-
2
-
-
20444404618
-
Regulated protein degradation
-
Varshavsky A. 2005. Regulated protein degradation. Trends Biochem. Sci. 30:283-86
-
(2005)
Trends Biochem. Sci.
, vol.30
, pp. 283-286
-
-
Varshavsky, A.1
-
3
-
-
33846471122
-
Proteasome-independent functions of ubiquitin in endocytosis and signaling
-
Mukhopadhyay D, Riezman H. 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201-5
-
(2007)
Science
, vol.315
, pp. 201-205
-
-
Mukhopadhyay, D.1
Riezman, H.2
-
4
-
-
79955484976
-
The spatial and temporal organization of ubiquitin networks
-
Grabbe C, Husnjak K, Dikic I. 2011. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12:295-307
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 295-307
-
-
Grabbe, C.1
Husnjak, K.2
Dikic, I.3
-
5
-
-
63649161943
-
The ubiquitylation machinery of the endoplasmic reticulum
-
Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T. 2009. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453-60
-
(2009)
Nature
, vol.458
, pp. 453-460
-
-
Hirsch, C.1
Gauss, R.2
Horn, S.C.3
Neuber, O.4
Sommer, T.5
-
6
-
-
63649144413
-
Principles of ubiquitin and SUMO modifications in DNA repair
-
Bergink S, Jentsch S. 2009. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461-67
-
(2009)
Nature
, vol.458
, pp. 461-467
-
-
Bergink, S.1
Jentsch, S.2
-
7
-
-
79959539790
-
Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death
-
Vucic D, Dixit VM, Wertz IE. 2011. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12:439-52
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 439-452
-
-
Vucic, D.1
Dixit, V.M.2
Wertz, I.E.3
-
8
-
-
71149119391
-
A tangled web of ubiquitin chains: Breaking news in TNF-R1 signaling
-
Bianchi K, Meier P. 2009. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36:736-42
-
(2009)
Mol. Cell
, vol.36
, pp. 736-742
-
-
Bianchi, K.1
Meier, P.2
-
10
-
-
1442323729
-
N-terminal ubiquitination: More protein substrates join in
-
Ciechanover A, Ben-Saadon R. 2004. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14:103-6
-
(2004)
Trends Cell Biol.
, vol.14
, pp. 103-106
-
-
Ciechanover, A.1
Ben-Saadon, R.2
-
11
-
-
21744433861
-
Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase
-
Cadwell K, Coscoy L. 2005. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127-30
-
(2005)
Science
, vol.309
, pp. 127-130
-
-
Cadwell, K.1
Coscoy, L.2
-
12
-
-
33947539481
-
Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue
-
Ravid T, Hochstrasser M. 2007. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 9:422-27
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 422-427
-
-
Ravid, T.1
Hochstrasser, M.2
-
13
-
-
34249042608
-
Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3
-
Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. 2007. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177:613-24
-
(2007)
J. Cell Biol.
, vol.177
, pp. 613-624
-
-
Wang, X.1
Herr, R.A.2
Chua, W.J.3
Lybarger, L.4
Wiertz, E.J.5
Hansen, T.H.6
-
14
-
-
0041706156
-
A proteomics approach to understanding protein ubiquitination
-
Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, et al. 2003. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21:921-26
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 921-926
-
-
Peng, J.1
Schwartz, D.2
Elias, J.E.3
Thoreen, C.C.4
Cheng, D.5
-
15
-
-
80054033461
-
A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles
-
013284
-
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. 2011. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10:M111.013284
-
(2011)
Mol. Cell Proteomics
, vol.10
-
-
Wagner, S.A.1
Beli, P.2
Weinert, B.T.3
Nielsen, M.L.4
Cox, J.5
-
16
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
KimW, Bennett EJ, Huttlin EL, Guo A, Li J, et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44:325-40
-
(2011)
Mol. Cell.
