메뉴 건너뛰기




Volumn 26, Issue 4, 2016, Pages 441-456

Substrate specificity of the ubiquitin and Ubl proteases

Author keywords

DUBs; Nedd8; SUMO; ubiquitin; Ubl proteases; ULPs

Indexed keywords

DEUBIQUITINASE; UBIQUITIN;

EID: 84961757578     PISSN: 10010602     EISSN: 17487838     Source Type: Journal    
DOI: 10.1038/cr.2016.38     Document Type: Review
Times cited : (86)

References (150)
  • 1
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
    • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428.
    • (2002) Physiol Rev , vol.82 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 4
    • 0030867774 scopus 로고    scopus 로고
    • The ubiquitin system
    • Varshavsky A. The ubiquitin system. Trends Biochem Sci 1997; 22:383-387.
    • (1997) Trends Biochem Sci , vol.22 , pp. 383-387
    • Varshavsky, A.1
  • 5
    • 9744227183 scopus 로고    scopus 로고
    • Ubiquitin: Structures, functions, mechanisms
    • Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695:55-72.
    • (2004) Biochim Biophys Acta , vol.1695 , pp. 55-72
    • Pickart, C.M.1    Eddins, M.J.2
  • 6
    • 67349256160 scopus 로고    scopus 로고
    • Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways
    • Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-331.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 319-331
    • Schulman, B.A.1    Harper, J.W.2
  • 7
    • 27144529182 scopus 로고    scopus 로고
    • Ubiquitylation and cell signaling
    • Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J 2005; 24:3353-3359.
    • (2005) EMBO J , vol.24 , pp. 3353-3359
    • Haglund, K.1    Dikic, I.2
  • 8
    • 44649101850 scopus 로고    scopus 로고
    • Atypical ubiquitin chains: New molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series
    • Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 2008; 9:536-542.
    • (2008) EMBO Rep , vol.9 , pp. 536-542
    • Ikeda, F.1    Dikic, I.2
  • 9
    • 0034327504 scopus 로고    scopus 로고
    • Ubiquitin in chains
    • Pickart CM. Ubiquitin in chains. Trends Biochem Sci 2000; 25:544-548.
    • (2000) Trends Biochem Sci , vol.25 , pp. 544-548
    • Pickart, C.M.1
  • 10
    • 33751515474 scopus 로고    scopus 로고
    • The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity
    • Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell 2006; 24:701-711.
    • (2006) Mol Cell , vol.24 , pp. 701-711
    • Ben-Saadon, R.1    Zaaroor, D.2    Ziv, T.3    Ciechanover, A.4
  • 11
    • 73549090361 scopus 로고    scopus 로고
    • Efficient internalization of MHC i requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains
    • Boname JM, Thomas M, Stagg HR, Xu P, Peng J, Lehner PJ. Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 2010; 11:210-220.
    • (2010) Traffic , vol.11 , pp. 210-220
    • Boname, J.M.1    Thomas, M.2    Stagg, H.R.3    Xu, P.4    Peng, J.5    Lehner, P.J.6
  • 12
    • 84858146420 scopus 로고    scopus 로고
    • Non-canonical ubiquitin-based signals for proteasomal degradation
    • Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012; 125:539-548.
    • (2012) J Cell Sci , vol.125 , pp. 539-548
    • Kravtsova-Ivantsiv, Y.1    Ciechanover, A.2
  • 13
    • 49549117842 scopus 로고    scopus 로고
    • Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies
    • Newton K, Matsumoto ML, Wertz IE, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 2008; 134:668-678.
    • (2008) Cell , vol.134 , pp. 668-678
    • Newton, K.1    Matsumoto, M.L.2    Wertz, I.E.3
  • 14
    • 63649113699 scopus 로고    scopus 로고
    • Origin and function of ubiquitin-like proteins
    • Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature 2009; 458:422-429.
    • (2009) Nature , vol.458 , pp. 422-429
    • Hochstrasser, M.1
  • 15
    • 81755162787 scopus 로고    scopus 로고
    • Twists and turns in ubiquitin-like protein conjugation cascades
    • Schulman BA. Twists and turns in ubiquitin-like protein conjugation cascades. Protein Sci 2011; 20:1941-1954.
    • (2011) Protein Sci , vol.20 , pp. 1941-1954
    • Schulman, B.A.1
  • 17
    • 84875887144 scopus 로고    scopus 로고
    • Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors
    • Guzzo CM, Matunis MJ. Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors. Cell Cycle 2013; 12:1015-1017.
    • (2013) Cell Cycle , vol.12 , pp. 1015-1017
    • Guzzo, C.M.1    Matunis, M.J.2
  • 18
    • 9644268864 scopus 로고    scopus 로고
    • Mechanism and function of deubiquitinating enzymes
    • Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695:189-207.
    • (2004) Biochim Biophys Acta , vol.1695 , pp. 189-207
    • Amerik, A.Y.1    Hochstrasser, M.2
  • 19
    • 80052265841 scopus 로고    scopus 로고
    • Mechanism, specificity and structure of the deubiquitinases
    • Komander D. Mechanism, specificity and structure of the deubiquitinases. Subcell Biochem 2010; 54:69-87.
    • (2010) Subcell Biochem , vol.54 , pp. 69-87
    • Komander, D.1
  • 20
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: Structure and function of the deubiquitinases
    • Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550-563.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 550-563
    • Komander, D.1    Clague, M.J.2    Urbe, S.3
  • 21
    • 28344456279 scopus 로고    scopus 로고
    • A genomic and functional inventory of deubiquitinating enzymes
    • Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773-786.
