메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 159-192

Mechanisms of deubiquitinase specificity and regulation

Author keywords

Allosteric regulation; Deubiquitinase; Linkage specificity; Posttranslational modification; Substrate assisted catalysis; Ubiquitin code

Indexed keywords

AMSH LIKE PROTEIN; CEZANNE ENZYME; COP9 SIGNALOSOME; CYLD ENZYME; DEUBIQUITINASE; ENZYME; METALLOPROTEINASE; METALLOPROTEINASE AMSH; OTULIN ENZYME; PROTEIN; UBIQUITIN; UNCLASSIFIED DRUG; NEDD8 PROTEIN, HUMAN; PROTEIN BINDING; UBIQUITIN PROTEIN LIGASE;

EID: 85021674924     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-061516-044916     Document Type: Review
Times cited : (745)

References (201)
  • 3
    • 84971236561 scopus 로고    scopus 로고
    • The increasing complexity of the ubiquitin code
    • Yau R, Rape M. (2016). The increasing complexity of the ubiquitin code. Cell Res. 18(6): 579-86
    • (2016) Cell Res , vol.18 , Issue.6 , pp. 579-586
    • Yau, R.1    Rape, M.2
  • 4
    • 84961743030 scopus 로고    scopus 로고
    • Ubiquitin modifications
    • Swatek KN, Komander D. (2016). Ubiquitin modifications. Cell Res. 26(4): 399-422
    • (2016) Cell Res , vol.26 , Issue.4 , pp. 399-422
    • Swatek, K.N.1    Komander, D.2
  • 5
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44(2): 325-40
    • (2011) Mol. Cell , vol.44 , Issue.2 , pp. 325-340
    • Kim, W.1    Bennett, E.J.2    Huttlin, E.L.3    Guo, A.4    Li, J.5
  • 6
    • 80054033461 scopus 로고    scopus 로고
    • A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles
    • M111.013284
    • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. (2011). A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteom. 10(10): M111.013284
    • (2011) Mol. Cell Proteom , vol.10 , Issue.10
    • Wagner, S.A.1    Beli, P.2    Weinert, B.T.3    Nielsen, M.L.4    Cox, J.5
  • 7
    • 84940897506 scopus 로고    scopus 로고
    • Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response
    • Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA, et al. (2015). Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59(5): 867-81
    • (2015) Mol. Cell , vol.59 , Issue.5 , pp. 867-881
    • Elia, A.E.H.1    Boardman, A.P.2    Wang, D.C.3    Huttlin, E.L.4    Everley, R.A.5
  • 8
    • 84900337781 scopus 로고    scopus 로고
    • Enhanced protein degradation by branched ubiquitin chains
    • Meyer H-J, Rape M. (2014). Enhanced protein degradation by branched ubiquitin chains. Cell 157(4): 910-21
    • (2014) Cell , vol.157 , Issue.4 , pp. 910-921
    • Meyer, H.-J.1    Rape, M.2
  • 9
    • 84884345970 scopus 로고    scopus 로고
    • Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
    • Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA, et al. (2013). Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. PNAS 110(38): 15247-52
    • (2013) PNAS , vol.110 , Issue.38 , pp. 15247-15252
    • Emmerich, C.H.1    Ordureau, A.2    Strickson, S.3    Arthur, J.S.C.4    Pedrioli, P.G.A.5
  • 10
    • 84877313192 scopus 로고    scopus 로고
    • Assembly, analysis and architecture of atypical ubiquitin chains
    • Hospenthal MK, Freund SMV, Komander D. (2013). Assembly, analysis and architecture of atypical ubiquitin chains. Nat. Struct. Mol. Biol. 20(5): 555-65
    • (2013) Nat. Struct. Mol. Biol , vol.20 , Issue.5 , pp. 555-565
    • Hospenthal, M.K.1    Freund, S.M.V.2    Komander, D.3
  • 11
    • 84878944582 scopus 로고    scopus 로고
    • Sumoylation: A regulatory protein modification in health and disease
    • Flotho A, Melchior F. (2013). Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82: 357-85
    • (2013) Annu. Rev. Biochem , vol.82 , pp. 357-385
    • Flotho, A.1    Melchior, F.2
  • 13
    • 63649113699 scopus 로고    scopus 로고
    • Origin and function of ubiquitin-like proteins
    • Hochstrasser M. (2009). Origin and function of ubiquitin-like proteins. Nature 458(7237): 422-29
    • (2009) Nature , vol.458 , Issue.7237 , pp. 422-429
    • Hochstrasser, M.1
  • 15
    • 68049103216 scopus 로고    scopus 로고
    • An additional role for SUMO in ubiquitin-mediated proteolysis
    • Geoffroy M-C, Hay RT. (2009). An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10(8): 564-68
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , Issue.8 , pp. 564-568
    • Geoffroy, M.-C.1    Hay, R.T.2
  • 16
    • 84879613791 scopus 로고    scopus 로고
    • Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
    • Swaney DL, Beltrao P, Starita L, Guo A, Rush J, et al. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10(7): 676-82
    • (2013) Nat. Methods , vol.10 , Issue.7 , pp. 676-682
    • Swaney, D.L.1    Beltrao, P.2    Starita, L.3    Guo, A.4    Rush, J.5
  • 18
    • 84921369563 scopus 로고    scopus 로고
    • The Roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell AM, Youle RJ. (2015). The Roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85(2): 257-73
    • (2015) Neuron , vol.85 , Issue.2 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 19
    • 84964603365 scopus 로고    scopus 로고
    • Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
    • Bingol B, Sheng M. (2016). Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 100: 210-22
    • (2016) Free Radic. Biol. Med , vol.100 , pp. 210-222
    • Bingol, B.1    Sheng, M.2
  • 20
    • 84922241634 scopus 로고    scopus 로고
    • Ubiquitin acetylation inhibits polyubiquitin chain elongation
    • Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H, et al. (2015). Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep. 16(2): 192-201
    • (2015) EMBO Rep , vol.16 , Issue.2 , pp. 192-201
    • Ohtake, F.1    Saeki, Y.2    Sakamoto, K.3    Ohtake, K.4    Nishikawa, H.5
  • 21
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
    • Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, et al. (2015). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 34(3): 307-25
    • (2015) EMBO J. , vol.34 , Issue.3 , pp. 307-325
    • Wauer, T.1    Swatek, K.N.2    Wagstaff, J.L.3    Gladkova, C.4    Pruneda, J.N.5
  • 22
    • 84978818907 scopus 로고    scopus 로고
    • Synthesis of isomeric phosphoubiquitin chains reveals that phosphorylation controls deubiquitinase activity and specificity
    • Huguenin-Dezot N, De Cesare V, Peltier J, Knebel A, Kristaryianto YA, et al. (2016). Synthesis of isomeric phosphoubiquitin chains reveals that phosphorylation controls deubiquitinase activity and specificity. Cell Rep. 16(4): 1-32
    • (2016) Cell Rep , vol.16 , Issue.4 , pp. 1-32
    • Huguenin-Dezot, N.1    De Cesare, V.2    Peltier, J.3    Knebel, A.4    Kristaryianto, Y.A.5
  • 23
    • 67349256160 scopus 로고    scopus 로고
    • Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways
    • Schulman BA, Harper JW. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10(5): 319-31
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , Issue.5 , pp. 319-331
    • Schulman, B.A.1    Harper, J.W.2
  • 24
    • 70350461507 scopus 로고    scopus 로고
    • Building ubiquitin chains: E2 enzymes at work
    • Ye Y, Rape M. (2009). Building ubiquitin chains: E2 enzymes at work.Nat. Rev. Mol. Cell Biol. 10(11): 755-64
    • (2009) Nat Rev. Mol. Cell Biol , vol.10 , Issue.11 , pp. 755-764
    • Ye, Y.1    Rape, M.2
  • 25
    • 84980329401 scopus 로고    scopus 로고
    • Structural insights into the catalysis and regulation of E3 ubiquitin ligases
    • Buetow L, Huang DT. (2016). Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17: 626-42
    • (2016) Nat. Rev. Mol. Cell Biol , vol.17 , pp. 626-642
    • Buetow, L.1    Huang, D.T.2
  • 26
    • 84861783400 scopus 로고    scopus 로고
    • Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
    • Husnjak K, Dikic I. (2012). Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81: 291-322
    • (2012) Annu. Rev. Biochem , vol.81 , pp. 291-322
    • Husnjak, K.1    Dikic, I.2
  • 28
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: Structure and function of the deubiquitinases
    • Komander D, Clague MJ, Urbé S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10(8): 550-63
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , Issue.8 , pp. 550-563