, vol.44
, pp. 325-340
-
-
Kim Bennett W, E.J.1
Huttlin, E.L.2
Guo, A.3
Li, J.4
-
17
-
-
9644268864
-
Mechanism and function of deubiquitinating enzymes
-
Amerik AY, Hochstrasser M. 2004. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695:189-207
-
(2004)
Biochim. Biophys. Acta
, vol.1695
, pp. 189-207
-
-
Amerik, A.Y.1
Hochstrasser, M.2
-
18
-
-
67650620318
-
Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
-
Reyes-Turcu FE, Ventii KH, Wilkinson KD. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78:363-97
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 363-397
-
-
Reyes-Turcu, F.E.1
Ventii, K.H.2
Wilkinson, K.D.3
-
19
-
-
44649101850
-
Atypical ubiquitin chains: New molecular signals'ProteinModifications: Beyond the Usual Suspects' review series
-
Ikeda F, Dikic I. 2008. Atypical ubiquitin chains: new molecular signals. 'ProteinModifications: Beyond the Usual Suspects' review series. EMBO Rep. 9:536-42
-
(2008)
EMBO Rep.
, vol.9
, pp. 536-542
-
-
Ikeda, F.1
Dikic, I.2
-
20
-
-
67650064603
-
Linear polyubiquitination: A new regulator of NF-kappaB activation
-
Iwai K, Tokunaga F. 2009. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep. 10:706-13
-
(2009)
EMBO Rep.
, vol.10
, pp. 706-713
-
-
Iwai, K.1
Tokunaga, F.2
-
21
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
22
-
-
27144529182
-
Ubiquitylation and cell signaling
-
Haglund K, Dikic I. 2005. Ubiquitylation and cell signaling. EMBO J. 24:3353-59
-
(2005)
EMBO J.
, vol.24
, pp. 3353-3359
-
-
Haglund, K.1
Dikic, I.2
-
23
-
-
79955780837
-
A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis
-
009753
-
Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, et al. 2011. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell Proteomics 10:M111.009753
-
(2011)
Mol. Cell Proteomics
, vol.10
-
-
Ziv, I.1
Matiuhin, Y.2
Kirkpatrick, D.S.3
Erpapazoglou, Z.4
Leon, S.5
-
24
-
-
79953197650
-
Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease
-
Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, et al. 2011. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J. Biol. Chem. 286:10457-65
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10457-10465
-
-
Dammer, E.B.1
Na, C.H.2
Xu, P.3
Seyfried, N.T.4
Duong, D.M.5
-
25
-
-
79953240109
-
Linear ubiquitination prevents inflammation and regulates immune signalling
-
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, et al. 2011. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591-96
-
(2011)
Nature
, vol.471
, pp. 591-596
-
-
Gerlach, B.1
Cordier, S.M.2
Schmukle, A.C.3
Emmerich, C.H.4
Rieser, E.5
-
26
-
-
79953239980
-
SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis
-
Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, et al. 2011. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471:637-41
-
(2011)
Nature
, vol.471
, pp. 637-641
-
-
Ikeda, F.1
Deribe, Y.L.2
Skanland, S.S.3
Stieglitz, B.4
Grabbe, C.5
-
27
-
-
79953237668
-
SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex
-
Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, et al. 2011. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471:633-36
-
(2011)
Nature
, vol.471
, pp. 633-636
-
-
Tokunaga, F.1
Nakagawa, T.2
Nakahara, M.3
Saeki, Y.4
Taniguchi, M.5
-
28
-
-
59649103156
-
Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
-
Tokunaga F, Sakata S, SaekiY, SatomiY, KirisakoT, et al. 2009. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11:123-32
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 123-132
-
-
Tokunaga, F.1
Sakata, S.2
Satomiy Kirisakot, S.3
-
29
-
-
77955516435
-
K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody
-
Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, et al. 2010. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39:477-84
-
(2010)
Mol. Cell
, vol.39
, pp. 477-484
-
-
Matsumoto, M.L.1
Wickliffe, K.E.2
Dong, K.C.3
Yu, C.4
Bosanac, I.5
-
30
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, et al. 2009. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133-45
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
Duong, D.M.2
Seyfried, N.T.3
Cheng, D.4
Xie, Y.5
-
31
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L, Williamson A, Banerjee S, Philipp I, Rape M. 2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653-65
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
Williamson, A.2
Banerjee, S.3
Philipp, I.4
Rape, M.5
-
32
-
-
78650300883
-
C-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling
-
Dynek JN, GoncharovT, DueberEC, Fedorova AV, Izrael-Tomasevic A, et al. 2010. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29:4198-209
-
(2010)
EMBO J.
