USP withMet1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat. Struct. Mol. Biol. 22: 222-29
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, pp. 222-229
-
-
Sato, Y.1
Goto, E.2
Shibata, Y.3
Kubota, Y.4
Yamagata, A.5
-
74
-
-
84923167247
-
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
-
Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, et al. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17(2): 160-69
-
(2015)
Nat. Cell Biol
, vol.17
, Issue.2
, pp. 160-169
-
-
Cunningham, C.N.1
Baughman, J.M.2
Phu, L.3
Tea, J.S.4
Yu, C.5
-
75
-
-
30944464589
-
Activation of the endosomeassociated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery
-
McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, et al. (2006). Activation of the endosomeassociated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16(2): 160-65
-
(2006)
Curr. Biol
, vol.16
, Issue.2
, pp. 160-165
-
-
McCullough, J.1
Row, P.E.2
Lorenzo, O.3
Doherty, M.4
Beynon, R.5
-
76
-
-
84901020323
-
Insights into themechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product
-
Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, et al. (2014). Insights into themechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 53(19): 3199-217
-
(2014)
Biochemistry
, vol.53
, Issue.19
, pp. 3199-3217
-
-
Shrestha, R.K.1
Ronau, J.A.2
Davies, C.W.3
Guenette, R.G.4
Strieter, E.R.5
-
77
-
-
84942927801
-
Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase
-
Bueno AN, Shrestha RK, Ronau JA, Babar A, Sheedlo MJ, et al. (2015). Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase. Biochemistry 54(39): 6038-51
-
(2015)
Biochemistry
, vol.54
, Issue.39
, pp. 6038-6051
-
-
Bueno, A.N.1
Shrestha, R.K.2
Ronau, J.A.3
Babar, A.4
Sheedlo, M.J.5
-
78
-
-
60149084572
-
Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1
-
Wang T, Yin L, Cooper EM, Lai M-Y, Dickey S, et al. (2009). Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386(4): 1011-23
-
(2009)
J. Mol. Biol
, vol.386
, Issue.4
, pp. 1011-1023
-
-
Wang, T.1
Yin, L.2
Cooper, E.M.3
Lai, M.-Y.4
Dickey, S.5
-
79
-
-
61449120240
-
Structural basis and specificity of human otubain 1-mediated deubiquitination
-
Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K, et al. (2009). Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418(2): 379-90
-
(2009)
Biochem. J.
, vol.418
, Issue.2
, pp. 379-390
-
-
Edelmann, M.J.1
Iphöfer, A.2
Akutsu, M.3
Altun, M.4
Di Gleria, K.5
-
80
-
-
77955867565
-
Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1
-
Nakada S, Tai I, Panier S, Al-Hakim AK, Iemura S-I, et al. (2010). Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466(7309): 941-46
-
(2010)
Nature
, vol.466
, Issue.7309
, pp. 941-946
-
-
Nakada, S.1
Tai, I.2
Panier, S.3
Al-Hakim, A.K.4
Iemura, S.-I.5
-
81
-
-
84856801739
-
OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function
-
Juang Y-C, Landry M-C, Sanches M, Vittal V, Leung CCY, et al. (2012). OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol. Cell 45(3): 384-97
-
(2012)
Mol. Cell
, vol.45
, Issue.3
, pp. 384-397
-
-
Juang, Y.-C.1
Landry, M.-C.2
Sanches, M.3
Vittal, V.4
Leung, C.C.Y.5
-
82
-
-
84862806447
-
The mechanism of OTUB1-mediated inhibition of ubiquitination
-
Wiener R, Zhang X, Wang T, Wolberger C. (2012). The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483(7391): 618-22
-
(2012)
Nature
, vol.483
, Issue.7391
, pp. 618-622
-
-
Wiener, R.1
Zhang, X.2
Wang, T.3
Wolberger, C.4
-
83
-
-
84883740585
-
E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1
-
Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, et al. (2013). E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat. Struct. Mol. Biol. 20(9): 1033-39
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, Issue.9
, pp. 1033-1039
-
-
Wiener, R.1
DiBello, A.T.2
Lombardi, P.M.3
Guzzo, C.M.4
Zhang, X.5
-
84
-
-
84981719187
-
The deubiquitinase OTULINis an essential negative regulator of inflammation and autoimmunity
-
Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, et al. (2016). The deubiquitinase OTULINis an essential negative regulator of inflammation and autoimmunity. Cell 166(5): 1215-20
-
(2016)
Cell
, vol.166
, Issue.5
, pp. 1215-1220
-
-
Damgaard, R.B.1
Walker, J.A.2
Marco-Casanova, P.3
Morgan, N.V.4
Titheradge, H.L.5
-
85
-
-
84985992152
-
Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease
-
Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, et al. (2016). Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. PNAS 113(36): 10127-32
-
(2016)
PNAS
, vol.113
, Issue.36
, pp. 10127-10132
-
-
Zhou, Q.1
Yu, X.2
Demirkaya, E.3
Deuitch, N.4
Stone, D.5
-
86
-
-
84957729036
-
Regulation ofMet1-linked polyubiquitin signalling by the deubiquitinase OTULIN
-
Elliott PR, Komander D. (2016). Regulation ofMet1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J. 283(1): 39-53
-
(2016)
FEBS J.