    • Komander, D.1    Clague, M.J.2    Urbé, S.3
  • 29
    • 67650620318 scopus 로고    scopus 로고
    • Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
    • Reyes-Turcu FE, Ventii KH, Wilkinson KD. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78: 363-97
    • (2009) Annu. Rev. Biochem , vol.78 , pp. 363-397
    • Reyes-Turcu, F.E.1    Ventii, K.H.2    Wilkinson, K.D.3
  • 30
    • 84992409187 scopus 로고    scopus 로고
    • MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes
    • Rehman SAA, Kristariyanto YA, Choi S-Y, Nkosi PJ, Weidlich S, et al. (2016). MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63(1): 1-28
    • (2016) Mol. Cell , vol.63 , Issue.1 , pp. 1-28
    • Rehman, S.A.A.1    Kristariyanto, Y.A.2    Choi, S.-Y.3    Nkosi, P.J.4    Weidlich, S.5
  • 32
    • 84862798314 scopus 로고    scopus 로고
    • DeSUMOylating isopeptidase: A second class of SUMO protease
    • Shin EJ, Shin HM, Nam E, Kim WS, Kim J-H, et al. (2012). DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep. 13(4): 339-46
    • (2012) EMBO Rep , vol.13 , Issue.4 , pp. 339-346
    • Shin, E.J.1    Shin, H.M.2    Nam, E.3    Kim, W.S.4    Kim, J.-H.5
  • 33
    • 84937640135 scopus 로고    scopus 로고
    • The demographics of the ubiquitin system
    • Clague MJ, Heride C, Urbé S. (2015). The demographics of the ubiquitin system. Trends Cell Biol. 25(7): 417-26
    • (2015) Trends Cell Biol , vol.25 , Issue.7 , pp. 417-426
    • Clague, M.J.1    Heride, C.2    Urbé, S.3
  • 34
    • 84961757578 scopus 로고    scopus 로고
    • Substrate specificity of the ubiquitin and Ubl proteases
    • Ronau JA, Beckmann JF, Hochstrasser M. (2016). Substrate specificity of the ubiquitin and Ubl proteases. Cell Res. 26(4): 441-56
    • (2016) Cell Res , vol.26 , Issue.4 , pp. 441-456
    • Ronau, J.A.1    Beckmann, J.F.2    Hochstrasser, M.3
  • 36
    • 79953314427 scopus 로고    scopus 로고
    • Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21
    • Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD, Komander D. (2011). Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12(4): 350-57
    • (2011) EMBO Rep , vol.12 , Issue.4 , pp. 350-357
    • Ye, Y.1    Akutsu, M.2    Reyes-Turcu, F.3    Enchev, R.I.4    Wilkinson, K.D.5    Komander, D.6
  • 37
    • 0033565867 scopus 로고    scopus 로고
    • Structural basis for the specificity of ubiquitin C-terminal hydrolases
    • Johnston SC, Riddle SM, Cohen RE, Hill CP. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18(14): 3877-87
    • (1999) EMBO J. , vol.18 , Issue.14 , pp. 3877-3887
    • Johnston, S.C.1    Riddle, S.M.2    Cohen, R.E.3    Hill, C.P.4
  • 38
    • 0037131242 scopus 로고    scopus 로고
    • Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of NEDD8 from CUL1
    • Cope GA, Suh GSB, Aravind L, Schwarz SE, Zipursky SL, et al. (2002). Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of NEDD8 from CUL1. Science 298(5593): 608-11
    • (2002) Science , vol.298 , Issue.5593 , pp. 608-611
    • Cope, G.A.1    Suh, G.S.B.2    Aravind, L.3    Schwarz, S.E.4    Zipursky, S.L.5
  • 39
    • 84867027501 scopus 로고    scopus 로고
    • Ubiquitinspecific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions
    • Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, et al. (2012). Ubiquitinspecific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13(10): 930-38
    • (2012) EMBO Rep , vol.13 , Issue.10 , pp. 930-938
    • Schulz, S.1    Chachami, G.2    Kozaczkiewicz, L.3    Winter, U.4    Stankovic-Valentin, N.5
  • 42
    • 84978880194 scopus 로고    scopus 로고
    • The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases
    • Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, et al. (2016). The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63(2): 261-76
    • (2016) Mol. Cell , vol.63 , Issue.2 , pp. 261-276
    • Pruneda, J.N.1    Durkin, C.H.2    Geurink, P.P.3    Ovaa, H.4    Santhanam, B.5
  • 44
    • 72949102636 scopus 로고    scopus 로고
    • Dissection of USP catalytic domains reveals five common insertion points
    • Ye Y, Scheel H, Hofmann K, Komander D. (2009). Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 5(12): 1797-808
    • (2009) Mol. Biosyst , vol.5 , Issue.12 , pp. 1797-1808
    • Ye, Y.1    Scheel, H.2    Hofmann, K.3    Komander, D.4
  • 45
    • 84555218153 scopus 로고    scopus 로고
    • The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types
    • Faesen AC, Luna-Vargas MPA, Geurink PP, Clerici M, Merkx R, et al. (2011). The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem. Biol. 18(12): 1550-61
    • (2011) Chem. Biol , vol.18 , Issue.12 , pp. 1550-1561
    • Faesen, A.C.1    Luna-Vargas, M.P.A.2    Geurink, P.P.3    Clerici, M.4    Merkx, R.5
  • 47
    • 84878862687 scopus 로고    scopus 로고
    • OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
    • Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, et al. (2013). OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153(6): 1312-26
    • (2013) Cell , vol.153 , Issue.6 , pp. 1312-1326
    • Keusekotten, K.1    Elliott, P.R.2    Glockner, L.3    Fiil, B.K.4    Damgaard, R.B.5
  • 48
    • 84879390723 scopus 로고    scopus 로고
    • The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
    • Rivkin E, Almeida SM, Ceccarelli DF, Juang Y-C, MacLean TA, et al. (2013). The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498(7454): 318-24
    • (2013) Nature , vol.498 , Issue.7454 , pp. 318-324
    • Rivkin, E.1    Almeida, S.M.2    Ceccarelli, D.F.3    Juang, Y.-C.4    MacLean, T.A.5
  • 49
    • 84878832998 scopus 로고    scopus 로고
    • OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
    • Mevissen TET, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, et al. (2013). OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154(1): 169-84
    • (2013) Cell , vol.154 , Issue.1 , pp. 169-184
    • Mevissen, T.E.T.1    Hospenthal, M.K.2    Geurink, P.P.3    Elliott, P.R.4    Akutsu, M.5
  • 50
    • 84965002376 scopus 로고    scopus 로고
    • Nonhydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets
    • Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TET, et al. (2016). Nonhydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem. Biol. 23(4): 472-82
    • (2016) Cell Chem. Biol , vol.23 , Issue.4 , pp. 472-482
    • Flierman, D.1    Van Der, H.2    Van Noort, G.J.3    Ekkebus, R.4    Geurink, P.P.5    Mevissen, T.E.T.6
  • 52
    • 33646066025 scopus 로고    scopus 로고
    • The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
    • Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. (2006). The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124(6): 1197-1208
    • (2006) Cell , vol.124 , Issue.6 , pp. 1197-1208
    • Reyes-Turcu, F.E.1    Horton, J.R.2    Mullally, J.E.3    Heroux, A.4    Cheng, X.5    Wilkinson, K.D.6
  • 53
    • 50349102579 scopus 로고    scopus 로고
    • Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T
    • Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. (2008). Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283(28): 19581-92
    • (2008) J. Biol. Chem , vol.283 , Issue.28 , pp. 19581-19592
    • Reyes-Turcu, F.E.1    Shanks, J.R.2    Komander, D.3    Wilkinson, K.D.4
  • 55
    • 84949989892 scopus 로고    scopus 로고
    • Assembly and specific recognition of k29-and k33-linked polyubiquitin
    • Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, et al. (2015). Assembly and specific recognition of k29-and k33-linked polyubiquitin. Mol. Cell 58(1): 95-109
    • (2015) Mol. Cell , vol.58 , Issue.1 , pp. 95-109
    • Michel, M.A.1    Elliott, P.R.2    Swatek, K.N.3    Simicek, M.4    Pruneda, J.N.5
  • 56
    • 84961288441 scopus 로고    scopus 로고
    • K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin
    • Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C, et al. (2015). K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol. Cell 58(1): 83-94
    • (2015) Mol. Cell , vol.58 , Issue.1 , pp. 83-94
    • Kristariyanto, Y.A.1    Abdul Rehman, S.A.2    Campbell, D.G.3    Morrice, N.A.4    Johnson, C.5
  • 57
    • 84992381687 scopus 로고    scopus 로고
    • Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne
    • Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, et al. (2016). Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 538(7625): 402-5
    • (2016) Nature , vol.538 , Issue.7625 , pp. 402-405
    • Mevissen, T.E.T.1    Kulathu, Y.2    Mulder, M.P.C.3    Geurink, P.P.4    Maslen, S.L.5
  • 58
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
    • Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, et al. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510(7505): 370-75
    • (2014) Nature , vol.510 , Issue.7505 , pp. 370-375
    • Bingol, B.1    Tea, J.S.2    Phu, L.3    Reichelt, M.4    Bakalarski, C.E.5
  • 60
    • 33746827805 scopus 로고    scopus 로고
    • Structural basis of ubiquitin recognition by the deubiquitinating protease USP2
    • Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, et al. (2006). Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14(8): 1293-1302
    • (2006) Structure , vol.14 , Issue.8 , pp. 1293-1302
    • Renatus, M.1    Parrado, S.G.2    D'Arcy, A.3    Eidhoff, U.4    Gerhartz, B.5
  • 61
    • 84871031152 scopus 로고    scopus 로고
    • Ubiquitin chain conformation regulates recognition and activity of interacting proteins
    • Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, et al. (2012). Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492(7428): 266-70
    • (2012) Nature , vol.492 , Issue.7428 , pp. 266-270
    • Ye, Y.1    Blaser, G.2    Horrocks, M.H.3    Ruedas-Rama, M.J.4    Ibrahim, S.5
  • 62
    • 84455173201 scopus 로고    scopus 로고
    • Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes
    • Schaefer JB, Morgan DO. (2011). Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J. Biol. Chem. 286(52): 45186-96
    • (2011) J. Biol. Chem , vol.286 , Issue.52 , pp. 45186-45196
    • Schaefer, J.B.1    Morgan, D.O.2
  • 63
    • 84925949741 scopus 로고    scopus 로고
    • Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (ubicrest
    • Hospenthal MK, Mevissen TET, Komander D. (2015). Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat. Protoc. 10(2): 349-61
    • (2015) Nat. Protoc , vol.10 , Issue.2 , pp. 349-361
    • Hospenthal, M.K.1    Mevissen, T.E.T.2    Komander, D.3
  • 64
    • 84973890987 scopus 로고    scopus 로고
    • Synthetic and semi-synthetic strategies to study ubiquitin signaling
    • vanTilburg GB, Elhebieshy AF, Ovaa H. (2016). Synthetic and semi-synthetic strategies to study ubiquitin signaling. Curr. Opin. Struct. Biol. 38: 92-101
    • (2016) Curr. Opin. Struct. Biol , vol.38 , pp. 92-101
    • Van Tilburg, G.B.1    Elhebieshy, A.F.2    Ovaa, H.3
  • 65
    • 84957916919 scopus 로고    scopus 로고
    • Structural basis for histone H2B deubiquitination by the SAGA DUB module
    • Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. (2016). Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351(6274): 725-28
    • (2016) Science , vol.351 , Issue.6274 , pp. 725-728
    • Morgan, M.T.1    Haj-Yahya, M.2    Ringel, A.E.3    Bandi, P.4    Brik, A.5    Wolberger, C.6
  • 66
    • 4143080425 scopus 로고    scopus 로고
    • AMSH is an endosome-associated ubiquitin isopeptidase
    • McCullough J, Clague MJ, Urbé S. (2004). AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166(4): 487-92
    • (2004) J. Cell Biol , vol.166 , Issue.4 , pp. 487-492
    • McCullough, J.1    Clague, M.J.2    Urbé, S.3
  • 67
    • 62649104153 scopus 로고    scopus 로고
    • K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1
    • Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. (2009). K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28(6): 621-31
    • (2009) EMBO J. , vol.28 , Issue.6 , pp. 621-631
    • Cooper, E.M.1    Cutcliffe, C.2    Kristiansen, T.Z.3    Pandey, A.4    Pickart, C.M.5    Cohen, R.E.6
  • 68
    • 52149103164 scopus 로고    scopus 로고
    • Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains
    • Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, et al. (2008). Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455(7211): 358-62
    • (2008) Nature , vol.455 , Issue.7211 , pp. 358-362
    • Sato, Y.1    Yoshikawa, A.2    Yamagata, A.3    Mimura, H.4    Yamashita, M.5
  • 69
  • 70
    • 55549086868 scopus 로고    scopus 로고
    • The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains
    • Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, et al. (2008). The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 283(39): 26436-43
    • (2008) J. Biol. Chem , vol.283 , Issue.39 , pp. 26436-26443
    • Winborn, B.J.1    Travis, S.M.2    Todi, S.V.3    Scaglione, K.M.4    Xu, P.5
  • 71
    • 77449150629 scopus 로고    scopus 로고
    • CYLD: A tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes
    • Sun S-C. (2010). CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ. 17(1): 25-34
    • (2010) Cell Death Differ , vol.17 , Issue.1 , pp. 25-34
    • Sun, S.-C.1
  • 72
    • 39549106692 scopus 로고    scopus 로고
    • The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module
    • Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, et al. (2008). The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29(4): 451-64
    • (2008) Mol. Cell , vol.29 , Issue.4 , pp. 451-464
    • Komander, D.1    Lord, C.J.2    Scheel, H.3    Swift, S.4    Hofmann, K.5
  • 73
    • 84924269252 scopus 로고    scopus 로고
    • Structures of CYLD USP withMet1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity
    • Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, et al. (2015). Structures of CYLD USP withMet1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat. Struct. Mol. Biol. 22: 222-29
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 222-229
    • Sato, Y.1    Goto, E.2    Shibata, Y.3    Kubota, Y.4    Yamagata, A.5
  • 74
    • 84923167247 scopus 로고    scopus 로고
    • USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, et al. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17(2): 160-69
    • (2015) Nat. Cell Biol , vol.17 , Issue.2 , pp. 160-169
    • Cunningham, C.N.1    Baughman, J.M.2    Phu, L.3    Tea, J.S.4    Yu, C.5
  • 75
    • 30944464589 scopus 로고    scopus 로고
    • Activation of the endosomeassociated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery
    • McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, et al. (2006). Activation of the endosomeassociated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16(2): 160-65
    • (2006) Curr. Biol , vol.16 , Issue.2 , pp. 160-165
    • McCullough, J.1    Row, P.E.2    Lorenzo, O.3    Doherty, M.4    Beynon, R.5
  • 76
    • 84901020323 scopus 로고    scopus 로고
    • Insights into themechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product
    • Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, et al. (2014). Insights into themechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 53(19): 3199-217
    • (2014) Biochemistry , vol.53 , Issue.19 , pp. 3199-3217
    • Shrestha, R.K.1    Ronau, J.A.2    Davies, C.W.3    Guenette, R.G.4    Strieter, E.R.5
  • 77
    • 84942927801 scopus 로고    scopus 로고
    • Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase
    • Bueno AN, Shrestha RK, Ronau JA, Babar A, Sheedlo MJ, et al. (2015). Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase. Biochemistry 54(39): 6038-51
    • (2015) Biochemistry , vol.54 , Issue.39 , pp. 6038-6051
    • Bueno, A.N.1    Shrestha, R.K.2    Ronau, J.A.3    Babar, A.4    Sheedlo, M.J.5
  • 78
    • 60149084572 scopus 로고    scopus 로고
    • Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1
    • Wang T, Yin L, Cooper EM, Lai M-Y, Dickey S, et al. (2009). Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386(4): 1011-23
    • (2009) J. Mol. Biol , vol.386 , Issue.4 , pp. 1011-1023
    • Wang, T.1    Yin, L.2    Cooper, E.M.3    Lai, M.-Y.4    Dickey, S.5
  • 79
    • 61449120240 scopus 로고    scopus 로고
    • Structural basis and specificity of human otubain 1-mediated deubiquitination
    • Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K, et al. (2009). Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418(2): 379-90
    • (2009) Biochem. J. , vol.418 , Issue.2 , pp. 379-390