, vol.29
, pp. 4198-4209
-
-
Dynek, J.N.1
Goncharov, T.2
Dueber, E.C.3
Fedorova, A.V.4
Izrael-Tomasevic, A.5
-
33
-
-
0035980094
-
U box proteins as a new family of ubiquitin-protein ligases
-
Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. 2001. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276:33111-20
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 33111-33120
-
-
Hatakeyama, S.1
Yada, M.2
Matsumoto, M.3
Ishida, N.4
Nakayama, K.I.5
-
34
-
-
0029119522
-
A proteolytic pathway that recognizes ubiquitin as a degradation signal
-
Johnson ES, Ma PC, Ota IM, Varshavsky A. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442-56
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17442-17456
-
-
Johnson, E.S.1
Ma, P.C.2
Ota, I.M.3
Varshavsky, A.4
-
35
-
-
33750219981
-
A ubiquitin ligase complex assembles linear polyubiquitin chains
-
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, et al. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25:4877-87
-
(2006)
EMBO J.
, vol.25
, pp. 4877-4887
-
-
Kirisako, T.1
Kamei, K.2
Murata, S.3
Kato, M.4
Fukumoto, H.5
-
36
-
-
62549155321
-
Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation
-
Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, et al. 2009. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098-109
-
(2009)
Cell
, vol.136
, pp. 1098-1109
-
-
Rahighi, S.1
Ikeda, F.2
Kawasaki, M.3
Akutsu, M.4
Suzuki, N.5
-
37
-
-
77956903406
-
Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase
-
Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. 2010. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 6:750-57
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 750-757
-
-
Virdee, S.1
Ye, Y.2
Nguyen, D.P.3
Komander, D.4
Chin, J.W.5
-
38
-
-
67649211954
-
Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks
-
Jung JE, WollscheidHP, MarquardtA, Manea M, ScheffnerM, PrzybylskiM. 2009. Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks. Bioconjug. Chem. 20:1152-62
-
(2009)
Bioconjug. Chem.
, vol.20
, pp. 1152-1162
-
-
Jung, J.E.1
Wollscheid, H.P.2
Marquardt, A.3
Manea, M.4
Scheffner, M.5
Przybylski, M.6
-
39
-
-
77956841522
-
Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine
-
Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. 2010. Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. Chem. Commun. 46:7199-201
-
(2010)
Chem. Commun.
, vol.46
, pp. 7199-7201
-
-
Yang, R.1
Pasunooti, K.K.2
Li, F.3
Liu, X.W.4
Liu, C.F.5
-
40
-
-
78649575597
-
Total chemical synthesis of di-ubiquitin chains
-
Kumar KS, Spasser L, Erlich LA, Bavikar SN, Brik A. 2010. Total chemical synthesis of di-ubiquitin chains. Angew. Chem. Int. Ed. Engl. 49:9126-31
-
(2010)
Angew. Chem. Int. Ed. Engl.