    • (2005) Cell , vol.123 , pp. 773-786
    • Nijman, S.M.1    Luna-Vargas, M.P.2    Velds, A.3
  • 22
    • 0030052841 scopus 로고    scopus 로고
    • Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting
    • Beal R, Deveraux Q, Xia G, Rechsteiner M, Pickart C. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc Natl Acad Sci USA 1996; 93:861-866.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 861-866
    • Beal, R.1    Deveraux, Q.2    Xia, G.3    Rechsteiner, M.4    Pickart, C.5
  • 24
    • 9644294252 scopus 로고    scopus 로고
    • Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1
    • Reverter D, Wu K, Erdene TG, Pan ZQ, Wilkinson KD, Lima CD. Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. J Mol Biol 2005; 345:141-151.
    • (2005) J Mol Biol , vol.345 , pp. 141-151
    • Reverter, D.1    Wu, K.2    Erdene, T.G.3    Pan, Z.Q.4    Wilkinson, K.D.5    Lima, C.D.6
  • 25
    • 17844379780 scopus 로고    scopus 로고
    • Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1
    • Shen LN, Liu H, Dong C, Xirodimas D, Naismith JH, Hay RT. Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J 2005; 24:1341-1351.
    • (2005) EMBO J , vol.24 , pp. 1341-1351
    • Shen, L.N.1    Liu, H.2    Dong, C.3    Xirodimas, D.4    Naismith, J.H.5    Hay, R.T.6
  • 26
    • 84949197700 scopus 로고    scopus 로고
    • Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination
    • Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo ZQ, Das C. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci USA 2015; 112:15090-15095.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 15090-15095
    • Sheedlo, M.J.1    Qiu, J.2    Tan, Y.3    Paul, L.N.4    Luo, Z.Q.5    Das, C.6
  • 27
    • 84924269252 scopus 로고    scopus 로고
    • Structures of CYLD USP with Met1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity
    • Sato Y, Goto E, Shibata Y, et al. Structures of CYLD USP with Met1-or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 2015; 22:222-229.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 222-229
    • Sato, Y.1    Goto, E.2    Shibata, Y.3
  • 28
    • 0037184947 scopus 로고    scopus 로고
    • Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
    • Hu M, Li P, Li M, et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 2002; 111:1041-1054.
    • (2002) Cell , vol.111 , pp. 1041-1054
    • Hu, M.1    Li, P.2    Li, M.3
  • 29
    • 45849131354 scopus 로고    scopus 로고
    • Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution
    • Lange OF, Lakomek NA, Fares C, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008; 320:1471-1475.
    • (2008) Science , vol.320 , pp. 1471-1475
    • Lange, O.F.1    Lakomek, N.A.2    Fares, C.3
  • 31
    • 0023644679 scopus 로고
    • Structure of ubiquitin refined at 1.8 Å resolution
    • Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 1987; 194:531-544.
    • (1987) J Mol Biol , vol.194 , pp. 531-544
    • Vijay-Kumar, S.1    Bugg, C.E.2    Cook, W.J.3
  • 32
    • 84878230865 scopus 로고    scopus 로고
    • Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity
    • Morrow ME, Kim MI, Ronau JA, et al. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry 2013; 52:3564-3578.
    • (2013) Biochemistry , vol.52 , pp. 3564-3578
    • Morrow, M.E.1    Kim, M.I.2    Ronau, J.A.3
  • 33
    • 52149103164 scopus 로고    scopus 로고
    • Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains
    • Sato Y, Yoshikawa A, Yamagata A, et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 2008; 455:358-362.
    • (2008) Nature , vol.455 , pp. 358-362
    • Sato, Y.1    Yoshikawa, A.2    Yamagata, A.3
  • 34
    • 84949538583 scopus 로고    scopus 로고
    • Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase
    • Cappadocia L, Pichler A, Lima CD. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol 2015; 22:968-975.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 968-975
    • Cappadocia, L.1    Pichler, A.2    Lima, C.D.3
  • 35
    • 4143083663 scopus 로고    scopus 로고
    • A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex
    • Reverter D, Lima CD. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 2004; 12:1519-1531.
    • (2004) Structure , vol.12 , pp. 1519-1531
    • Reverter, D.1    Lima, C.D.2
  • 36
    • 33845370047 scopus 로고    scopus 로고
    • Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates
    • Reverter D, Lima CD. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol 2006; 13:1060-1068.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 1060-1068
    • Reverter, D.1    Lima, C.D.2
  • 37
    • 84879923631 scopus 로고    scopus 로고
    • Conformational dynamics control ubiquitin-deubiquitinase interactions and influence in vivo signaling
    • Phillips AH, Zhang Y, Cunningham CN, et al. Conformational dynamics control ubiquitin-deubiquitinase interactions and influence in vivo signaling. Proc Natl Acad Sci USA 2013; 110:11379-11384.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 11379-11384
    • Phillips, A.H.1    Zhang, Y.2    Cunningham, C.N.3
  • 38
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 2014; 460:127-139.
    • (2014) Biochem J , vol.460 , pp. 127-139
    • Kazlauskaite, A.1    Kondapalli, C.2    Gourlay, R.3
  • 39
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014; 510:162-166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1    Okatsu, K.2    Kosako, H.3
  • 40
    • 84879613791 scopus 로고    scopus 로고
    • Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
    • Swaney DL, Beltrao P, Starita L, et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10:676-682.
    • (2013) Nat Methods , vol.10 , pp. 676-682
    • Swaney, D.L.1    Beltrao, P.2    Starita, L.3
  • 41
    • 84922235969 scopus 로고    scopus 로고
    • Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
    • Wauer T, Swatek KN, Wagstaff JL, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2015; 34:307-325.
    • (2015) EMBO J , vol.34 , pp. 307-325
    • Wauer, T.1    Swatek, K.N.2    Wagstaff, J.L.3
  • 42
    • 84940792247 scopus 로고    scopus 로고
    • Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
    • Swaney DL, Rodriguez-Mias RA, Villen J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep 2015; 16:1131-1144.