    • Edelmann, M.J.1    Iphöfer, A.2    Akutsu, M.3    Altun, M.4    Di Gleria, K.5
  • 80
    • 77955867565 scopus 로고    scopus 로고
    • Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1
    • Nakada S, Tai I, Panier S, Al-Hakim AK, Iemura S-I, et al. (2010). Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466(7309): 941-46
    • (2010) Nature , vol.466 , Issue.7309 , pp. 941-946
    • Nakada, S.1    Tai, I.2    Panier, S.3    Al-Hakim, A.K.4    Iemura, S.-I.5
  • 81
    • 84856801739 scopus 로고    scopus 로고
    • OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function
    • Juang Y-C, Landry M-C, Sanches M, Vittal V, Leung CCY, et al. (2012). OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol. Cell 45(3): 384-97
    • (2012) Mol. Cell , vol.45 , Issue.3 , pp. 384-397
    • Juang, Y.-C.1    Landry, M.-C.2    Sanches, M.3    Vittal, V.4    Leung, C.C.Y.5
  • 82
    • 84862806447 scopus 로고    scopus 로고
    • The mechanism of OTUB1-mediated inhibition of ubiquitination
    • Wiener R, Zhang X, Wang T, Wolberger C. (2012). The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483(7391): 618-22
    • (2012) Nature , vol.483 , Issue.7391 , pp. 618-622
    • Wiener, R.1    Zhang, X.2    Wang, T.3    Wolberger, C.4
  • 83
    • 84883740585 scopus 로고    scopus 로고
    • E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1
    • Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, et al. (2013). E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat. Struct. Mol. Biol. 20(9): 1033-39
    • (2013) Nat. Struct. Mol. Biol , vol.20 , Issue.9 , pp. 1033-1039
    • Wiener, R.1    DiBello, A.T.2    Lombardi, P.M.3    Guzzo, C.M.4    Zhang, X.5
  • 84
    • 84981719187 scopus 로고    scopus 로고
    • The deubiquitinase OTULINis an essential negative regulator of inflammation and autoimmunity
    • Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, et al. (2016). The deubiquitinase OTULINis an essential negative regulator of inflammation and autoimmunity. Cell 166(5): 1215-20
    • (2016) Cell , vol.166 , Issue.5 , pp. 1215-1220
    • Damgaard, R.B.1    Walker, J.A.2    Marco-Casanova, P.3    Morgan, N.V.4    Titheradge, H.L.5
  • 85
    • 84985992152 scopus 로고    scopus 로고
    • Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease
    • Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, et al. (2016). Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. PNAS 113(36): 10127-32
    • (2016) PNAS , vol.113 , Issue.36 , pp. 10127-10132
    • Zhou, Q.1    Yu, X.2    Demirkaya, E.3    Deuitch, N.4    Stone, D.5
  • 86
    • 84957729036 scopus 로고    scopus 로고
    • Regulation ofMet1-linked polyubiquitin signalling by the deubiquitinase OTULIN
    • Elliott PR, Komander D. (2016). Regulation ofMet1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J. 283(1): 39-53
    • (2016) FEBS J. , vol.283 , Issue.1 , pp. 39-53
    • Elliott, P.R.1    Komander, D.2
  • 87
    • 84991672335 scopus 로고    scopus 로고
    • SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling
    • Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, et al. (2016). SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63(6): 990-1005
    • (2016) Mol. Cell , vol.63 , Issue.6 , pp. 990-1005
    • Elliott, P.R.1    Leske, D.2    Hrdinka, M.3    Bagola, K.4    Fiil, B.K.5
  • 88
    • 84874193578 scopus 로고    scopus 로고
    • OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3
    • Hu H, Brittain GC, Chang J-H, Puebla-Osorio N, Jin J, et al. (2013). OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494(7437): 371-74
    • (2013) Nature , vol.494 , Issue.7437 , pp. 371-374
    • Hu, H.1    Brittain, G.C.2    Chang, J.-H.3    Puebla-Osorio, N.4    Jin, J.5
  • 89
    • 84915791560 scopus 로고    scopus 로고
    • Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner
    • Bremm A, Moniz S, Mader J, Rocha S, Komander D. (2014). Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep. 15(12): 1268-77
    • (2014) EMBO Rep , vol.15 , Issue.12 , pp. 1268-1277
    • Bremm, A.1    Moniz, S.2    Mader, J.3    Rocha, S.4    Komander, D.5
  • 91
    • 84855465067 scopus 로고    scopus 로고
    • An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains
    • Licchesi JDF, Mieszczanek J, Mevissen TET, Rutherford TJ, Akutsu M, et al. (2012). An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nat. Struct. Mol. Biol. 19(1): 62-71
    • (2012) Nat. Struct. Mol. Biol , vol.19 , Issue.1 , pp. 62-71
    • Licchesi, J.D.F.1    Mieszczanek, J.2    Mevissen, T.E.T.3    Rutherford, T.J.4    Akutsu, M.5
  • 92
    • 84887695725 scopus 로고    scopus 로고
    • Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH
    • Davies CW, Paul LN, Das C. (2013). Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 52(44): 7818-29
    • (2013) Biochemistry , vol.52 , Issue.44 , pp. 7818-7829
    • Davies, C.W.1    Paul, L.N.2    Das, C.3
  • 93
    • 84934971997 scopus 로고    scopus 로고
    • Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations
    • Kristariyanto YA, Choi S-Y, Rehman SAA, Ritorto MS, Campbell DG, et al. (2015). Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem. J. 467(2): 345-52
    • (2015) Biochem. J. , vol.467 , Issue.2 , pp. 345-352
    • Kristariyanto, Y.A.1    Choi, S.-Y.2    Rehman, S.A.A.3    Ritorto, M.S.4    Campbell, D.G.5
  • 94
    • 84867062977 scopus 로고    scopus 로고
    • A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7
    • Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, et al. (2012). A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31(19): 3845-55
    • (2012) EMBO J. , vol.31 , Issue.19 , pp. 3845-3855
    • Verhelst, K.1    Carpentier, I.2    Kreike, M.3    Meloni, L.4    Verstrepen, L.5
  • 95
    • 84867043680 scopus 로고    scopus 로고
    • Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation
    • Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, et al. (2012). Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J. 31(19): 3856-70
    • (2012) EMBO J. , vol.31 , Issue.19 , pp. 3856-3870
    • Tokunaga, F.1    Nishimasu, H.2    Ishitani, R.3    Goto, E.4    Noguchi, T.5
  • 96
    • 84951176357 scopus 로고    scopus 로고
    • Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation
    • Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, et al. (2015). Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528(7582): 370-75
    • (2015) Nature , vol.528 , Issue.7582 , pp. 370-375
    • Wertz, I.E.1    Newton, K.2    Seshasayee, D.3    Kusam, S.4    Lam, C.5
  • 98
    • 84983354559 scopus 로고    scopus 로고
    • DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets
    • Pinto-Fernandez A, Kessler BM. (2016). DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7: 133
    • (2016) Front. Genet , vol.7 , pp. 133
    • Pinto-Fernandez, A.1    Kessler, B.M.2
  • 99
    • 84984820649 scopus 로고    scopus 로고
    • Deubiquitinases: Novel therapeutic targets in immune surveillance? Mediat
    • Lopez-Castejon G, Edelmann MJ. (2016). Deubiquitinases: novel therapeutic targets in immune surveillance? Mediat. Inflamm. 2016: 3481371
    • (2016) Inflamm , vol.2016 , pp. 3481371
    • Lopez-Castejon, G.1    Edelmann, M.J.2
  • 100
    • 79959906646 scopus 로고    scopus 로고
    • Balancing act: Deubiquitinating enzymes in the nervous system
    • Todi SV, Paulson HL. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 34(7): 370-82
    • (2011) Trends Neurosci , vol.34 , Issue.7 , pp. 370-382
    • Todi, S.V.1    Paulson, H.L.2
  • 101
    • 0025271844 scopus 로고
    • Tumor necrosis factor-αinduction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin
    • Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, et al. (1990). Tumor necrosis factor-αinduction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265(5): 2973-78
    • (1990) J. Biol. Chem , vol.265 , Issue.5 , pp. 2973-2978
    • Dixit, V.M.1    Green, S.2    Sarma, V.3    Holzman, L.B.4    Wolf, F.W.5
  • 102
    • 77951622671 scopus 로고    scopus 로고
    • A20: From ubiquitin editing to tumour suppression
    • Hymowitz SG, Wertz IE. (2010). A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10(5): 332-41