, vol.49
, pp. 9126-9131
-
-
Kumar, K.S.1
Spasser, L.2
Erlich, L.A.3
Bavikar, S.N.4
Brik, A.5
-
43
-
-
29144499065
-
Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis
-
Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, et al. 2005. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821-24
-
(2005)
Science
, vol.310
, pp. 1821-1824
-
-
Bienko, M.1
Green, C.M.2
Crosetto, N.3
Rudolf, F.4
Zapart, G.5
-
44
-
-
75949107942
-
Unconventional ubiquitin recognition by the ubiquitin-binding motif within the y family DNA polymerases iota and Rev1
-
Bomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P. 2010. Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol. Cell 37:408-17
-
(2010)
Mol. Cell
, vol.37
, pp. 408-417
-
-
Bomar, M.G.1
D'Souza, S.2
Bienko, M.3
Dikic, I.4
Walker, G.C.5
Zhou, P.6
-
45
-
-
33646036373
-
Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin
-
Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, et al. 2006. Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183-95
-
(2006)
Cell
, vol.124
, pp. 1183-1195
-
-
Penengo, L.1
Mapelli, M.2
Murachelli, A.G.3
Confalonieri, S.4
Magri, L.5
-
46
-
-
33644792262
-
Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5
-
Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, et al. 2006. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat. Struct. Mol. Biol. 13:264-71
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 264-271
-
-
Lee, S.1
Tsai, Y.C.2
Mattera, R.3
Smith, W.J.4
Kostelansky, M.S.5
-
47
-
-
33646066025
-
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
-
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. 2006. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197-208
-
(2006)
Cell
, vol.124
, pp. 1197-1208
-
-
Reyes-Turcu, F.E.1
Horton, J.R.2
Mullally, J.E.3
Heroux, A.4
Cheng, X.5
Wilkinson, K.D.6
-
49
-
-
72149107116
-
Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin-HECTNEDD4L complex
-
Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, et al. 2009. Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin-HECTNEDD4L complex. Mol. Cell 36:1095-102
-
(2009)
Mol. Cell
, vol.36
, pp. 1095-1102
-
-
Kamadurai, H.B.1
Souphron, J.2
Scott, D.C.3
Duda, D.M.4
Miller, D.J.5
-
52
-
-
77953108542
-
The diversity of ubiquitin recognition: Hot spots and varied specificity
-
Winget JM, Mayor T. 2010. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell 38:627-35
-
(2010)
Mol. Cell
, vol.38
, pp. 627-635
-
-
Winget, J.M.1
Mayor, T.2
-
53
-
-
45849131354
-
Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution
-
Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, et al. 2008. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471-75
-
(2008)
Science
, vol.320
, pp. 1471-1475
-
-
Lange, O.F.1
Lakomek, N.A.2
Fares, C.3
Schroder, G.F.4
Walter, K.F.5
-
54
-
-
73349117207
-
Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin
-
Wlodarski T, Zagrovic B. 2009. Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin. Proc. Natl. Acad. Sci. USA 106:19346-51
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 19346-19351
-
-
Wlodarski, T.1
Zagrovic, B.2
-
56
-
-
33646773525
-
Interdomain mobility in di-ubiquitin revealed byNMR
-
Ryabov Y, FushmanD. 2006. Interdomain mobility in di-ubiquitin revealed byNMR. Proteins 63:787-96
-
(2006)
Proteins
, vol.63
, pp. 787-796
-
-
Ryabov, Y.1
Fushman, D.2
-
57
-
-
1342304089
-
Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling
-
Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D. 2004. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279:7055-63
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 7055-7063
-
-
Varadan, R.1
Assfalg, M.2
Haririnia, A.3
Raasi, S.4
Pickart, C.5
Fushman, D.6
-
58
-
-
73649116305
-
Exploring the linkage dependence of polyubiquitin conformations using molecular modeling
-
Fushman D, Walker O. 2010. Exploring the linkage dependence of polyubiquitin conformations using molecular modeling. J. Mol. Biol. 395:803-14
-
(2010)