, vol.283
, Issue.1
, pp. 39-53
-
-
Elliott, P.R.1
Komander, D.2
-
87
-
-
84991672335
-
SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling
-
Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, et al. (2016). SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63(6): 990-1005
-
(2016)
Mol. Cell
, vol.63
, Issue.6
, pp. 990-1005
-
-
Elliott, P.R.1
Leske, D.2
Hrdinka, M.3
Bagola, K.4
Fiil, B.K.5
-
88
-
-
84874193578
-
OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3
-
Hu H, Brittain GC, Chang J-H, Puebla-Osorio N, Jin J, et al. (2013). OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494(7437): 371-74
-
(2013)
Nature
, vol.494
, Issue.7437
, pp. 371-374
-
-
Hu, H.1
Brittain, G.C.2
Chang, J.-H.3
Puebla-Osorio, N.4
Jin, J.5
-
89
-
-
84915791560
-
Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner
-
Bremm A, Moniz S, Mader J, Rocha S, Komander D. (2014). Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep. 15(12): 1268-77
-
(2014)
EMBO Rep
, vol.15
, Issue.12
, pp. 1268-1277
-
-
Bremm, A.1
Moniz, S.2
Mader, J.3
Rocha, S.4
Komander, D.5
-
90
-
-
84939517862
-
Cezanne regulates E2F1-dependent HIF2αexpression
-
Moniz S, Bandarra D, Biddlestone J, Campbell KJ, Komander D, et al. (2015). Cezanne regulates E2F1-dependent HIF2αexpression. J. Cell Sci. 128(16): 3082-93
-
(2015)
J. Cell Sci
, vol.128
, Issue.16
, pp. 3082-3093
-
-
Moniz, S.1
Bandarra, D.2
Biddlestone, J.3
Campbell, K.J.4
Komander, D.5
-
91
-
-
84855465067
-
An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains
-
Licchesi JDF, Mieszczanek J, Mevissen TET, Rutherford TJ, Akutsu M, et al. (2012). An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat. Struct. Mol. Biol. 19(1): 62-71
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, Issue.1
, pp. 62-71
-
-
Licchesi, J.D.F.1
Mieszczanek, J.2
Mevissen, T.E.T.3
Rutherford, T.J.4
Akutsu, M.5
-
92
-
-
84887695725
-
Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH
-
Davies CW, Paul LN, Das C. (2013). Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 52(44): 7818-29
-
(2013)
Biochemistry
, vol.52
, Issue.44
, pp. 7818-7829
-
-
Davies, C.W.1
Paul, L.N.2
Das, C.3
-
93
-
-
84934971997
-
Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations
-
Kristariyanto YA, Choi S-Y, Rehman SAA, Ritorto MS, Campbell DG, et al. (2015). Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem. J. 467(2): 345-52
-
(2015)
Biochem. J.
, vol.467
, Issue.2
, pp. 345-352
-
-
Kristariyanto, Y.A.1
Choi, S.-Y.2
Rehman, S.A.A.3
Ritorto, M.S.4
Campbell, D.G.5
-
94
-
-
84867062977
-
A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7
-
Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, et al. (2012). A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31(19): 3845-55
-
(2012)
EMBO J.
, vol.31
, Issue.19
, pp. 3845-3855
-
-
Verhelst, K.1
Carpentier, I.2
Kreike, M.3
Meloni, L.4
Verstrepen, L.5
-
95
-
-
84867043680
-
Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation
-
Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, et al. (2012). Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J. 31(19): 3856-70
-
(2012)
EMBO J.
, vol.31
, Issue.19
, pp. 3856-3870
-
-
Tokunaga, F.1
Nishimasu, H.2
Ishitani, R.3
Goto, E.4
Noguchi, T.5
-
96
-
-
84951176357
-
Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation
-
Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, et al. (2015). Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528(7582): 370-75
-
(2015)
Nature
, vol.528
, Issue.7582
, pp. 370-375
-
-
Wertz, I.E.1
Newton, K.2
Seshasayee, D.3
Kusam, S.4
Lam, C.5
-
98
-
-
84983354559
-
DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets
-
Pinto-Fernandez A, Kessler BM. (2016). DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7: 133
-
(2016)
Front. Genet
, vol.7
, pp. 133
-
-
Pinto-Fernandez, A.1
Kessler, B.M.2
-
99
-
-
84984820649
-
Deubiquitinases: Novel therapeutic targets in immune surveillance? Mediat
-
Lopez-Castejon G, Edelmann MJ. (2016). Deubiquitinases: novel therapeutic targets in immune surveillance? Mediat. Inflamm. 2016: 3481371
-
(2016)
Inflamm
, vol.2016
, pp. 3481371
-
-
Lopez-Castejon, G.1
Edelmann, M.J.2
-
100
-
-
79959906646
-
Balancing act: Deubiquitinating enzymes in the nervous system
-
Todi SV, Paulson HL. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 34(7): 370-82
-
(2011)
Trends Neurosci
, vol.34
, Issue.7
, pp. 370-382
-
-
Todi, S.V.1
Paulson, H.L.2
-
101
-
-
0025271844
-
Tumor necrosis factor-αinduction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin
-
Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, et al. (1990). Tumor necrosis factor-αinduction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265(5): 2973-78
-
(1990)
J. Biol. Chem
, vol.265
, Issue.5
, pp. 2973-2978
-
-
Dixit, V.M.1
Green, S.2
Sarma, V.3
Holzman, L.B.4
Wolf, F.W.5
-
102
-
-
77951622671
-
A20: From ubiquitin editing to tumour suppression
-
Hymowitz SG, Wertz IE. (2010). A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10(5): 332-41
-
(2010)
Nat. Rev. Cancer
, vol.10
, Issue.5
, pp. 332-341
-
-
Hymowitz, S.G.1
Wertz, I.E.2
-
103
-
-
39449131430
-
T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20
-
Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, et al. (2008). T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9(3): 263-71
-
(2008)
Nat. Immunol
, vol.9
, Issue.3
, pp. 263-271
-
-
Coornaert, B.1
Baens, M.2
Heyninck, K.3
Bekaert, T.4
Haegman, M.5
-
104
-
-
79955592698
-
T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1
-
Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, et al. (2011). T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30(9): 1742-52
-
(2011)
EMBO J.