    • (2015) EMBO Rep , vol.16 , pp. 1131-1144
    • Swaney, D.L.1    Rodriguez-Mias, R.A.2    Villen, J.3
  • 43
    • 70149104456 scopus 로고    scopus 로고
    • The structure and conformation of Lys63-linked tetraubiquitin
    • Datta AB, Hura GL, Wolberger C. The structure and conformation of Lys63-linked tetraubiquitin. J Mol Biol 2009; 392:1117-1124.
    • (2009) J Mol Biol , vol.392 , pp. 1117-1124
    • Datta, A.B.1    Hura, G.L.2    Wolberger, C.3
  • 44
    • 70450044394 scopus 로고    scopus 로고
    • Crystal structures of Lys-63-linked tri-and di-ubiquitin reveal a highly extended chain architecture
    • Weeks SD, Grasty KC, Hernandez-Cuebas L, Loll PJ. Crystal structures of Lys-63-linked tri-and di-ubiquitin reveal a highly extended chain architecture. Proteins 2009; 77:753-759.
    • (2009) Proteins , vol.77 , pp. 753-759
    • Weeks, S.D.1    Grasty, K.C.2    Hernandez-Cuebas, L.3    Loll, P.J.4
  • 46
    • 0026746290 scopus 로고
    • Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2)
    • Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM. Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 1992; 267:16467-16471.
    • (1992) J Biol Chem , vol.267 , pp. 16467-16471
    • Cook, W.J.1    Jeffrey, L.C.2    Carson, M.3    Chen, Z.4    Pickart, C.M.5
  • 47
    • 33847056330 scopus 로고    scopus 로고
    • Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH
    • Eddins MJ, Varadan R, Fushman D, Pickart CM, Wolberger C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J Mol Biol 2007; 367:204-211.
    • (2007) J Mol Biol , vol.367 , pp. 204-211
    • Eddins, M.J.1    Varadan, R.2    Fushman, D.3    Pickart, C.M.4    Wolberger, C.5
  • 48
    • 77955417276 scopus 로고    scopus 로고
    • Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne
    • Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010; 17:939-947.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 939-947
    • Bremm, A.1    Freund, S.M.2    Komander, D.3
  • 49
    • 84877313192 scopus 로고    scopus 로고
    • Assembly, analysis and architecture of atypical ubiquitin chains
    • Hospenthal MK, Freund SM, Komander D. Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 2013; 20:555-565.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 555-565
    • Hospenthal, M.K.1    Freund, S.M.2    Komander, D.3
  • 50
    • 77955516435 scopus 로고    scopus 로고
    • K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody
    • Matsumoto ML, Wickliffe KE, Dong KC, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39:477-484.
    • (2010) Mol Cell , vol.39 , pp. 477-484
    • Matsumoto, M.L.1    Wickliffe, K.E.2    Dong, K.C.3
  • 51
    • 84934971997 scopus 로고    scopus 로고
    • Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations
    • Kristariyanto YA, Choi SY, Rehman SA, et al. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Biochem J 2015; 467:345-352.
    • (2015) Biochem J , vol.467 , pp. 345-352
    • Kristariyanto, Y.A.1    Choi, S.Y.2    Rehman, S.A.3
  • 52
    • 80054809736 scopus 로고    scopus 로고
    • Conformational dynamics of wild-type Lys-48-linked diubiquitin in solution
    • Hirano T, Serve O, Yagi-Utsumi M, et al. Conformational dynamics of wild-type Lys-48-linked diubiquitin in solution. J Biol Chem 2011; 286:37496-37502.
    • (2011) J Biol Chem , vol.286 , pp. 37496-37502
    • Hirano, T.1    Serve, O.2    Yagi-Utsumi, M.3
  • 54
    • 62649104153 scopus 로고    scopus 로고
    • K63-specific deubiquitination by two JAMM/ MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1
    • Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. K63-specific deubiquitination by two JAMM/ MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 2009; 28:621-631.
    • (2009) EMBO J , vol.28 , pp. 621-631
    • Cooper, E.M.1    Cutcliffe, C.2    Kristiansen, T.Z.3    Pandey, A.4    Pickart, C.M.5    Cohen, R.E.6
  • 55
    • 84907358982 scopus 로고    scopus 로고
    • Screening of DUB activity and specificity by MALDI-TOF mass spectrometry
    • Ritorto MS, Ewan R, Perez-Oliva AB, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun 2014; 5:4763.
    • (2014) Nat Commun , vol.5 , pp. 4763
    • Ritorto, M.S.1    Ewan, R.2    Perez-Oliva, A.B.3
  • 56
    • 80054717381 scopus 로고    scopus 로고
    • Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: Nearly identical fold but different stability
    • Davies CW, Paul LN, Kim MI, Das C. Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability. J Mol Biol 2011; 413:416-429.
    • (2011) J Mol Biol , vol.413 , pp. 416-429
    • Davies, C.W.1    Paul, L.N.2    Kim, M.I.3    Das, C.4
  • 57
    • 84555218153 scopus 로고    scopus 로고
    • The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types
    • Faesen AC, Luna-Vargas MP, Geurink PP, et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 2011; 18:1550-1561.
    • (2011) Chem Biol , vol.18 , pp. 1550-1561
    • Faesen, A.C.1    Luna-Vargas, M.P.2    Geurink, P.P.3
  • 58
    • 84878832998 scopus 로고    scopus 로고
    • OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
    • Mevissen TE, Hospenthal MK, Geurink PP, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154:169-184.
    • (2013) Cell , vol.154 , pp. 169-184
    • Mevissen, T.E.1    Hospenthal, M.K.2    Geurink, P.P.3
  • 59
    • 44849136272 scopus 로고    scopus 로고
    • Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein
    • Messick TE, Russell NS, Iwata AJ, et al. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J Biol Chem 2008; 283:11038-11049.