J. Mol. Biol.
, vol.395
, pp. 803-814
-
-
Fushman, D.1
Walker, O.2
-
59
-
-
0038820381
-
Solution structure of a CUEubiquitin complex reveals a conserved mode of ubiquitin binding
-
Kang RS, Daniels CM, Francis SA, Shih SC, Salerno WJ, et al. 2003. Solution structure of a CUEubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113:621-30
-
(2003)
Cell
, vol.113
, pp. 621-630
-
-
Kang, R.S.1
Daniels, C.M.2
Francis, S.A.3
Shih, S.C.4
Salerno, W.J.5
-
60
-
-
0041706190
-
Structure and ubiquitin binding of the ubiquitin-interacting motif
-
Fisher RD, Wang B, Alam SL, Higginson DS, Robinson H, et al. 2003. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278:28976-84
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 28976-28984
-
-
Fisher, R.D.1
Wang, B.2
Alam, S.L.3
Higginson, D.S.4
Robinson, H.5
-
61
-
-
2342522100
-
Ubiquitin interactions of NZF zinc fingers
-
Alam SL, Sun J, PayneM, Welch BD, Blake BK, et al. 2004. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23:1411-21
-
(2004)
EMBO J.
, vol.23
, pp. 1411-1421
-
-
Alam, S.L.1
Sun, J.2
Payne, M.3
Welch, B.D.4
Blake, B.K.5
-
62
-
-
79961000536
-
Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools
-
Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, et al. 2011. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods 8:691-96
-
(2011)
Nat. Methods
, vol.8
, pp. 691-696
-
-
Kaiser, S.E.1
Riley, B.E.2
Shaler, T.A.3
Trevino, R.S.4
Becker, C.H.5
-
63
-
-
14444284098
-
Hrs is associated with STAM, a signaltransducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth
-
Asao H, Sasaki Y, Arita T, Tanaka N, Endo K, et al. 1997. Hrs is associated with STAM, a signaltransducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J. Biol. Chem. 272:32785-91
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 32785-32791
-
-
Asao, H.1
Sasaki, Y.2
Arita, T.3
Tanaka, N.4
Endo, K.5
-
64
-
-
0038323973
-
STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes
-
Bache KG, Raiborg C, Mehlum A, Stenmark H. 2003. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278:12513-21
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12513-12521
-
-
Bache, K.G.1
Raiborg, C.2
Mehlum, A.3
Stenmark, H.4
-
65
-
-
0032552056
-
Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis
-
Chen H, Fre S, Slepnev VI, Capua MR, Takei K, et al. 1998. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394:793-97
-
(1998)
Nature
, vol.394
, pp. 793-797
-
-
Chen, H.1
Fre, S.2
Slepnev, V.I.3
Capua, M.R.4
Takei, K.5
-
66
-
-
0035369556
-
A ubiquitin-interactingmotif conserved in components of the proteasomal and lysosomal protein degradation systems
-
HofmannK, Falquet L. 2001. A ubiquitin-interactingmotif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26:347-50
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 347-350
-
-
Hofmann, K.1
Falquet, L.2
-
67
-
-
33644787880
-
Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting
-
Hirano S, Kawasaki M, Ura H, Kato R, Raiborg C, et al. 2006. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat. Struct. Mol. Biol. 13:272-77
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 272-277
-
-
Hirano, S.1
Kawasaki, M.2
Ura, H.3
Kato, R.4
Raiborg, C.5
-
69
-
-
33646070471
-
The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain
-
Mattera R, Tsai YC, Weissman AM, Bonifacino JS. 2006. The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J. Biol. Chem. 281:6874-83
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 6874-6883
-
-
Mattera, R.1
Tsai, Y.C.2
Weissman, A.M.3
Bonifacino, J.S.4
-
70
-
-
0141744750
-
STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif
-
Mizuno E, Kawahata K, Kato M, Kitamura N, Komada M. 2003. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14:3675-89
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 3675-3689
-
-
Mizuno, E.1
Kawahata, K.2
Kato, M.3
Kitamura, N.4
Komada, M.5
-
71
-
-
77949567362
-
VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo
-
Ren X, Hurley JH. 2010. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 29:1045-54
-
(2010)
EMBO J.