, vol.30
, Issue.9
, pp. 1742-1752
-
-
Staal, J.1
Driege, Y.2
Bekaert, T.3
Demeyer, A.4
Muyllaert, D.5
-
105
-
-
84856160569
-
Caspase 8 inhibits programmed necrosis by processing CYLD
-
O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, et al. (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Cell Res. 13(12): 1437-42
-
(2011)
Cell Res
, vol.13
, Issue.12
, pp. 1437-1442
-
-
O'Donnell, M.A.1
Perez-Jimenez, E.2
Oberst, A.3
Ng, A.4
Massoumi, R.5
-
106
-
-
84974694612
-
CYLD proteolysis protectsmacrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type i IFN
-
Legarda D, Justus SJ, Ang RL, Rikhi N, Li W, et al. (2016). CYLD proteolysis protectsmacrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 15(11): 2449-61
-
(2016)
Cell Rep
, vol.15
, Issue.11
, pp. 2449-2461
-
-
Legarda, D.1
Justus, S.J.2
Ang, R.L.3
Rikhi, N.4
Li, W.5
-
107
-
-
80054958053
-
The N-end rule pathway: Emerging functions and molecular principles of substrate recognition
-
Sriram SM, Kim BY, Kwon YT. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12(11): 735-47
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, Issue.11
, pp. 735-747
-
-
Sriram, S.M.1
Kim, B.Y.2
Kwon, Y.T.3
-
108
-
-
33645708319
-
Regulation ofmonoubiquitinated PCNA by DUB autocleavage
-
Huang TT, Nijman SMB, Mirchandani KD, Galardy PJ, Cohn MA, et al. (2006). Regulation ofmonoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8(4): 339-47
-
(2006)
Nat. Cell Biol
, vol.8
, Issue.4
, pp. 339-347
-
-
Huang, T.T.1
Nijman, S.M.B.2
Mirchandani, K.D.3
Galardy, P.J.4
Cohn, M.A.5
-
109
-
-
84863363343
-
Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome-and microtubule-associated functions
-
Urbé S, Liu H, Hayes SD, Heride C, Rigden DJ, Clague MJ. (2012). Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome-and microtubule-associated functions. Mol. Biol. Cell 23(6): 1095-103
-
(2012)
Mol. Biol. Cell
, vol.23
, Issue.6
, pp. 1095-1103
-
-
Urbé, S.1
Liu, H.2
Hayes, S.D.3
Heride, C.4
Rigden, D.J.5
Clague, M.J.6
-
110
-
-
84928225301
-
Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization
-
ra35
-
Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, et al. (2015). Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci. Signal. 8(372): ra35
-
(2015)
Sci. Signal
, vol.8
, Issue.372
-
-
Herhaus, L.1
Perez-Oliva, A.B.2
Cozza, G.3
Gourlay, R.4
Weidlich, S.5
-
111
-
-
68749103450
-
CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3
-
Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wüllner U. (2009). CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 18(17): 3334-43
-
(2009)
Hum. Mol. Genet
, vol.18
, Issue.17
, pp. 3334-3343
-
-
Mueller, T.1
Breuer, P.2
Schmitt, I.3
Walter, J.4
Evert, B.O.5
Wüllner, U.6
-
112
-
-
75749132016
-
USP10 regulates p53 localization and stability by deubiquitinating p53
-
Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. (2010). USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140(3): 384-96
-
(2010)
Cell
, vol.140
, Issue.3
, pp. 384-396
-
-
Yuan, J.1
Luo, K.2
Zhang, L.3
Cheville, J.C.4
Lou, Z.5
-
113
-
-
84863218422
-
USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-βtype i receptor
-
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, et al. (2012). USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-βtype I receptor. Cell Res. 14(7): 717-26
-
(2012)
Cell Res
, vol.14
, Issue.7
, pp. 717-726
-
-
Zhang, L.1
Zhou, F.2
Drabsch, Y.3
Gao, R.4
Snaar-Jagalska, B.E.5
-
114
-
-
84899905723
-
Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O
-
Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J, et al. (2014). Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54(3): 392-406
-
(2014)
Mol. Cell
, vol.54
, Issue.3
, pp. 392-406
-
-
Mashtalir, N.1
Daou, S.2
Barbour, H.3
Sen, N.N.4
Gagnon, J.5
-
115
-
-
84956807073
-
FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1
-
Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio J-A, et al. (2016). FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLOS Biol. 14(1): e1002347
-
(2016)
Plos Biol
, vol.14
, Issue.1
, pp. e1002347
-
-
Scholz, C.C.1
Rodriguez, J.2
Pickel, C.3
Burr, S.4
Fabrizio, J.-A.5
-
116
-
-
84947815576
-
USP4 auto-deubiquitylation promotes homologous recombination
-
Wijnhoven P, Konietzny R, Blackford AN, Travers J, Kessler BM, et al. (2015). USP4 auto-deubiquitylation promotes homologous recombination. Mol. Cell 60(3): 362-73
-
(2015)
Mol. Cell
, vol.60
, Issue.3
, pp. 362-373
-
-
Wijnhoven, P.1
Konietzny, R.2
Blackford, A.N.3
Travers, J.4
Kessler, B.M.5
-
117
-
-
84899911195
-
Molecular basis and regulation of OTULIN-LUBAC interaction
-
Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, et al. (2014). Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54(3): 335-48
-
(2014)
Mol. Cell
, vol.54
, Issue.3
, pp. 335-348
-
-
Elliott, P.R.1
Nielsen, S.V.2
Marco-Casanova, P.3
Fiil, B.K.4
Keusekotten, K.5
-
118
-
-
84899982792
-
Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling
-
Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. (2014). Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell 54: 349-61
-
(2014)
Mol. Cell
, vol.54
, pp. 349-361
-
-
Schaeffer, V.1
Akutsu, M.2
Olma, M.H.3
Gomes, L.C.4