    • (2008) J Biol Chem , vol.283 , pp. 11038-11049
    • Messick, T.E.1    Russell, N.S.2    Iwata, A.J.3
  • 60
    • 33645238421 scopus 로고    scopus 로고
    • Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1
    • Das C, Hoang QQ, Kreinbring CA, et al. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA 2006; 103:4675-4680.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 4675-4680
    • Das, C.1    Hoang, Q.Q.2    Kreinbring, C.A.3
  • 61
    • 61449120240 scopus 로고    scopus 로고
    • Structural basis and specificity of human otubain 1-mediated deubiquitination
    • Edelmann MJ, Iphofer A, Akutsu M, et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 2009; 418:379-390.
    • (2009) Biochem J , vol.418 , pp. 379-390
    • Edelmann, M.J.1    Iphofer, A.2    Akutsu, M.3
  • 62
    • 0033565867 scopus 로고    scopus 로고
    • Structural basis for the specificity of ubiquitin C-terminal hydrolases
    • Johnston SC, Riddle SM, Cohen RE, Hill CP. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J 1999; 18:3877-3887.
    • (1999) EMBO J , vol.18 , pp. 3877-3887
    • Johnston, S.C.1    Riddle, S.M.2    Cohen, R.E.3    Hill, C.P.4
  • 63
    • 84878862687 scopus 로고    scopus 로고
    • OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
    • Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 2013; 153:1312-1326.
    • (2013) Cell , vol.153 , pp. 1312-1326
    • Keusekotten, K.1    Elliott, P.R.2    Glockner, L.3
  • 64
    • 82755187438 scopus 로고    scopus 로고
    • Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme
    • Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J 2011; 278:4917-4926.
    • (2011) FEBS J , vol.278 , pp. 4917-4926
    • Maiti, T.K.1    Permaul, M.2    Boudreaux, D.A.3    Mahanic, C.4    Mauney, S.5    Das, C.6
  • 65
    • 77952708547 scopus 로고    scopus 로고
    • Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation
    • Boudreaux DA, Maiti TK, Davies CW, Das C. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Proc Natl Acad Sci USA 2010; 107:9117-9122.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 9117-9122
    • Boudreaux, D.A.1    Maiti, T.K.2    Davies, C.W.3    Das, C.4
  • 66
    • 84923894408 scopus 로고    scopus 로고
    • Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
    • Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell 2015; 57:887-900.
    • (2015) Mol Cell , vol.57 , pp. 887-900
    • Sahtoe, D.D.1    Van Dijk, W.J.2    El Oualid, F.3    Ekkebus, R.4    Ovaa, H.5    Sixma, T.K.6
  • 67
    • 84923894407 scopus 로고    scopus 로고
    • Structural basis for the activation and inhibition of the UCH37 deubiquitylase
    • VanderLinden RT, Hemmis CW, Schmitt B, et al. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol Cell 2015; 57:901-911.
    • (2015) Mol Cell , vol.57 , pp. 901-911
    • VanderLinden, R.T.1    Hemmis, C.W.2    Schmitt, B.3
  • 68
    • 67650620318 scopus 로고    scopus 로고
    • Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
    • Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363-397.
    • (2009) Annu Rev Biochem , vol.78 , pp. 363-397
    • Reyes-Turcu, F.E.1    Ventii, K.H.2    Wilkinson, K.D.3
  • 69
    • 17444416661 scopus 로고    scopus 로고
    • Serial analysis of gene expression in non-small cell lung cancer
    • Hibi K, Liu Q, Beaudry GA, et al. Serial analysis of gene expression in non-small cell lung cancer. Cancer Res 1998; 58:5690-5694.
    • (1998) Cancer Res , vol.58 , pp. 5690-5694
    • Hibi, K.1    Liu, Q.2    Beaudry, G.A.3
  • 70
    • 0032190090 scopus 로고    scopus 로고
    • The ubiquitin pathway in Parkinson's disease
    • Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature 1998; 395:451-452.
    • (1998) Nature , vol.395 , pp. 451-452
    • Leroy, E.1    Boyer, R.2    Auburger, G.3
  • 71
    • 84880851215 scopus 로고    scopus 로고
    • OTULIN restricts Met1-linked ubiquitination to control innate immune signaling
    • Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell 2013; 50:818-830.
    • (2013) Mol Cell , vol.50 , pp. 818-830
    • Fiil, B.K.1    Damgaard, R.B.2    Wagner, S.A.3
  • 72
    • 84879390723 scopus 로고    scopus 로고
    • The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
    • Rivkin E, Almeida SM, Ceccarelli DF, et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 2013; 498:318-324.
    • (2013) Nature , vol.498 , pp. 318-324
    • Rivkin, E.1    Almeida, S.M.2    Ceccarelli, D.F.3
  • 73
    • 39549106692 scopus 로고    scopus 로고
    • The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module
    • Komander D, Lord CJ, Scheel H, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451-464.
    • (2008) Mol Cell , vol.29 , pp. 451-464
    • Komander, D.1    Lord, C.J.2    Scheel, H.3
  • 74
    • 0033638223 scopus 로고    scopus 로고
    • Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast
    • Mossessova E, Lima CD. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 2000; 5:865-876.
    • (2000) Mol Cell , vol.5 , pp. 865-876
    • Mossessova, E.1    Lima, C.D.2
  • 75
    • 33746038148 scopus 로고    scopus 로고
    • The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing
    • Shen LN, Dong C, Liu H, Naismith JH, Hay RT. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J 2006; 397:279-288.