    • (2010) Nat. Rev. Cancer , vol.10 , Issue.5 , pp. 332-341
    • Hymowitz, S.G.1    Wertz, I.E.2
  • 103
    • 39449131430 scopus 로고    scopus 로고
    • T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20
    • Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, et al. (2008). T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9(3): 263-71
    • (2008) Nat. Immunol , vol.9 , Issue.3 , pp. 263-271
    • Coornaert, B.1    Baens, M.2    Heyninck, K.3    Bekaert, T.4    Haegman, M.5
  • 104
    • 79955592698 scopus 로고    scopus 로고
    • T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1
    • Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, et al. (2011). T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30(9): 1742-52
    • (2011) EMBO J. , vol.30 , Issue.9 , pp. 1742-1752
    • Staal, J.1    Driege, Y.2    Bekaert, T.3    Demeyer, A.4    Muyllaert, D.5
  • 105
    • 84856160569 scopus 로고    scopus 로고
    • Caspase 8 inhibits programmed necrosis by processing CYLD
    • O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, et al. (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Cell Res. 13(12): 1437-42
    • (2011) Cell Res , vol.13 , Issue.12 , pp. 1437-1442
    • O'Donnell, M.A.1    Perez-Jimenez, E.2    Oberst, A.3    Ng, A.4    Massoumi, R.5
  • 106
    • 84974694612 scopus 로고    scopus 로고
    • CYLD proteolysis protectsmacrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type i IFN
    • Legarda D, Justus SJ, Ang RL, Rikhi N, Li W, et al. (2016). CYLD proteolysis protectsmacrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 15(11): 2449-61
    • (2016) Cell Rep , vol.15 , Issue.11 , pp. 2449-2461
    • Legarda, D.1    Justus, S.J.2    Ang, R.L.3    Rikhi, N.4    Li, W.5
  • 107
    • 80054958053 scopus 로고    scopus 로고
    • The N-end rule pathway: Emerging functions and molecular principles of substrate recognition
    • Sriram SM, Kim BY, Kwon YT. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12(11): 735-47
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , Issue.11 , pp. 735-747
    • Sriram, S.M.1    Kim, B.Y.2    Kwon, Y.T.3
  • 109
    • 84863363343 scopus 로고    scopus 로고
    • Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome-and microtubule-associated functions
    • Urbé S, Liu H, Hayes SD, Heride C, Rigden DJ, Clague MJ. (2012). Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome-and microtubule-associated functions. Mol. Biol. Cell 23(6): 1095-103
    • (2012) Mol. Biol. Cell , vol.23 , Issue.6 , pp. 1095-1103
    • Urbé, S.1    Liu, H.2    Hayes, S.D.3    Heride, C.4    Rigden, D.J.5    Clague, M.J.6
  • 110
    • 84928225301 scopus 로고    scopus 로고
    • Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization
    • ra35
    • Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, et al. (2015). Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci. Signal. 8(372): ra35
    • (2015) Sci. Signal , vol.8 , Issue.372
    • Herhaus, L.1    Perez-Oliva, A.B.2    Cozza, G.3    Gourlay, R.4    Weidlich, S.5
  • 111
    • 68749103450 scopus 로고    scopus 로고
    • CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3
    • Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wüllner U. (2009). CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum. Mol. Genet. 18(17): 3334-43
    • (2009) Hum. Mol. Genet , vol.18 , Issue.17 , pp. 3334-3343
    • Mueller, T.1    Breuer, P.2    Schmitt, I.3    Walter, J.4    Evert, B.O.5    Wüllner, U.6
  • 112
    • 75749132016 scopus 로고    scopus 로고
    • USP10 regulates p53 localization and stability by deubiquitinating p53
    • Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. (2010). USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140(3): 384-96
    • (2010) Cell , vol.140 , Issue.3 , pp. 384-396
    • Yuan, J.1    Luo, K.2    Zhang, L.3    Cheville, J.C.4    Lou, Z.5
  • 113
    • 84863218422 scopus 로고    scopus 로고
    • USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-βtype i receptor
    • Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, et al. (2012). USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-βtype I receptor. Cell Res. 14(7): 717-26
    • (2012) Cell Res , vol.14 , Issue.7 , pp. 717-726
    • Zhang, L.1    Zhou, F.2    Drabsch, Y.3    Gao, R.4    Snaar-Jagalska, B.E.5
  • 114
    • 84899905723 scopus 로고    scopus 로고
    • Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O
    • Mashtalir N, Daou S, Barbour H, Sen NN, Gagnon J, et al. (2014). Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54(3): 392-406
    • (2014) Mol. Cell , vol.54 , Issue.3 , pp. 392-406
    • Mashtalir, N.1    Daou, S.2    Barbour, H.3    Sen, N.N.4    Gagnon, J.5
  • 115
    • 84956807073 scopus 로고    scopus 로고
    • FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1
    • Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio J-A, et al. (2016). FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLOS Biol. 14(1): e1002347
    • (2016) Plos Biol , vol.14 , Issue.1 , pp. e1002347
    • Scholz, C.C.1    Rodriguez, J.2    Pickel, C.3    Burr, S.4    Fabrizio, J.-A.5
  • 119
    • 34548628152 scopus 로고    scopus 로고
    • 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase
    • Mizuno E, Kitamura N, Komada M. (2007). 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp. Cell Res. 313(16): 3624-34
    • (2007) Exp. Cell Res , vol.313 , Issue.16 , pp. 3624-3634
    • Mizuno, E.1    Kitamura, N.2    Komada, M.3
  • 120
    • 85028154139 scopus 로고    scopus 로고
    • Mutations in the deubiquitinase gene USP8 cause cushing's disease
    • Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, et al. (2015). Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat. Genet. 47(1): 31-38
    • (2015) Nat. Genet , vol.47 , Issue.1 , pp. 31-38
    • Reincke, M.1    Sbiera, S.2    Hayakawa, A.3    Theodoropoulou, M.4    Osswald, A.5
  • 121
    • 84930921185 scopus 로고    scopus 로고
    • Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated golgi reassembly
    • Zhang X, Wang Y. (2015). Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Mol. Biol. Cell 26(12): 2242-51
    • (2015) Mol. Biol. Cell , vol.26 , Issue.12 , pp. 2242-2251
    • Zhang, X.1    Wang, Y.2
  • 122
    • 18144368948 scopus 로고    scopus 로고
    • Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation
    • Reiley W, Zhang M, Wu X, Granger E, Sun S-C. (2005). Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation. Mol. Cell Biol. 25(10): 3886-95
    • (2005) Mol. Cell Biol , vol.25 , Issue.10 , pp. 3886-3895
    • Reiley, W.1    Zhang, M.2    Wu, X.3    Granger, E.4    Sun, S.-C.5
  • 123
    • 65649114699 scopus 로고    scopus 로고
    • Phosphorylation of the tumor suppressorCYLDby the breast cancer oncogene IKK promotes cell transformation
    • Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, et al. (2009). Phosphorylation of the tumor suppressorCYLDby the breast cancer oncogene IKK promotes cell transformation. Mol. Cell 34(4): 461-72
    • (2009) Mol. Cell , vol.34 , Issue.4 , pp. 461-472
    • Hutti, J.E.1    Shen, R.R.2    Abbott, D.W.3    Zhou, A.Y.4    Sprott, K.M.5
  • 125
    • 35648958721 scopus 로고    scopus 로고
    • IκB kinase βphosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of theNF-κB pathway
    • Hutti JE, Turk BE, Asara JM, Ma A, Cantley LC, Abbott DW. (2007). IκB kinase βphosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of theNF-κB pathway. Mol. Cell Biol. 27(21): 7451-61
    • (2007) Mol. Cell Biol , vol.27 , Issue.21 , pp. 7451-7461
    • Hutti, J.E.1    Turk, B.E.2    Asara, J.M.3    Ma, A.4    Cantley, L.C.5    Abbott, D.W.6
  • 126
    • 38149051652 scopus 로고    scopus 로고
    • Structure of the A20 OTU domain and mechanistic insights into deubiquitination
    • Komander D, Barford D. (2008). Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409(1): 77-85
    • (2008) Biochem. J. , vol.409 , Issue.1 , pp. 77-85
    • Komander, D.1    Barford, D.2
  • 127
    • 79955977893 scopus 로고    scopus 로고
    • Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry
    • Huang X, Summers MK, Pham V, Lill JR, Liu J, et al. (2011). Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol. Cell 42(4): 511-23