Kawasaki, M.5
Dikic, I.6
-
119
-
-
34548628152
-
14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase
-
Mizuno E, Kitamura N, Komada M. (2007). 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp. Cell Res. 313(16): 3624-34
-
(2007)
Exp. Cell Res
, vol.313
, Issue.16
, pp. 3624-3634
-
-
Mizuno, E.1
Kitamura, N.2
Komada, M.3
-
120
-
-
85028154139
-
Mutations in the deubiquitinase gene USP8 cause cushing's disease
-
Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, et al. (2015). Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat. Genet. 47(1): 31-38
-
(2015)
Nat. Genet
, vol.47
, Issue.1
, pp. 31-38
-
-
Reincke, M.1
Sbiera, S.2
Hayakawa, A.3
Theodoropoulou, M.4
Osswald, A.5
-
121
-
-
84930921185
-
Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated golgi reassembly
-
Zhang X, Wang Y. (2015). Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Mol. Biol. Cell 26(12): 2242-51
-
(2015)
Mol. Biol. Cell
, vol.26
, Issue.12
, pp. 2242-2251
-
-
Zhang, X.1
Wang, Y.2
-
122
-
-
18144368948
-
Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation
-
Reiley W, Zhang M, Wu X, Granger E, Sun S-C. (2005). Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation. Mol. Cell Biol. 25(10): 3886-95
-
(2005)
Mol. Cell Biol
, vol.25
, Issue.10
, pp. 3886-3895
-
-
Reiley, W.1
Zhang, M.2
Wu, X.3
Granger, E.4
Sun, S.-C.5
-
123
-
-
65649114699
-
Phosphorylation of the tumor suppressorCYLDby the breast cancer oncogene IKK promotes cell transformation
-
Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, et al. (2009). Phosphorylation of the tumor suppressorCYLDby the breast cancer oncogene IKK promotes cell transformation. Mol. Cell 34(4): 461-72
-
(2009)
Mol. Cell
, vol.34
, Issue.4
, pp. 461-472
-
-
Hutti, J.E.1
Shen, R.R.2
Abbott, D.W.3
Zhou, A.Y.4
Sprott, K.M.5
-
124
-
-
84904725273
-
IKK regulates the deubiquitinase CYLD at the postsynaptic density
-
Thein S, Pham A, Bayer KU, Tao-Cheng J-H, Dosemeci A. (2014). IKK regulates the deubiquitinase CYLD at the postsynaptic density. Biochem. Biophys. Res. Commun. 450(1): 550-54
-
(2014)
Biochem. Biophys. Res. Commun
, vol.450
, Issue.1
, pp. 550-554
-
-
Thein, S.1
Pham, A.2
Bayer, K.U.3
Tao-Cheng, J.-H.4
Dosemeci, A.5
-
125
-
-
35648958721
-
IκB kinase βphosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of theNF-κB pathway
-
Hutti JE, Turk BE, Asara JM, Ma A, Cantley LC, Abbott DW. (2007). IκB kinase βphosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of theNF-κB pathway. Mol. Cell Biol. 27(21): 7451-61
-
(2007)
Mol. Cell Biol
, vol.27
, Issue.21
, pp. 7451-7461
-
-
Hutti, J.E.1
Turk, B.E.2
Asara, J.M.3
Ma, A.4
Cantley, L.C.5
Abbott, D.W.6
-
126
-
-
38149051652
-
Structure of the A20 OTU domain and mechanistic insights into deubiquitination
-
Komander D, Barford D. (2008). Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409(1): 77-85
-
(2008)
Biochem. J.
, vol.409
, Issue.1
, pp. 77-85
-
-
Komander, D.1
Barford, D.2
-
127
-
-
79955977893
-
Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry
-
Huang X, Summers MK, Pham V, Lill JR, Liu J, et al. (2011). Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol. Cell 42(4): 511-23
-
(2011)
Mol. Cell
, vol.42
, Issue.4
, pp. 511-523
-
-
Huang, X.1
Summers, M.K.2
Pham, V.3
Lill, J.R.4
Liu, J.5
-
128
-
-
84955281129
-
Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system
-
Xu D, Shan B, Lee B-H, Zhu K, Zhang T, et al. (2015). Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 4: e10510
-
(2015)
ELife
, vol.4
, pp. e10510
-
-
Xu, D.1
Shan, B.2
Lee, B.-H.3
Zhu, K.4
Zhang, T.5
-
129
-
-
84925232279
-
Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells
-
Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, et al. (2015). Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518(7539): 417-21
-
(2015)
Nature
, vol.518
, Issue.7539
, pp. 417-421
-
-
Rutz, S.1
Kayagaki, N.2
Phung, Q.T.3
Eidenschenk, C.4
Noubade, R.5
-
130
-
-
84856708042
-
Phosphorylation-dependent activity of the deubiquitinase DUBA
-
Huang OW, Ma X, Yin J, Flinders J, Maurer T, et al. (2012). Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19(2): 171-75
-
(2012)
Nat. Struct. Mol. Biol
, vol.19
, Issue.2
, pp. 171-175
-
-
Huang, O.W.1
Ma, X.2
Yin, J.3
Flinders, J.4
Maurer, T.5
-
131
-
-
34249845272
-
Reversible monoubiquitination regulates the Parkinson diseaseassociated ubiquitin hydrolase UCH-L1
-
Meray RK, Lansbury PT. (2007). Reversible monoubiquitination regulates the Parkinson diseaseassociated ubiquitin hydrolase UCH-L1. J. Biol. Chem. 282(14): 10567-75
-
(2007)
J. Biol. Chem
, vol.282
, Issue.14
, pp. 10567-10575
-
-
Meray, R.K.1
Lansbury, P.T.2
-
132
-
-
60549100850
-
Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3
-
Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL. (2009). Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28(4): 372-82
-
(2009)
EMBO J.
, vol.28
, Issue.4
, pp. 372-382
-
-
Todi, S.V.1
Winborn, B.J.2
Scaglione, K.M.3
Blount, J.R.4
Travis, S.M.5
Paulson, H.L.6
-
133
-
-
78649811312
-
Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117
-
Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, et al. (2010). Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J. Biol. Chem. 285(50): 39303-13