    • (2006) Biochem J , vol.397 , pp. 279-288
    • Shen, L.N.1    Dong, C.2    Liu, H.3    Naismith, J.H.4    Hay, R.T.5
  • 76
    • 33748754202 scopus 로고    scopus 로고
    • Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease
    • Xu Z, Chau SF, Lam KH, Chan HY, Ng TB, Au SW. Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. Biochem J 2006; 398:345-352.
    • (2006) Biochem J , vol.398 , pp. 345-352
    • Xu, Z.1    Chau, S.F.2    Lam, K.H.3    Chan, H.Y.4    Ng, T.B.5    Au, S.W.6
  • 77
    • 84864222562 scopus 로고    scopus 로고
    • Atypical ubiquitylation - The unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
    • Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508-523.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 508-523
    • Kulathu, Y.1    Komander, D.2
  • 78
    • 84900397992 scopus 로고    scopus 로고
    • Mechanisms for regulating deubiquitinating enzymes
    • Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014; 23:344-353.
    • (2014) Protein Sci , vol.23 , pp. 344-353
    • Wolberger, C.1
  • 79
    • 38049185042 scopus 로고    scopus 로고
    • Molecular basis of the redox regulation of SUMO proteases: A protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation
    • Xu Z, Lam LS, Lam LH, Chau SF, Ng TB, Au SW. Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J 2008; 22:127-137.
    • (2008) FASEB J , vol.22 , pp. 127-137
    • Xu, Z.1    Lam, L.S.2    Lam, L.H.3    Chau, S.F.4    Ng, T.B.5    Au, S.W.6
  • 80
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15:411-421.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 82
    • 84875912087 scopus 로고    scopus 로고
    • Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
    • Lee JG, Baek K, Soetandyo N, Ye Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4:1568.
    • (2013) Nat Commun , vol.4 , pp. 1568
    • Lee, J.G.1    Baek, K.2    Soetandyo, N.3    Ye, Y.4
  • 83
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26:1749-1760.
    • (2007) EMBO J , vol.26 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 84
    • 84055178186 scopus 로고    scopus 로고
    • Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains
    • Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J 2012; 441:143-149.
    • (2012) Biochem J , vol.441 , pp. 143-149
    • Zhou, Z.R.1    Zhang, Y.H.2    Liu, S.3    Song, A.X.4    Hu, H.Y.5
  • 85
    • 77949901727 scopus 로고    scopus 로고
    • Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3
    • Artavanis-Tsakonas K, Weihofen WA, Antos JM, et al. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. J Biol Chem 2010; 285:6857-6866.
    • (2010) J Biol Chem , vol.285 , pp. 6857-6866
    • Artavanis-Tsakonas, K.1    Weihofen, W.A.2    Antos, J.M.3
  • 88
    • 77952429798 scopus 로고    scopus 로고
    • Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB
    • Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010; 465:243-247.
    • (2010) Nature , vol.465 , pp. 243-247
    • Scheuermann, J.C.1    De Ayala Alonso, A.G.2    Oktaba, K.3
  • 89
    • 33748188085 scopus 로고    scopus 로고
    • Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
    • Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 2006; 8:994-1002.
    • (2006) Nat Cell Biol , vol.8 , pp. 994-1002
    • Yao, T.1    Song, L.2    Xu, W.3
  • 90
    • 0032502276 scopus 로고    scopus 로고
    • Substrate specificity of deubiquitinating enzymes: Ubiquitin C-terminal hydrolases
    • Larsen CN, Krantz BA, Wilkinson KD. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 1998; 37:3358-3368.
    • (1998) Biochemistry , vol.37 , pp. 3358-3368
    • Larsen, C.N.1    Krantz, B.A.2    Wilkinson, K.D.3
  • 91
    • 63649131003 scopus 로고    scopus 로고
    • Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations
    • Popp MW, Artavanis-Tsakonas K, Ploegh HL. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J Biol Chem 2009; 284:3593-3602.
    • (2009) J Biol Chem , vol.284 , pp. 3593-3602
    • Popp, M.W.1    Artavanis-Tsakonas, K.2    Ploegh, H.L.3
  • 93
    • 19344364762 scopus 로고    scopus 로고
    • JAMM: A metalloprotease-like zinc site in the proteasome and signalosome
    • Ambroggio XI, Rees DC, Deshaies RJ. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2004; 2:E2.
    • (2004) PLoS Biol , vol.2 , pp. E2
    • Ambroggio, X.I.1    Rees, D.C.2    Deshaies, R.J.3
  • 94
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3
  • 95
    • 84900990488 scopus 로고    scopus 로고
    • Structure and function of MPN (Mpr1/ Pad1 N-terminal) domain-containing proteins
    • Birol M, Echalier A. Structure and function of MPN (Mpr1/ Pad1 N-terminal) domain-containing proteins. Curr Protein Pept Sci 2014; 15:504-517.
    • (2014) Curr Protein Pept Sci , vol.15 , pp. 504-517
    • Birol, M.1    Echalier, A.2
  • 96
    • 84880161839 scopus 로고    scopus 로고
    • Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/ Jab1
    • Echalier A, Pan Y, Birol M, et al. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/ Jab1. Proc Natl Acad Sci USA 2013; 110:1273-1278.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 1273-1278
    • Echalier, A.1    Pan, Y.2    Birol, M.3
  • 97
    • 2442551473 scopus 로고    scopus 로고
    • Deubiquitinating enzymes are IN/(trinsic to proteasome function)
    • Guterman A, Glickman MH. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci 2004; 5:201-211.
    • (2004) Curr Protein Pept Sci , vol.5 , pp. 201-211
    • Guterman, A.1    Glickman, M.H.2
  • 98
    • 33846308859 scopus 로고    scopus 로고
    • AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/ late endosomes
    • Kyuuma M, Kikuchi K, Kojima K, et al. AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/ late endosomes. Cell Struct Funct 2007; 31:159-172.