    • (2011) Mol. Cell , vol.42 , Issue.4 , pp. 511-523
    • Huang, X.1    Summers, M.K.2    Pham, V.3    Lill, J.R.4    Liu, J.5
  • 128
    • 84955281129 scopus 로고    scopus 로고
    • Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system
    • Xu D, Shan B, Lee B-H, Zhu K, Zhang T, et al. (2015). Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 4: e10510
    • (2015) ELife , vol.4 , pp. e10510
    • Xu, D.1    Shan, B.2    Lee, B.-H.3    Zhu, K.4    Zhang, T.5
  • 129
    • 84925232279 scopus 로고    scopus 로고
    • Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells
    • Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, et al. (2015). Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518(7539): 417-21
    • (2015) Nature , vol.518 , Issue.7539 , pp. 417-421
    • Rutz, S.1    Kayagaki, N.2    Phung, Q.T.3    Eidenschenk, C.4    Noubade, R.5
  • 130
    • 84856708042 scopus 로고    scopus 로고
    • Phosphorylation-dependent activity of the deubiquitinase DUBA
    • Huang OW, Ma X, Yin J, Flinders J, Maurer T, et al. (2012). Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19(2): 171-75
    • (2012) Nat. Struct. Mol. Biol , vol.19 , Issue.2 , pp. 171-175
    • Huang, O.W.1    Ma, X.2    Yin, J.3    Flinders, J.4    Maurer, T.5
  • 131
    • 34249845272 scopus 로고    scopus 로고
    • Reversible monoubiquitination regulates the Parkinson diseaseassociated ubiquitin hydrolase UCH-L1
    • Meray RK, Lansbury PT. (2007). Reversible monoubiquitination regulates the Parkinson diseaseassociated ubiquitin hydrolase UCH-L1. J. Biol. Chem. 282(14): 10567-75
    • (2007) J. Biol. Chem , vol.282 , Issue.14 , pp. 10567-10575
    • Meray, R.K.1    Lansbury, P.T.2
  • 133
    • 78649811312 scopus 로고    scopus 로고
    • Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117
    • Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, et al. (2010). Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J. Biol. Chem. 285(50): 39303-13
    • (2010) J. Biol. Chem , vol.285 , Issue.50 , pp. 39303-39313
    • Todi, S.V.1    Scaglione, K.M.2    Blount, J.R.3    Basrur, V.4    Conlon, K.P.5
  • 135
    • 34347401998 scopus 로고    scopus 로고
    • The ubiquitin-specific protease USP28 is required for MYC stability
    • Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, et al. (2007). The ubiquitin-specific protease USP28 is required for MYC stability. Nat. Cell Biol. 9(7): 765-74
    • (2007) Nat. Cell Biol , vol.9 , Issue.7 , pp. 765-774
    • Popov, N.1    Wanzel, M.2    Madiredjo, M.3    Zhang, D.4    Beijersbergen, R.5
  • 136
    • 84941248283 scopus 로고    scopus 로고
    • Induction of USP25 by viral infection promotes innate antiviral responses bymediating the stabilization ofTRAF3 and TRAF6
    • Lin D, Zhang M, ZhangM-X, Ren Y, Jin J, et al. (2015). Induction of USP25 by viral infection promotes innate antiviral responses bymediating the stabilization ofTRAF3 and TRAF6. PNAS 112(36): 11324-29
    • (2015) PNAS , vol.112 , Issue.36 , pp. 11324-11329
    • Lin, D.1    Zhang, M.2    ZhangM-X Ren, Y.3    Jin, J.4
  • 137
    • 84877973388 scopus 로고    scopus 로고
    • Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor proteinTRAF3
    • ra35
    • Zhong B, Liu X, Wang X, Liu X, Li H, et al. (2013). Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor proteinTRAF3. Sci. Signal. 6(275): ra35
    • (2013) Sci. Signal , vol.6 , Issue.275
    • Zhong, B.1    Liu, X.2    Wang, X.3    Liu, X.4    Li, H.5
  • 138
    • 84867729539 scopus 로고    scopus 로고
    • Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25
    • Zhong B, Liu X, Wang X, Chang SH, Liu X, et al. (2012). Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 13(11): 1110-17
    • (2012) Nat. Immunol , vol.13 , Issue.11 , pp. 1110-1117
    • Zhong, B.1    Liu, X.2    Wang, X.3    Chang, S.H.4    Liu, X.5
  • 139
    • 44449109533 scopus 로고    scopus 로고
    • Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25
    • Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30(5): 610-19
    • (2008) Mol. Cell , vol.30 , Issue.5 , pp. 610-619
    • Meulmeester, E.1    Kunze, M.2    Hsiao, H.H.3    Urlaub, H.4    Melchior, F.5
  • 140
    • 84918508168 scopus 로고    scopus 로고
    • Regulation of USP28 deubiquitinating activity by SUMO conjugation
    • Zhen Y, Knobel PA, Stracker TH, Reverter D. (2014). Regulation of USP28 deubiquitinating activity by SUMO conjugation. J. Biol. Chem. 289(50): 34838-50
    • (2014) J. Biol. Chem , vol.289 , Issue.50 , pp. 34838-34850
    • Zhen, Y.1    Knobel, P.A.2    Stracker, T.H.3    Reverter, D.4
  • 141
    • 68149163523 scopus 로고    scopus 로고
    • TheUBA-UIMdomains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition
    • Denuc A, Bosch-Comas A, Gonzàlez-Duarte R, Marfany G. (2009). TheUBA-UIMdomains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLOS ONE 4(5): e5571
    • (2009) Plos One , vol.4 , Issue.5 , pp. e5571
    • Denuc, A.1    Bosch-Comas, A.2    Gonzàlez-Duarte, R.3    Marfany, G.4
  • 142
    • 84933525942 scopus 로고    scopus 로고
    • Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells
    • Kobayashi T, Masoumi KC, Massoumi R. (2015). Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34(17): 2251-60
    • (2015) Oncogene , vol.34 , Issue.17 , pp. 2251-2260
    • Kobayashi, T.1    Masoumi, K.C.2    Massoumi, R.3
  • 144
  • 145
    • 84875912087 scopus 로고    scopus 로고
    • Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
    • Lee J-G, Baek K, Soetandyo N, Ye Y. (2013). Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4: 1568
    • (2013) Nat. Commun , vol.4 , pp. 1568
    • Lee, J.-G.1    Baek, K.2    Soetandyo, N.3    Ye, Y.4
  • 147
    • 80053594090 scopus 로고    scopus 로고
    • Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMPsynthetase
    • Faesen AC, Dirac AMG, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. (2011). Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMPsynthetase. Mol. Cell 44(1): 147-59
    • (2011) Mol. Cell , vol.44 , Issue.1 , pp. 147-159
    • Faesen, A.C.1    Dirac, A.M.G.2    Shanmugham, A.3    Ovaa, H.4    Perrakis, A.5    Sixma, T.K.6
  • 148
    • 84980009798 scopus 로고    scopus 로고
    • Molecular understanding of USP7 substrate recognition and C-terminal activation
    • Rouge L, Bainbridge TW, Kwok M, Tong R, Di Lello P, et al. (2016). Molecular understanding of USP7 substrate recognition and C-terminal activation. Structure 24(8): 1335-45
    • (2016) Structure , vol.24 , Issue.8 , pp. 1335-1345
    • Rouge, L.1    Bainbridge, T.W.2    Kwok, M.3    Tong, R.4    Di Lello, P.5
  • 149
    • 84969204392 scopus 로고    scopus 로고
    • Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role
    • Kim RQ, van Dijk WJ, Sixma TK. (2016). Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role. J. Struct. Biol. 195(1): 11-18
    • (2016) J. Struct. Biol , vol.195 , Issue.1 , pp. 11-18
    • Kim, R.Q.1    Van Dijk, W.J.2    Sixma, T.K.3
  • 150
    • 14644406268 scopus 로고    scopus 로고
    • GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7
    • van der Knaap JA, Kumar BRP, Moshkin YM, Langenberg K, Krijgsveld J, et al. (2005). GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17(5): 695-707
    • (2005) Mol. Cell , vol.17 , Issue.5 , pp. 695-707
    • Van Der Knaap, J.A.1    Kumar, B.R.P.2    Moshkin, Y.M.3    Langenberg, K.4    Krijgsveld, J.5
  • 151
    • 67649634849 scopus 로고    scopus 로고
    • Defining the human deubiquitinating enzyme interaction landscape
    • Sowa ME, Bennett EJ, Gygi SP, Harper JW. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2): 389-403
    • (2009) Cell , vol.138 , Issue.2 , pp. 389-403
    • Sowa, M.E.1    Bennett, E.J.2    Gygi, S.P.3    Harper, J.W.4
  • 152
    • 36749082959 scopus 로고    scopus 로고
    • A UAF1-containingmultisubunit protein complex regulates the Fanconi anemia pathway
    • Cohn MA, Kowal P, Yang K, Haas W, Huang TT, et al. (2007). A UAF1-containingmultisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28(5): 786-97
    • (2007) Mol. Cell , vol.28 , Issue.5 , pp. 786-797
    • Cohn, M.A.1    Kowal, P.2    Yang, K.3    Haas, W.4    Huang, T.T.5