-
(2010)
J. Biol. Chem
, vol.285
, Issue.50
, pp. 39303-39313
-
-
Todi, S.V.1
Scaglione, K.M.2
Blount, J.R.3
Basrur, V.4
Conlon, K.P.5
-
134
-
-
85021623496
-
Allosteric regulation of deubiquitylase activity through ubiquitination
-
Faggiano S, Menon RP, Kelly GP, Todi SV, Scaglione KM, et al. (2015). Allosteric regulation of deubiquitylase activity through ubiquitination. Front. Mol. Biosci. 2(46): 3155
-
(2015)
Front. Mol. Biosci
, vol.2
, Issue.46
, pp. 3155
-
-
Faggiano, S.1
Menon, R.P.2
Kelly, G.P.3
Todi, S.V.4
Scaglione, K.M.5
-
135
-
-
34347401998
-
The ubiquitin-specific protease USP28 is required for MYC stability
-
Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, et al. (2007). The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9(7): 765-74
-
(2007)
Nat. Cell Biol
, vol.9
, Issue.7
, pp. 765-774
-
-
Popov, N.1
Wanzel, M.2
Madiredjo, M.3
Zhang, D.4
Beijersbergen, R.5
-
136
-
-
84941248283
-
Induction of USP25 by viral infection promotes innate antiviral responses bymediating the stabilization ofTRAF3 and TRAF6
-
Lin D, Zhang M, ZhangM-X, Ren Y, Jin J, et al. (2015). Induction of USP25 by viral infection promotes innate antiviral responses bymediating the stabilization ofTRAF3 and TRAF6. PNAS 112(36): 11324-29
-
(2015)
PNAS
, vol.112
, Issue.36
, pp. 11324-11329
-
-
Lin, D.1
Zhang, M.2
ZhangM-X Ren, Y.3
Jin, J.4
-
137
-
-
84877973388
-
Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor proteinTRAF3
-
ra35
-
Zhong B, Liu X, Wang X, Liu X, Li H, et al. (2013). Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor proteinTRAF3. Sci. Signal. 6(275): ra35
-
(2013)
Sci. Signal
, vol.6
, Issue.275
-
-
Zhong, B.1
Liu, X.2
Wang, X.3
Liu, X.4
Li, H.5
-
138
-
-
84867729539
-
Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25
-
Zhong B, Liu X, Wang X, Chang SH, Liu X, et al. (2012). Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 13(11): 1110-17
-
(2012)
Nat. Immunol
, vol.13
, Issue.11
, pp. 1110-1117
-
-
Zhong, B.1
Liu, X.2
Wang, X.3
Chang, S.H.4
Liu, X.5
-
139
-
-
44449109533
-
Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25
-
Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30(5): 610-19
-
(2008)
Mol. Cell
, vol.30
, Issue.5
, pp. 610-619
-
-
Meulmeester, E.1
Kunze, M.2
Hsiao, H.H.3
Urlaub, H.4
Melchior, F.5
-
140
-
-
84918508168
-
Regulation of USP28 deubiquitinating activity by SUMO conjugation
-
Zhen Y, Knobel PA, Stracker TH, Reverter D. (2014). Regulation of USP28 deubiquitinating activity by SUMO conjugation. J. Biol. Chem. 289(50): 34838-50
-
(2014)
J. Biol. Chem
, vol.289
, Issue.50
, pp. 34838-34850
-
-
Zhen, Y.1
Knobel, P.A.2
Stracker, T.H.3
Reverter, D.4
-
141
-
-
68149163523
-
TheUBA-UIMdomains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition
-
Denuc A, Bosch-Comas A, Gonzàlez-Duarte R, Marfany G. (2009). TheUBA-UIMdomains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLOS ONE 4(5): e5571
-
(2009)
Plos One
, vol.4
, Issue.5
, pp. e5571
-
-
Denuc, A.1
Bosch-Comas, A.2
Gonzàlez-Duarte, R.3
Marfany, G.4
-
142
-
-
84933525942
-
Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells
-
Kobayashi T, Masoumi KC, Massoumi R. (2015). Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34(17): 2251-60
-
(2015)
Oncogene
, vol.34
, Issue.17
, pp. 2251-2260
-
-
Kobayashi, T.1
Masoumi, K.C.2
Massoumi, R.3
-
143
-
-
84871699184
-
Deubiquitinases as a signaling target of oxidative stress
-
Cotto-Rios XM, Békés M, Chapman J, Ueberheide B, Huang TT. (2012). Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2(6): 1475-84
-
(2012)
Cell Rep
, vol.2
, Issue.6
, pp. 1475-1484
-
-
Cotto-Rios, X.M.1
Békés, M.2
Chapman, J.3
Ueberheide, B.4
Huang, T.T.5
-
144
-
-
84875886251
-
Regulation of A20 and other OTU deubiquitinases by reversible oxidation
-
Kulathu Y, Garcia FJ, Mevissen TET, Busch M, Arnaudo N, et al. (2013). Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 4: 1569
-
(2013)
Nat. Commun
, vol.4
, pp. 1569
-
-
Kulathu, Y.1
Garcia, F.J.2
Mevissen, T.E.T.3
Busch, M.4
Arnaudo, N.5
-
145
-
-
84875912087
-
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
-
Lee J-G, Baek K, Soetandyo N, Ye Y. (2013). Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4: 1568
-
(2013)
Nat. Commun
, vol.4
, pp. 1568
-
-
Lee, J.-G.1
Baek, K.2
Soetandyo, N.3
Ye, Y.4
-
146
-
-
84863151560
-
Two ZnF-UBP domains in isopeptidase T (USP5
-
Avvakumov GV, Walker JR, Xue S, Allali-Hassani A, Asinas A, et al. (2012). Two ZnF-UBP domains in isopeptidase T (USP5). Biochemistry 51(6): 1188-98
-
(2012)
Biochemistry
, vol.51
, Issue.6
, pp. 1188-1198
-
-
Avvakumov, G.V.1
Walker, J.R.2
Xue, S.3
Allali-Hassani, A.4
Asinas, A.5
-
147
-
-
80053594090
-
Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMPsynthetase
-
Faesen AC, Dirac AMG, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. (2011). Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMPsynthetase. Mol. Cell 44(1): 147-59
-
(2011)
Mol. Cell
, vol.44
, Issue.1
, pp. 147-159
-
-
Faesen, A.C.1
Dirac, A.M.G.2
Shanmugham, A.3
Ovaa, H.4
Perrakis, A.5
Sixma, T.K.6
-
148
-
-
84980009798
-
Molecular understanding of USP7 substrate recognition and C-terminal activation
-