    • (2007) Cell Struct Funct , vol.31 , pp. 159-172
    • Kyuuma, M.1    Kikuchi, K.2    Kojima, K.3
  • 99
    • 84906238422 scopus 로고    scopus 로고
    • Crystal structure of the human COP9 signalosome
    • Lingaraju GM, Bunker RD, Cavadini S, et al. Crystal structure of the human COP9 signalosome. Nature 2014; 512:161-165.
    • (2014) Nature , vol.512 , pp. 161-165
    • Lingaraju, G.M.1    Bunker, R.D.2    Cavadini, S.3
  • 100
    • 34249949779 scopus 로고    scopus 로고
    • RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
    • Sobhian B, Shao G, Lilli DR, et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 2007; 316:1198-1202.
    • (2007) Science , vol.316 , pp. 1198-1202
    • Sobhian, B.1    Shao, G.2    Lilli, D.R.3
  • 101
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002; 419:403-407.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 102
    • 30944464589 scopus 로고    scopus 로고
    • Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery
    • McCullough J, Row PE, Lorenzo O, et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol 2006; 16:160-165.
    • (2006) Curr Biol , vol.16 , pp. 160-165
    • McCullough, J.1    Row, P.E.2    Lorenzo, O.3
  • 103
    • 84901020323 scopus 로고    scopus 로고
    • Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product
    • Shrestha RK, Ronau JA, Davies CW, et al. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 2014; 53:3199-3217.
    • (2014) Biochemistry , vol.53 , pp. 3199-3217
    • Shrestha, R.K.1    Ronau, J.A.2    Davies, C.W.3
  • 104
    • 84942927801 scopus 로고    scopus 로고
    • Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase
    • Bueno AN, Shrestha RK, Ronau JA, et al. Dynamics of an active-site flap contributes to catalysis in a JAMM family metallo deubiquitinase. Biochemistry 2015; 54:6038-6051.
    • (2015) Biochemistry , vol.54 , pp. 6038-6051
    • Bueno, A.N.1    Shrestha, R.K.2    Ronau, J.A.3
  • 105
    • 84887695725 scopus 로고    scopus 로고
    • Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH
    • Davies CW, Paul LN, Das C. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 2013; 52:7818-7829.
    • (2013) Biochemistry , vol.52 , pp. 7818-7829
    • Davies, C.W.1    Paul, L.N.2    Das, C.3
  • 106
    • 33750744827 scopus 로고    scopus 로고
    • STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH
    • Kim MS, Kim JA, Song HK, Jeon H. STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH. Biochem Biophys Res Commun 2006; 351:612-618.
    • (2006) Biochem Biophys Res Commun , vol.351 , pp. 612-618
    • Kim, M.S.1    Kim, J.A.2    Song, H.K.3    Jeon, H.4
  • 108
    • 0035906430 scopus 로고    scopus 로고
    • Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome
    • Lyapina S, Cope G, Shevchenko A, et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 2001; 292:1382-1385.
    • (2001) Science , vol.292 , pp. 1382-1385
    • Lyapina, S.1    Cope, G.2    Shevchenko, A.3
  • 109
    • 0035907047 scopus 로고    scopus 로고
    • Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response
    • Schwechheimer C, Serino G, Callis J, et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 2001; 292:1379-1382.
    • (2001) Science , vol.292 , pp. 1379-1382
    • Schwechheimer, C.1    Serino, G.2    Callis, J.3
  • 110
    • 0037131242 scopus 로고    scopus 로고
    • Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
    • Cope GA, Suh GS, Aravind L, et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 2002; 298:608-611.
    • (2002) Science , vol.298 , pp. 608-611
    • Cope, G.A.1    Suh, G.S.2    Aravind, L.3
  • 111
    • 58149191374 scopus 로고    scopus 로고
    • Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality
    • Sharon M, Mao H, Boeri Erba E, Stephens E, Zheng N, Robinson CV. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 2009; 17:31-40.
    • (2009) Structure , vol.17 , pp. 31-40
    • Sharon, M.1    Mao, H.2    Boeri Erba, E.3    Stephens, E.4    Zheng, N.5    Robinson, C.V.6
  • 112
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko RJ Jr, Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 2013; 82:415-445.
    • (2013) Annu Rev Biochem , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 113
    • 84943612692 scopus 로고    scopus 로고
    • A single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
    • Tomko RJ Jr, Taylor DW, Chen ZA, Wang HW, Rappsilber J, Hochstrasser M. A single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 2015; 163:432-444.
    • (2015) Cell , vol.163 , pp. 432-444
    • Tomko, R.J.1    Taylor, D.W.2    Chen, Z.A.3    Wang, H.W.4    Rappsilber, J.5    Hochstrasser, M.6
  • 114
    • 84928712769 scopus 로고    scopus 로고
    • Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6
    • Mansour W, Nakasone MA, von Delbruck M, et al. Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6. J Biol Chem 2015; 290:4688-4704.
    • (2015) J Biol Chem , vol.290 , pp. 4688-4704
    • Mansour, W.1    Nakasone, M.A.2    Von Delbruck, M.3
  • 115
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare GR, Nagy I, Sledz P, et al. Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 2014; 111:2984-2989.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 2984-2989
    • Pathare, G.R.1    Nagy, I.2    Sledz, P.3
  • 116
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 2014; 21:220-227.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 117
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. Elife 2016; 5:e13027.
    • (2016) Elife , vol.5
    • Dambacher, C.M.1    Worden, E.J.2    Herzik, M.A.3    Martin, A.4    Lander, G.C.5
  • 118
    • 72949102636 scopus 로고    scopus 로고
    • Dissection of USP catalytic domains reveals five common insertion points
    • Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst 2009; 5:1797-1808.