  • 153
    • 64149129169 scopus 로고    scopus 로고
    • UAF1 is a subunit of multiple deubiquitinating enzyme complexes
    • Cohn MA, Kee Y, Haas W, Gygi SP, D'Andrea AD. (2009). UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 284(8): 5343-51
    • (2009) J. Biol. Chem , vol.284 , Issue.8 , pp. 5343-5351
    • Cohn, M.A.1    Kee, Y.2    Haas, W.3    Gygi, S.P.4    D'Andrea, A.D.5
  • 154
    • 77951247308 scopus 로고    scopus 로고
    • WDR20 regulates activity of the USP12•UAF1 deubiquitinating enzyme complex
    • Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D'Andrea AD. (2010). WDR20 regulates activity of the USP12•UAF1 deubiquitinating enzyme complex. J. Biol. Chem. 285(15): 11252-57
    • (2010) J. Biol. Chem , vol.285 , Issue.15 , pp. 11252-11257
    • Kee, Y.1    Yang, K.2    Cohn, M.A.3    Haas, W.4    Gygi, S.P.5    D'Andrea, A.D.6
  • 157
    • 84946499431 scopus 로고    scopus 로고
    • Structural insights into WDrepeat 48 activation of ubiquitin-specific protease 46
    • Yin J, Schoeffler AJ, Wickliffe K, Newton K, Starovasnik MA, et al. (2015). Structural insights into WDrepeat 48 activation of ubiquitin-specific protease 46. Structure 23(11): 2043-54
    • (2015) Structure , vol.23 , Issue.11 , pp. 2043-2054
    • Yin, J.1    Schoeffler, A.J.2    Wickliffe, K.3    Newton, K.4    Starovasnik, M.A.5
  • 158
    • 84978511594 scopus 로고    scopus 로고
    • Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20
    • Li H, Lim KS, Kim H, Hinds TR, Jo U, et al. (2016). Allosteric activation of ubiquitin-specific proteases by β-propeller proteins UAF1 and WDR20. Mol. Cell 63(2): 249-60
    • (2016) Mol. Cell , vol.63 , Issue.2 , pp. 249-260
    • Li, H.1    Lim, K.S.2    Kim, H.3    Hinds, T.R.4    Jo, U.5
  • 159
    • 84994481846 scopus 로고    scopus 로고
    • A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme
    • Dharadhar S, Clerici M, van Dijk WJ, Fish A, Sixma TK. (2016). A conserved two-step binding for the UAF1 regulator to the USP12 deubiquitinating enzyme. J. Struct. Biol. 196(3): 437-47
    • (2016) J. Struct. Biol , vol.196 , Issue.3 , pp. 437-447
    • Dharadhar, S.1    Clerici, M.2    Van Dijk, W.J.3    Fish, A.4    Sixma, T.K.5
  • 160
    • 84896603075 scopus 로고    scopus 로고
    • A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses
    • Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, et al. (2014). A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol. 10(4): 298-304
    • (2014) Nat. Chem. Biol , vol.10 , Issue.4 , pp. 298-304
    • Liang, Q.1    Dexheimer, T.S.2    Zhang, P.3    Rosenthal, A.S.4    Villamil, M.A.5
  • 161
    • 84989961753 scopus 로고    scopus 로고
    • SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death
    • Schlicher L, Wissler M, Preiss F, Schubert PB, Jakob C, et al. (2016). SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep. 17(10): 1485-97
    • (2016) EMBO Rep , vol.17 , Issue.10 , pp. 1485-1497
    • Schlicher, L.1    Wissler, M.2    Preiss, F.3    Schubert, P.B.4    Jakob, C.5
  • 162
    • 84984904321 scopus 로고    scopus 로고
    • SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes
    • Wagner SA, Satpathy S, Beli P, Choudhary C. (2016). SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 35(17): 1845-955
    • (2016) EMBO J. , vol.35 , Issue.17 , pp. 1845-1955
    • Wagner, S.A.1    Satpathy, S.2    Beli, P.3    Choudhary, C.4
  • 163
    • 84990210741 scopus 로고    scopus 로고
    • SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes
    • Kupka S, de Miguel D, Draber P, Martino L, Surinova S, et al. (2016). SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 16(9): 1-11
    • (2016) Cell Rep , vol.16 , Issue.9 , pp. 1-11
    • Kupka, S.1    De Miguel, D.2    Draber, P.3    Martino, L.4    Surinova, S.5
  • 164
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T, Song L, Xu W, DeMartino GN, Florens L, et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8(9): 994-1002
    • (2006) Nat. Cell Biol , vol.8 , Issue.9 , pp. 994-1002
    • Yao, T.1    Song, L.2    Xu, W.3    DeMartino, G.N.4    Florens, L.5
  • 165
    • 52049112825 scopus 로고    scopus 로고
    • Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
    • Yao T, Song L, Jin J, Cai Y, Takahashi H, et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 31(6): 909-17
    • (2008) Mol. Cell , vol.31 , Issue.6 , pp. 909-917
    • Yao, T.1    Song, L.2    Jin, J.3    Cai, Y.4    Takahashi, H.5
  • 166
    • 84865149961 scopus 로고    scopus 로고
    • A common ancestry for BAP1 and Uch37 regulators
    • Sanchez-Pulido L, Kong L, Ponting CP. (2012). A common ancestry for BAP1 and Uch37 regulators. Bioinformatics 28(15): 1953-56
    • (2012) Bioinformatics , vol.28 , Issue.15 , pp. 1953-1956
    • Sanchez-Pulido, L.1    Kong, L.2    Ponting, C.P.3
  • 167
    • 84923894408 scopus 로고    scopus 로고
    • Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
    • Sahtoe DD, van Dijk WJ, Oualid El F, Ekkebus R, Ovaa H, Sixma TK. (2015). Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell 57(5): 887-900
    • (2015) Mol. Cell , vol.57 , Issue.5 , pp. 887-900
    • Sahtoe, D.D.1    Van Dijk, W.J.2    Oualid El, F.3    Ekkebus, R.4    Ovaa, H.5    Sixma, T.K.6
  • 168
    • 84923894407 scopus 로고    scopus 로고
    • Structural basis for the activation and inhibition of the UCH37 deubiquitylase
    • VanderLinden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, et al. (2015). Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol. Cell 57(5): 901-11
    • (2015) Mol. Cell , vol.57 , Issue.5 , pp. 901-911
    • VanderLinden, R.T.1    Hemmis, C.W.2    Schmitt, B.3    Ndoja, A.4    Whitby, F.G.5
  • 170
    • 84964453431 scopus 로고    scopus 로고
    • USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites
    • Lee B-H, Lu Y, Prado MA, Shi Y, Tian G, et al. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532(7599): 398-401
    • (2016) Nature , vol.532 , Issue.7599 , pp. 398-401
    • Lee, B.-H.1    Lu, Y.2    Prado, M.A.3    Shi, Y.4    Tian, G.5
  • 171
    • 27744516748 scopus 로고    scopus 로고
    • Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14
    • Hu M, Li P, Song L, Jeffrey PD, Chenova TA, et al. (2005). Structure and mechanisms of the proteasomeassociated deubiquitinating enzyme USP14. EMBO J. 24(21): 3747-56
    • (2005) EMBO J. , vol.24 , Issue.21 , pp. 3747-3756
    • Hu, M.1    Li, P.2    Song, L.3    Jeffrey, P.D.4    Chenova, T.A.5
  • 172
    • 33749049581 scopus 로고    scopus 로고
    • Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
    • Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, et al. (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1): 99-111
    • (2006) Cell , vol.127 , Issue.1 , pp. 99-111
    • Hanna, J.1    Hathaway, N.A.2    Tone, Y.3    Crosas, B.4    Elsasser, S.5
  • 173
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312): 179-84
    • (2010) Nature , vol.467 , Issue.7312 , pp. 179-184
    • Lee, B.-H.1    Lee, M.J.2    Park, S.3    Oh, D.-C.4    Elsasser, S.5
  • 175
    • 84937111175 scopus 로고    scopus 로고
    • Structural characterization of the interaction of Ubp6 with the 26S proteasome
    • Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, et al. (2015). Structural characterization of the interaction of Ubp6 with the 26S proteasome. PNAS 112(28): 8626-31
    • (2015) PNAS , vol.112 , Issue.28 , pp. 8626-8631
    • Aufderheide, A.1    Beck, F.2    Stengel, F.3    Hartwig, M.4    Schweitzer, A.5
  • 176
    • 84978676943 scopus 로고    scopus 로고
    • An atomic structure of the human 26S proteasome
    • Huang X, Luan B, Wu J, Shi Y. (2016). An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23(9): 778-85
    • (2016) Nat. Struct. Mol. Biol , vol.23 , Issue.9 , pp. 778-785
    • Huang, X.1    Luan, B.2    Wu, J.3    Shi, Y.4
  • 177
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, McDonald WH, Yates JR, et al. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593): 611-15
    • (2002) Science , vol.298 , Issue.5593 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3    McDonald, W.H.4    Yates, J.R.5
  • 178