Rouge L, Bainbridge TW, Kwok M, Tong R, Di Lello P, et al. (2016). Molecular understanding of USP7 substrate recognition and C-terminal activation. Structure 24(8): 1335-45
-
(2016)
Structure
, vol.24
, Issue.8
, pp. 1335-1345
-
-
Rouge, L.1
Bainbridge, T.W.2
Kwok, M.3
Tong, R.4
Di Lello, P.5
-
149
-
-
84969204392
-
Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role
-
Kim RQ, van Dijk WJ, Sixma TK. (2016). Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role. J. Struct. Biol. 195(1): 11-18
-
(2016)
J. Struct. Biol
, vol.195
, Issue.1
, pp. 11-18
-
-
Kim, R.Q.1
Van Dijk, W.J.2
Sixma, T.K.3
-
150
-
-
14644406268
-
GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7
-
van der Knaap JA, Kumar BRP, Moshkin YM, Langenberg K, Krijgsveld J, et al. (2005). GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17(5): 695-707
-
(2005)
Mol. Cell
, vol.17
, Issue.5
, pp. 695-707
-
-
Van Der Knaap, J.A.1
Kumar, B.R.P.2
Moshkin, Y.M.3
Langenberg, K.4
Krijgsveld, J.5
-
151
-
-
67649634849
-
Defining the human deubiquitinating enzyme interaction landscape
-
Sowa ME, Bennett EJ, Gygi SP, Harper JW. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2): 389-403
-
(2009)
Cell
, vol.138
, Issue.2
, pp. 389-403
-
-
Sowa, M.E.1
Bennett, E.J.2
Gygi, S.P.3
Harper, J.W.4
-
152
-
-
36749082959
-
A UAF1-containingmultisubunit protein complex regulates the Fanconi anemia pathway
-
Cohn MA, Kowal P, Yang K, Haas W, Huang TT, et al. (2007). A UAF1-containingmultisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28(5): 786-97
-
(2007)
Mol. Cell
, vol.28
, Issue.5
, pp. 786-797
-
-
Cohn, M.A.1
Kowal, P.2
Yang, K.3
Haas, W.4
Huang, T.T.5
-
153
-
-
64149129169
-
UAF1 is a subunit of multiple deubiquitinating enzyme complexes
-
Cohn MA, Kee Y, Haas W, Gygi SP, D'Andrea AD. (2009). UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 284(8): 5343-51
-
(2009)
J. Biol. Chem
, vol.284
, Issue.8
, pp. 5343-5351
-
-
Cohn, M.A.1
Kee, Y.2
Haas, W.3
Gygi, S.P.4
D'Andrea, A.D.5
-
154
-
-
77951247308
-
WDR20 regulates activity of the USP12•UAF1 deubiquitinating enzyme complex
-
Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D'Andrea AD. (2010). WDR20 regulates activity of the USP12•UAF1 deubiquitinating enzyme complex. J. Biol. Chem. 285(15): 11252-57
-
(2010)
J. Biol. Chem
, vol.285
, Issue.15
, pp. 11252-11257
-
-
Kee, Y.1
Yang, K.2
Cohn, M.A.3
Haas, W.4
Gygi, S.P.5
D'Andrea, A.D.6
-
155
-
-
13244291457
-
The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway
-
Nijman SMB, Huang TT, Dirac AMG, Brummelkamp TR, Kerkhoven RM, et al. (2005). The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17(3): 331-39
-
(2005)
Mol. Cell
, vol.17
, Issue.3
, pp. 331-339
-
-
Nijman, S.M.B.1
Huang, T.T.2
Dirac, A.M.G.3
Brummelkamp, T.R.4
Kerkhoven, R.M.5
-
156
-
-
80052437062
-
Regulation of the fanconi anemia pathway by a sumo-like delivery network
-
Yang K, Moldovan G-L, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. (2011). Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev. 25(17): 1847-58
-
(2011)
Genes Dev
, vol.25
, Issue.17
, pp. 1847-1858
-
-
Yang, K.1
Moldovan, G.-L.2
Vinciguerra, P.3
Murai, J.4
Takeda, S.5
D'Andrea, A.D.6
-
157
-
-
84946499431
-
Structural insights into WDrepeat 48 activation of ubiquitin-specific protease 46
-
Yin J, Schoeffler AJ, Wickliffe K, Newton K, Starovasnik MA, et al. (2015). Structural insights into WDrepeat 48 activation of ubiquitin-specific protease 46. Structure 23(11): 2043-54
-
(2015)
Structure
, vol.23
, Issue.11
, pp. 2043-2054
-
-
Yin, J.1
Schoeffler, A.J.2
Wickliffe, K.3
Newton, K.4
Starovasnik, M.A.5
-
158
-
-
84978511594
-
Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20
-
Li H, Lim KS, Kim H, Hinds TR, Jo U, et al. (2016). Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20. Mol. Cell 63(2): 249-60
-
(2016)
Mol. Cell
, vol.63
, Issue.2
, pp. 249-260
-
-
Li, H.1
Lim, K.S.2
Kim, H.3
Hinds, T.R.4
Jo, U.5
-
159
-
-
84994481846
-
A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme
-
Dharadhar S, Clerici M, van Dijk WJ, Fish A, Sixma TK. (2016). A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme. J. Struct. Biol. 196(3): 437-47
-
(2016)
J. Struct. Biol
, vol.196
, Issue.3
, pp. 437-447
-
-
Dharadhar, S.1
Clerici, M.2
Van Dijk, W.J.3
Fish, A.4
Sixma, T.K.5
-
160
-
-
84896603075
-
A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses
-
Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, et al. (2014). A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol. 10(4): 298-304
-
(2014)
Nat. Chem. Biol
, vol.10
, Issue.4
, pp. 298-304
-
-
Liang, Q.1
Dexheimer, T.S.2
Zhang, P.3
Rosenthal, A.S.4
Villamil, M.A.5
-
161
-
-
84989961753
-
SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death
-
Schlicher L, Wissler M, Preiss F, Schubert PB, Jakob C, et al. (2016). SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep. 17(10): 1485-97
-
(2016)
EMBO Rep
, vol.17
, Issue.10
, pp. 1485-1497
-
-
Schlicher, L.1
Wissler, M.2
Preiss, F.3
Schubert, P.B.4
Jakob, C.5
-
162
-
-
84984904321
-
SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes
-
Wagner SA, Satpathy S, Beli P, Choudhary C. (2016). SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 35(17): 1845-955
-
(2016)
EMBO J.