    • (2009) Mol Biosyst , vol.5 , pp. 1797-1808
    • Ye, Y.1    Scheel, H.2    Hofmann, K.3    Komander, D.4
  • 119
    • 57649138450 scopus 로고    scopus 로고
    • Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7
    • Lima CD, Reverter D. Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 2008; 283:32045-32055.
    • (2008) J Biol Chem , vol.283 , pp. 32045-32055
    • Lima, C.D.1    Reverter, D.2
  • 120
    • 84900463981 scopus 로고    scopus 로고
    • Structural insights into the SENP6 Loop1 structure in complex with SUMO2
    • Alegre KO, Reverter D. Structural insights into the SENP6 Loop1 structure in complex with SUMO2. Protein Sci 2014; 23:433-441.
    • (2014) Protein Sci , vol.23 , pp. 433-441
    • Alegre, K.O.1    Reverter, D.2
  • 121
    • 84871808052 scopus 로고    scopus 로고
    • Archaeal JAB1/ MPN/MOV34 metalloenzyme (HvJAMM1) cleaves ubiquitin-like small archaeal modifier proteins (SAMPs) from protein-conjugates
    • Hepowit NL, Uthandi S, Miranda HV, et al. Archaeal JAB1/ MPN/MOV34 metalloenzyme (HvJAMM1) cleaves ubiquitin-like small archaeal modifier proteins (SAMPs) from protein-conjugates. Mol Microbiol 2012; 86:971-987.
    • (2012) Mol Microbiol , vol.86 , pp. 971-987
    • Hepowit, N.L.1    Uthandi, S.2    Miranda, H.V.3
  • 123
    • 84861679949 scopus 로고    scopus 로고
    • Interactions of bacterial proteins with host eukaryotic ubiquitin pathways
    • Perrett CA, Lin DY, Zhou D. Interactions of bacterial proteins with host eukaryotic ubiquitin pathways. Front Microbiol 2011; 2:143.
    • (2011) Front Microbiol , vol.2 , pp. 143
    • Perrett, C.A.1    Lin, D.Y.2    Zhou, D.3
  • 124
    • 84880936563 scopus 로고    scopus 로고
    • Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility
    • Beckmann JF, Fallon AM. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem Mol Biol 2013; 43:867-878.
    • (2013) Insect Biochem Mol Biol , vol.43 , pp. 867-878
    • Beckmann, J.F.1    Fallon, A.M.2
  • 126
    • 0033580444 scopus 로고    scopus 로고
    • A new protease required for cell-cycle progression in yeast
    • Li SJ, Hochstrasser M. A new protease required for cell-cycle progression in yeast. Nature 1999; 398:246-251.
    • (1999) Nature , vol.398 , pp. 246-251
    • Li, S.J.1    Hochstrasser, M.2
  • 127
    • 16244421995 scopus 로고    scopus 로고
    • IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system
    • Bardill JP, Miller JL, Vogel JP. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol 2005; 56:90-103.
    • (2005) Mol Microbiol , vol.56 , pp. 90-103
    • Bardill, J.P.1    Miller, J.L.2    Vogel, J.P.3
  • 128
    • 84887606445 scopus 로고    scopus 로고
    • The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52
    • Furtado AR, Essid M, Perrinet S, et al. The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cell Microbiol 2013; 15:2064-2079.
    • (2013) Cell Microbiol , vol.15 , pp. 2064-2079
    • Furtado, A.R.1    Essid, M.2    Perrinet, S.3
  • 129
    • 0142093617 scopus 로고    scopus 로고
    • Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta
    • Hotson A, Chosed R, Shu H, Orth K, Mudgett MB. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol Microbiol 2003; 50:377-389.
    • (2003) Mol Microbiol , vol.50 , pp. 377-389
    • Hotson, A.1    Chosed, R.2    Shu, H.3    Orth, K.4    Mudgett, M.B.5
  • 130
    • 84873429590 scopus 로고    scopus 로고
    • Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection
    • Claessen JH, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL. Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 2013; 14:343-352.
    • (2013) Chembiochem , vol.14 , pp. 343-352
    • Claessen, J.H.1    Witte, M.D.2    Yoder, N.C.3    Zhu, A.Y.4    Spooner, E.5    Ploegh, H.L.6
  • 132
    • 84868089864 scopus 로고    scopus 로고
    • Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii
    • Penz T, Schmitz-Esser S, Kelly SE, et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012; 8:e1003012.
    • (2012) PLoS Genet , vol.8
    • Penz, T.1    Schmitz-Esser, S.2    Kelly, S.E.3
  • 133
    • 84939526529 scopus 로고    scopus 로고
    • Toxicity and SidJ-mediated suppression of toxicity require distinct regions in the SidE family of Legionella pneumophila effectors
    • Havey JC, Roy CR. Toxicity and SidJ-mediated suppression of toxicity require distinct regions in the SidE family of Legionella pneumophila effectors. Infect Immun 2015; 83:3506-3514.
    • (2015) Infect Immun , vol.83 , pp. 3506-3514
    • Havey, J.C.1    Roy, C.R.2
  • 134
    • 33847610619 scopus 로고    scopus 로고
    • SseL, a Salmonella deubiquitinase required for macrophage killing and virulence
    • Rytkonen A, Poh J, Garmendia J, et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci USA 2007; 104:3502-3507.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 3502-3507
    • Rytkonen, A.1    Poh, J.2    Garmendia, J.3
  • 136
    • 29744463885 scopus 로고    scopus 로고
    • A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae
    • Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol 2005; 79:15582-15585.
    • (2005) J Virol , vol.79 , pp. 15582-15585
    • Schlieker, C.1    Korbel, G.A.2    Kattenhorn, L.M.3    Ploegh, H.L.4
  • 137
    • 84856468838 scopus 로고    scopus 로고
    • A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity
    • Chenon M, Camborde L, Cheminant S, Jupin I. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. EMBO J 2012; 31:741-753.