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T, Cohen RE. (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905): 403-7
    • (2002) Nature , vol.419 , Issue.6905 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 180
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A. (2013). Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20(7): 781-88
    • (2013) Nat. Struct. Mol. Biol , vol.20 , Issue.7 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 181
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A. (2014). Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21(3): 220-27
    • (2014) Nat. Struct. Mol. Biol , vol.21 , Issue.3 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 182
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare GR, Nagy I, Sledź P, Anderson DJ, Zhou H-J, et al. (2014). Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. PNAS 111(8): 2984-89
    • (2014) PNAS , vol.111 , Issue.8 , pp. 2984-2989
    • Pathare, G.R.1    Nagy, I.2    Sledź, P.3    Anderson, D.J.4    Zhou, H.-J.5
  • 183
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5: e13027
    • (2016) ELife , vol.5 , pp. e13027
    • Dambacher, C.M.1    Worden, E.J.2    Herzik, M.A.3    Martin, A.4    Lander, G.C.5
  • 184
    • 84880161839 scopus 로고    scopus 로고
    • Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1
    • Echalier A, Pan Y, Birol M, Tavernier N, Pintard L, et al. (2013). Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. PNAS 110(4): 1273-78
    • (2013) PNAS , vol.110 , Issue.4 , pp. 1273-1278
    • Echalier, A.1    Pan, Y.2    Birol, M.3    Tavernier, N.4    Pintard, L.5
  • 185
    • 84911947050 scopus 로고    scopus 로고
    • Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer
    • Birol M, Enchev RI, Padilla A, Stengel F, Aebersold R, et al. (2014). Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer. PLOS ONE 9(8): e105688
    • (2014) Plos One , vol.9 , Issue.8 , pp. e105688
    • Birol, M.1    Enchev, R.I.2    Padilla, A.3    Stengel, F.4    Aebersold, R.5
  • 187
    • 84979519023 scopus 로고    scopus 로고
    • Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle
    • Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, et al. (2016). Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. eLife 5: E2
    • (2016) ELife , vol.5 , pp. E2
    • Mosadeghi, R.1    Reichermeier, K.M.2    Winkler, M.3    Schreiber, A.4    Reitsma, J.M.5
  • 188
    • 84962428714 scopus 로고    scopus 로고
    • Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome
    • Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, et al. (2016). Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531(7596): 598-603
    • (2016) Nature , vol.531 , Issue.7596 , pp. 598-603
    • Cavadini, S.1    Fischer, E.S.2    Bunker, R.D.3    Potenza, A.4    Lingaraju, G.M.5
  • 189
    • 84957637483 scopus 로고    scopus 로고
    • The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells
    • Yan K, Li L, Wang X, Hong R, Zhang Y, et al. (2015). The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells. J. Cell Biol. 210(2): 209-24
    • (2015) J. Cell Biol , vol.210 , Issue.2 , pp. 209-224
    • Yan, K.1    Li, L.2    Wang, X.3    Hong, R.4    Zhang, Y.5
  • 190
    • 34249949779 scopus 로고    scopus 로고
    • RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
    • Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, et al. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316(5828): 1198-1202
    • (2007) Science , vol.316 , Issue.5828 , pp. 1198-1202
    • Sobhian, B.1    Shao, G.2    Lilli, D.R.3    Culhane, A.C.4    Moreau, L.A.5
  • 191
    • 84941802309 scopus 로고    scopus 로고
    • Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function
    • Zeqiraj E, Tian L, Piggott CA, Pillon MC, Duffy NM, et al. (2015). Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function. Mol. Cell 59(6): 970-83
    • (2015) Mol. Cell , vol.59 , Issue.6 , pp. 970-983
    • Zeqiraj, E.1    Tian, L.2    Piggott, C.A.3    Pillon, M.C.4    Duffy, N.M.5
  • 192
    • 85006728667 scopus 로고    scopus 로고
    • Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex
    • Kyrieleis OJ, McIntosh PB, Webb SR, Calder LJ, Lloyd J, et al. (2016). Three-dimensional architecture of the human BRCA1-A histone deubiquitinase core complex. Cell Rep. 17(12): 3099-3106
    • (2016) Cell Rep , vol.17 , Issue.12 , pp. 3099-3106
    • Kyrieleis, O.J.1    McIntosh, P.B.2    Webb, S.R.3    Calder, L.J.4    Lloyd, J.5
  • 193
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histoneH2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT, et al. (2003). Transcriptional activation via sequential histoneH2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17(21): 2648-63
    • (2003) Genes Dev , vol.17 , Issue.21 , pp. 2648-2663
    • Henry, K.W.1    Wyce, A.2    Lo, W.-S.3    Duggan, L.J.4    Emre, N.C.T.5
  • 194
    • 0345826106 scopus 로고    scopus 로고
    • Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription
    • Daniel JA, Torok MS, Sun Z-W, Schieltz D, Allis CD, et al. (2004). Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279(3): 1867-71
    • (2004) J. Biol. Chem , vol.279 , Issue.3 , pp. 1867-1871
    • Daniel, J.A.1    Torok, M.S.2    Sun, Z.-W.3    Schieltz, D.4    Allis, C.D.5
  • 195
    • 12844277462 scopus 로고    scopus 로고
    • The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex
    • Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL. (2005). The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell Biol. 25(3): 1173-82
    • (2005) Mol. Cell Biol , vol.25 , Issue.3 , pp. 1173-1182
    • Lee, K.K.1    Florens, L.2    Swanson, S.K.3    Washburn, M.P.4    Workman, J.L.5
  • 196
    • 77953060092 scopus 로고    scopus 로고
    • Structural insights into the assembly and function of the SAGA deubiquitinating module
    • Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T, et al. (2010). Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328(5981): 1025-29
    • (2010) Science , vol.328 , Issue.5981 , pp. 1025-1029
    • Samara, N.L.1    Datta, A.B.2    Berndsen, C.E.3    Zhang, X.4    Yao, T.5
  • 197
    • 77952519938 scopus 로고    scopus 로고
    • Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module
    • Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. (2010). Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell 141(4): 606-17
    • (2010) Cell , vol.141 , Issue.4 , pp. 606-617
    • Köhler, A.1    Zimmerman, E.2    Schneider, M.3    Hurt, E.4    Zheng, N.5
  • 198
    • 77955417276 scopus 로고    scopus 로고
    • Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase cezanne
    • Bremm A, Freund SMV, Komander D. (2010). Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17(8): 939-47
    • (2010) Nat. Struct. Mol. Biol , vol.17 , Issue.8 , pp. 939-947
    • Bremm, A.1    Freund, S.M.V.2    Komander, D.3
  • 199
    • 84857782898 scopus 로고    scopus 로고
    • Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling
    • Sims JJ, Scavone F, Cooper EM, Kane LA, Youle RJ, et al. (2012). Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat. Methods 9(3): 303-9
    • (2012) Nat. Methods , vol.9 , Issue.3 , pp. 303-309
    • Sims, J.J.1    Scavone, F.2    Cooper, E.M.3    Kane, L.A.4    Youle, R.J.5
  • 200
    • 84866300942 scopus 로고    scopus 로고
    • Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells
    • van Wijk SJL, Fiskin E, Putyrski M, Pampaloni F, Hou J, et al. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47(5): 797-809
    • (2012) Mol. Cell , vol.47 , Issue.5 , pp. 797-809
    • Van Wijk, S.J.L.1    Fiskin, E.2    Putyrski, M.3    Pampaloni, F.4    Hou, J.5
  • 201
    • 70449704010 scopus 로고    scopus 로고
    • Crystal structure of the deubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain
    • Nishio K, Kim S-W, Kawai K, Mizushima T, Yamane T, et al. (2009). Crystal structure of the deubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem. Biophys. Res. Commun. 390(3): 855-60
    • (2009) Biochem. Biophys. Res. Commun , vol.390 , Issue.3 , pp. 855-860
    • Nishio, K.1    Kim, S.-W.2    Kawai, K.3    Mizushima, T.4    Yamane, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.