, vol.35
, Issue.17
, pp. 1845-1955
-
-
Wagner, S.A.1
Satpathy, S.2
Beli, P.3
Choudhary, C.4
-
163
-
-
84990210741
-
SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes
-
Kupka S, de Miguel D, Draber P, Martino L, Surinova S, et al. (2016). SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 16(9): 1-11
-
(2016)
Cell Rep
, vol.16
, Issue.9
, pp. 1-11
-
-
Kupka, S.1
De Miguel, D.2
Draber, P.3
Martino, L.4
Surinova, S.5
-
164
-
-
33748188085
-
Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
-
Yao T, Song L, Xu W, DeMartino GN, Florens L, et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8(9): 994-1002
-
(2006)
Nat. Cell Biol
, vol.8
, Issue.9
, pp. 994-1002
-
-
Yao, T.1
Song, L.2
Xu, W.3
DeMartino, G.N.4
Florens, L.5
-
165
-
-
52049112825
-
Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
-
Yao T, Song L, Jin J, Cai Y, Takahashi H, et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 31(6): 909-17
-
(2008)
Mol. Cell
, vol.31
, Issue.6
, pp. 909-917
-
-
Yao, T.1
Song, L.2
Jin, J.3
Cai, Y.4
Takahashi, H.5
-
166
-
-
84865149961
-
A common ancestry for BAP1 and Uch37 regulators
-
Sanchez-Pulido L, Kong L, Ponting CP. (2012). A common ancestry for BAP1 and Uch37 regulators. Bioinformatics 28(15): 1953-56
-
(2012)
Bioinformatics
, vol.28
, Issue.15
, pp. 1953-1956
-
-
Sanchez-Pulido, L.1
Kong, L.2
Ponting, C.P.3
-
167
-
-
84923894408
-
Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
-
Sahtoe DD, van Dijk WJ, Oualid El F, Ekkebus R, Ovaa H, Sixma TK. (2015). Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell 57(5): 887-900
-
(2015)
Mol. Cell
, vol.57
, Issue.5
, pp. 887-900
-
-
Sahtoe, D.D.1
Van Dijk, W.J.2
Oualid El, F.3
Ekkebus, R.4
Ovaa, H.5
Sixma, T.K.6
-
168
-
-
84923894407
-
Structural basis for the activation and inhibition of the UCH37 deubiquitylase
-
VanderLinden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, et al. (2015). Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol. Cell 57(5): 901-11
-
(2015)
Mol. Cell
, vol.57
, Issue.5
, pp. 901-911
-
-
VanderLinden, R.T.1
Hemmis, C.W.2
Schmitt, B.3
Ndoja, A.4
Whitby, F.G.5
-
169
-
-
84954136856
-
BAP1/ASXL1 recruitment and activation for H2A deubiquitination
-
Sahtoe DD, vanDijk WJ, Ekkebus R, Ovaa H, Sixma TK. (2016). BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat. Commun. 7: 10292
-
(2016)
Nat. Commun
, vol.7
, pp. 10292
-
-
Sahtoe, D.D.1
Van Dijk, W.J.2
Ekkebus, R.3
Ovaa, H.4
Sixma, T.K.5
-
170
-
-
84964453431
-
USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites
-
Lee B-H, Lu Y, Prado MA, Shi Y, Tian G, et al. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532(7599): 398-401
-
(2016)
Nature
, vol.532
, Issue.7599
, pp. 398-401
-
-
Lee, B.-H.1
Lu, Y.2
Prado, M.A.3
Shi, Y.4
Tian, G.5
-
171
-
-
27744516748
-
Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14
-
Hu M, Li P, Song L, Jeffrey PD, Chenova TA, et al. (2005). Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14. EMBO J. 24(21): 3747-56
-
(2005)
EMBO J.
, vol.24
, Issue.21
, pp. 3747-3756
-
-
Hu, M.1
Li, P.2
Song, L.3
Jeffrey, P.D.4
Chenova, T.A.5
-
172
-
-
33749049581
-
Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
-
Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, et al. (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1): 99-111
-
(2006)
Cell
, vol.127
, Issue.1
, pp. 99-111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
Crosas, B.4
Elsasser, S.5
-
173
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312): 179-84
-
(2010)
Nature
, vol.467
, Issue.7312
, pp. 179-184
-
-
Lee, B.-H.1
Lee, M.J.2
Park, S.3
Oh, D.-C.4
Elsasser, S.5
-
174
-
-
84940984237
-
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
-
Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A. (2015). Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22(9): 712-19
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, Issue.9
, pp. 712-719
-
-
Bashore, C.1
Dambacher, C.M.2
Goodall, E.A.3
Matyskiela, M.E.4
Lander, G.C.5
Martin, A.6
-
175
-
-
84937111175
-
Structural characterization of the interaction of Ubp6 with the 26S proteasome
-
Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, et al. (2015). Structural characterization of the interaction of Ubp6 with the 26S proteasome. PNAS 112(28): 8626-31
-
(2015)
PNAS
, vol.112
, Issue.28
, pp. 8626-8631
-
-
Aufderheide, A.1
Beck, F.2
Stengel, F.3
Hartwig, M.4
Schweitzer, A.5
-
176
-
-
84978676943
-
An atomic structure of the human 26S proteasome
-
Huang X, Luan B, Wu J, Shi Y. (2016). An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23(9): 778-85
-
(2016)
Nat. Struct. Mol. Biol
, vol.23
, Issue.9
, pp. 778-785
-
-
Huang, X.1
Luan, B.2
Wu, J.3
Shi, Y.4
-
177
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, et al. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593): 611-15
-
(2002)
Science
, vol.298
, Issue.5593
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates, J.R.5
-
178
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T, Cohen RE. (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905): 403-7
-
(2002)
Nature
, vol.419
, Issue.6905
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
179
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. (2012). Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384): 186-91
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
180
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A. (2013). Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20(7): 781-88
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, Issue.7
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
181
-
-
84895868714
-
Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
-
Worden EJ, Padovani C, Martin A. (2014). Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21(3): 220-27
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, Issue.3
, pp. 220-227
-
-
Worden, E.J.1
Padovani, C.2
Martin, A.3
-
182
-
-
84896856969
-
Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
-
Pathare GR, Nagy I, Sledź P, Anderson DJ, Zhou H-J, et al. (2014). Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111(8): 2984-89
-
(2014)
PNAS
, vol.111
, Issue.8
, pp. 2984-2989
-
-
Pathare, G.R.1
Nagy, I.2
Sledź, P.3
Anderson, D.J.4
Zhou, H.-J.5
-
183
-
-
84960914544
-
Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
-
Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5: e13027
-
(2016)
ELife
, vol.5
, pp. e13027
-
-
Dambacher, C.M.1
Worden, E.J.2
Herzik, M.A.3
Martin, A.4