    • (2012) EMBO J , vol.31 , pp. 741-753
    • Chenon, M.1    Camborde, L.2    Cheminant, S.3    Jupin, I.4
  • 138
    • 34249880867 scopus 로고    scopus 로고
    • Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases
    • Chosed R, Tomchick DR, Brautigam CA, et al. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. J Biol Chem 2007; 282:6773-6782.
    • (2007) J Biol Chem , vol.282 , pp. 6773-6782
    • Chosed, R.1    Tomchick, D.R.2    Brautigam, C.A.3
  • 139
    • 0038644484 scopus 로고    scopus 로고
    • Crystallographic structure at 1.6-Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: Insights on a new fold
    • McGrath WJ, Ding J, Didwania A, Sweet RM, Mangel WF. Crystallographic structure at 1.6-Å resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim Biophys Acta 2003; 1648:1-11.
    • (2003) Biochim Biophys Acta , vol.1648 , pp. 1-11
    • McGrath, W.J.1    Ding, J.2    Didwania, A.3    Sweet, R.M.4    Mangel, W.F.5
  • 140
    • 0345256393 scopus 로고    scopus 로고
    • Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin
    • Mangel WF, Baniecki ML, McGrath WJ. Specific interactions of the adenovirus proteinase with the viral DNA, an 11-amino-acid viral peptide, and the cellular protein actin. Cell Mol Life Sci 2003; 60:2347-2355.
    • (2003) Cell Mol Life Sci , vol.60 , pp. 2347-2355
    • Mangel, W.F.1    Baniecki, M.L.2    McGrath, W.J.3
  • 141
    • 0027390796 scopus 로고
    • Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity
    • Mangel WF, McGrath WJ, Toledo DL, Anderson CW. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 1993; 361:274-275.
    • (1993) Nature , vol.361 , pp. 274-275
    • Mangel, W.F.1    McGrath, W.J.2    Toledo, D.L.3    Anderson, C.W.4
  • 142
    • 36749007273 scopus 로고    scopus 로고
    • Ovarian tumor domain-containing viral proteases evade ubiquitinand ISG15-dependent innate immune responses
    • Frias-Staheli N, Giannakopoulos NV, Kikkert M, et al. Ovarian tumor domain-containing viral proteases evade ubiquitinand ISG15-dependent innate immune responses. Cell Host Microbe 2007; 2:404-416.
    • (2007) Cell Host Microbe , vol.2 , pp. 404-416
    • Frias-Staheli, N.1    Giannakopoulos, N.V.2    Kikkert, M.3
  • 143
    • 79952301200 scopus 로고    scopus 로고
    • Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains
    • Akutsu M, Ye Y, Virdee S, Chin JW, Komander D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc Natl Acad Sci USA 2011; 108:2228-2233.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 2228-2233
    • Akutsu, M.1    Ye, Y.2    Virdee, S.3    Chin, J.W.4    Komander, D.5
  • 144
    • 79952290477 scopus 로고    scopus 로고
    • Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease
    • James TW, Frias-Staheli N, Bacik JP, et al. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc Natl Acad Sci USA 2011; 108:2222-2227.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 2222-2227
    • James, T.W.1    Frias-Staheli, N.2    Bacik, J.P.3
  • 145
    • 84874504652 scopus 로고    scopus 로고
    • Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells
    • van Kasteren PB, Bailey-Elkin BA, James TW, et al. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci USA 2013; 110:E838-847.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E838-847
    • Van Kasteren, P.B.1    Bailey-Elkin, B.A.2    James, T.W.3
  • 146
    • 0032567528 scopus 로고    scopus 로고
    • Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes
    • Whitby FG, Xia G, Pickart CM, Hill CP. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J Biol Chem 1998; 273:34983-34991.
    • (1998) J Biol Chem , vol.273 , pp. 34983-34991
    • Whitby, F.G.1    Xia, G.2    Pickart, C.M.3    Hill, C.P.4
  • 147
    • 7044269671 scopus 로고    scopus 로고
    • Crystal structures of the human SUMO-2 protein at 1.6 Å and 1.2 Å resolution: Implication on the functional differences of SUMO proteins
    • Huang WC, Ko TP, Li SS, Wang AH. Crystal structures of the human SUMO-2 protein at 1.6 Å and 1.2 Å resolution: implication on the functional differences of SUMO proteins. Eur J Biochem 2004; 271:4114-4122.
    • (2004) Eur J Biochem , vol.271 , pp. 4114-4122
    • Huang, W.C.1    Ko, T.P.2    Li, S.S.3    Wang, A.H.4
  • 148
    • 22844450969 scopus 로고    scopus 로고
    • Crystal structure of the interferon-induced ubiquitin-like protein ISG15
    • Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJ. Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J Biol Chem 2005; 280:27356-27365.
    • (2005) J Biol Chem , vol.280 , pp. 27356-27365
    • Narasimhan, J.1    Wang, M.2    Fu, Z.3    Klein, J.M.4    Haas, A.L.5    Kim, J.J.6
  • 149
    • 77954762337 scopus 로고    scopus 로고
    • The NMR structure of the autophagy-related protein Atg8
    • Kumeta H, Watanabe M, Nakatogawa H, et al. The NMR structure of the autophagy-related protein Atg8. J Biomol NMR 2010; 47:237-241.
    • (2010) J Biomol NMR , vol.47 , pp. 237-241
    • Kumeta, H.1    Watanabe, M.2    Nakatogawa, H.3
  • 150
    • 0031011721 scopus 로고    scopus 로고
    • Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution
    • Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J 1997; 16:3787-3796.
    • (1997) EMBO J , vol.16 , pp. 3787-3796
    • Johnston, S.C.1    Larsen, C.N.2    Cook, W.J.3    Wilkinson, K.D.4    Hill, C.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.