Lander, G.C.5
-
184
-
-
84880161839
-
Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1
-
Echalier A, Pan Y, Birol M, Tavernier N, Pintard L, et al. (2013). Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. PNAS 110(4): 1273-78
-
(2013)
PNAS
, vol.110
, Issue.4
, pp. 1273-1278
-
-
Echalier, A.1
Pan, Y.2
Birol, M.3
Tavernier, N.4
Pintard, L.5
-
185
-
-
84911947050
-
Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer
-
Birol M, Enchev RI, Padilla A, Stengel F, Aebersold R, et al. (2014). Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer. PLOS ONE 9(8): e105688
-
(2014)
Plos One
, vol.9
, Issue.8
, pp. e105688
-
-
Birol, M.1
Enchev, R.I.2
Padilla, A.3
Stengel, F.4
Aebersold, R.5
-
186
-
-
84906238422
-
Crystal structure of the human COP9 signalosome
-
Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, et al. (2014). Crystal structure of the human COP9 signalosome. Nature 512(7513): 161-65
-
(2014)
Nature
, vol.512
, Issue.7513
, pp. 161-165
-
-
Lingaraju, G.M.1
Bunker, R.D.2
Cavadini, S.3
Hess, D.4
Hassiepen, U.5
-
187
-
-
84979519023
-
Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle
-
Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, et al. (2016). Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. eLife 5: E2
-
(2016)
ELife
, vol.5
, pp. E2
-
-
Mosadeghi, R.1
Reichermeier, K.M.2
Winkler, M.3
Schreiber, A.4
Reitsma, J.M.5
-
188
-
-
84962428714
-
Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome
-
Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, et al. (2016). Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531(7596): 598-603
-
(2016)
Nature
, vol.531
, Issue.7596
, pp. 598-603
-
-
Cavadini, S.1
Fischer, E.S.2
Bunker, R.D.3
Potenza, A.4
Lingaraju, G.M.5
-
189
-
-
84957637483
-
The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells
-
Yan K, Li L, Wang X, Hong R, Zhang Y, et al. (2015). The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J. Cell Biol. 210(2): 209-24
-
(2015)
J. Cell Biol
, vol.210
, Issue.2
, pp. 209-224
-
-
Yan, K.1
Li, L.2
Wang, X.3
Hong, R.4
Zhang, Y.5
-
190
-
-
34249949779
-
RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
-
Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, et al. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316(5828): 1198-1202
-
(2007)
Science
, vol.316
, Issue.5828
, pp. 1198-1202
-
-
Sobhian, B.1
Shao, G.2
Lilli, D.R.3
Culhane, A.C.4
Moreau, L.A.5
-
191
-
-
84941802309
-
Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function
-
Zeqiraj E, Tian L, Piggott CA, Pillon MC, Duffy NM, et al. (2015). Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function. Mol. Cell 59(6): 970-83
-
(2015)
Mol. Cell
, vol.59
, Issue.6
, pp. 970-983
-
-
Zeqiraj, E.1
Tian, L.2
Piggott, C.A.3
Pillon, M.C.4
Duffy, N.M.5
-
192
-
-
85006728667
-
Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex
-
Kyrieleis OJ, McIntosh PB, Webb SR, Calder LJ, Lloyd J, et al. (2016). Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex. Cell Rep. 17(12): 3099-3106
-
(2016)
Cell Rep
, vol.17
, Issue.12
, pp. 3099-3106
-
-
Kyrieleis, O.J.1
McIntosh, P.B.2
Webb, S.R.3
Calder, L.J.4
Lloyd, J.5
-
193
-
-
0242361623
-
Transcriptional activation via sequential histoneH2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
-
Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT, et al. (2003). Transcriptional activation via sequential histoneH2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17(21): 2648-63
-
(2003)
Genes Dev
, vol.17
, Issue.21
, pp. 2648-2663
-
-
Henry, K.W.1
Wyce, A.2
Lo, W.-S.3
Duggan, L.J.4
Emre, N.C.T.5
-
194
-
-
0345826106
-
Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription
-
Daniel JA, Torok MS, Sun Z-W, Schieltz D, Allis CD, et al. (2004). Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279(3): 1867-71
-
(2004)
J. Biol. Chem
, vol.279
, Issue.3
, pp. 1867-1871
-
-
Daniel, J.A.1
Torok, M.S.2
Sun, Z.-W.3
Schieltz, D.4
Allis, C.D.5
-
195
-
-
12844277462
-
The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex
-
Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL. (2005). The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell Biol. 25(3): 1173-82
-
(2005)
Mol. Cell Biol
, vol.25
, Issue.3
, pp. 1173-1182
-
-
Lee, K.K.1
Florens, L.2
Swanson, S.K.3
Washburn, M.P.4
Workman, J.L.5
-
196
-
-
77953060092
-
Structural insights into the assembly and function of the SAGA deubiquitinating module
-
Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T, et al. (2010). Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328(5981): 1025-29
-
(2010)
Science
, vol.328
, Issue.5981
, pp. 1025-1029
-
-
Samara, N.L.1
Datta, A.B.2
Berndsen, C.E.3
Zhang, X.4
Yao, T.5
-
197
-
-
77952519938
-
Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module
-
Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. (2010). Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141(4): 606-17
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 606-617
-
-
Köhler, A.1
Zimmerman, E.2
Schneider, M.3
Hurt, E.4
Zheng, N.5
-
198
-
-
77955417276
-
Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase cezanne
-
Bremm A, Freund SMV, Komander D. (2010). Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17(8): 939-47
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, Issue.8
, pp. 939-947
-
-
Bremm, A.1
Freund, S.M.V.2
Komander, D.3
-
199
-
-
84857782898
-
Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling
-
Sims JJ, Scavone F, Cooper EM, Kane LA, Youle RJ, et al. (2012). Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat. Methods 9(3): 303-9
-
(2012)
Nat. Methods
, vol.9
, Issue.3
, pp. 303-309
-
-
Sims, J.J.1
Scavone, F.2
Cooper, E.M.3
Kane, L.A.4
Youle, R.J.5
-
200
-
-
84866300942
-
Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells
-
van Wijk SJL, Fiskin E, Putyrski M, Pampaloni F, Hou J, et al. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47(5): 797-809
-
(2012)
Mol. Cell
, vol.47
, Issue.5
, pp. 797-809
-
-
Van Wijk, S.J.L.1
Fiskin, E.2
Putyrski, M.3
Pampaloni, F.4
Hou, J.5
-
201
-
-
70449704010
-
Crystal structure of the deubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain
-
Nishio K, Kim S-W, Kawai K, Mizushima T, Yamane T, et al. (2009). Crystal structure of the deubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem. Biophys. Res. Commun. 390(3): 855-60
-
(2009)
Biochem. Biophys. Res. Commun
, vol.390
, Issue.3
, pp. 855-860
-
-
Nishio, K.1
Kim, S.-W.2
Kawai, K.3
Mizushima, T.4
Yamane, T.5
|