, vol.29
, pp. 1045-1054
-
-
Ren, X.1
Hurley, J.H.2
-
72
-
-
50349102579
-
Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T
-
Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. 2008. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283:19581-92
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 19581-19592
-
-
Reyes-Turcu, F.E.1
Shanks, J.R.2
Komander, D.3
Wilkinson, K.D.4
-
73
-
-
19944419643
-
Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide- interacting GLUE domain
-
Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, et al. 2005. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280:19600-6
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 19600-19606
-
-
Slagsvold, T.1
Aasland, R.2
Hirano, S.3
Bache, K.G.4
Raiborg, C.5
-
74
-
-
33750603201
-
Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain
-
Alam SL, Langelier C, Whitby FG, Koirala S, Robinson H, et al. 2006. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nat. Struct. Mol. Biol. 13:1029-30
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 1029-1030
-
-
Alam, S.L.1
Langelier, C.2
Whitby, F.G.3
Koirala, S.4
Robinson, H.5
-
75
-
-
33750592719
-
Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain
-
Hirano S, Suzuki N, Slagsvold T, Kawasaki M, Trambaiolo D, et al. 2006. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nat. Struct. Mol. Biol. 13:1031-32
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 1031-1032
-
-
Hirano, S.1
Suzuki, N.2
Slagsvold, T.3
Kawasaki, M.4
Trambaiolo, D.5
-
76
-
-
78650534710
-
Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins
-
Tyrrell A, Flick K, Kleiger G, Zhang H, Deshaies RJ, Kaiser P. 2010. Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proc. Natl. Acad. Sci. USA 107:19796-801
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 19796-19801
-
-
Tyrrell, A.1
Flick, K.2
Kleiger, G.3
Zhang, H.4
Deshaies, R.J.5
Kaiser, P.6
-
77
-
-
0034604341
-
Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4
-
Kaiser P, Flick K, Wittenberg C, Reed SI. 2000. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102:303-14
-
(2000)
Cell
, vol.102
, pp. 303-314
-
-
Kaiser, P.1
Flick, K.2
Wittenberg, C.3
Reed, S.I.4
-
78
-
-
0036348150
-
Dual regulation of the Met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment
-
Kuras L, Rouillon A, Lee T, Barbey R, Tyers M, Thomas D. 2002. Dual regulation of the Met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10:69-80
-
(2002)
Mol. Cell
, vol.10
, pp. 69-80
-
-
Kuras, L.1
Rouillon, A.2
Lee, T.3
Barbey, R.4
Tyers, M.5
Thomas, D.6
-
79
-
-
33751544234
-
Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4
-
Chandrasekaran S, Deffenbaugh AE, Ford DA, Bailly E, Mathias N, Skowyra D. 2006. Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4. Mol. Cell 24:689-99
-
(2006)
Mol. Cell
, vol.24
, pp. 689-699
-
-
Chandrasekaran, S.1
Deffenbaugh, A.E.2
Ford, D.A.3
Bailly, E.4
Mathias, N.5
Skowyra, D.6
-
80
-
-
3242696232
-
Proteolysis-independent regulation of the transcription factor Met4 by a single Lys48-linked ubiquitin chain
-
Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, et al. 2004. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys48-linked ubiquitin chain. Nat. Cell Biol. 6:634-41
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 634-641
-
-
Flick, K.1
Ouni, I.2
Wohlschlegel, J.A.3
Capati, C.4
McDonald, W.H.5
-
81
-
-
79251482771
-
What determines the specificity and outcomes of ubiquitin signaling?
-
Ikeda F, Crosetto N, Dikic I. 2010. What determines the specificity and outcomes of ubiquitin signaling? Cell 143:677-81
-
(2010)
Cell
, vol.143
, pp. 677-681
-
-
Ikeda, F.1
Crosetto, N.2
Dikic, I.3
-
82
-
-
62549161305
-
Linkage-specific avidity defines the lysine 63-linked polyubiquitinbinding preference of Rap80
-
Sims JJ, Cohen RE. 2009. Linkage-specific avidity defines the lysine 63-linked polyubiquitinbinding preference of Rap80. Mol. Cell 33:775-83
-
(2009)
Mol. Cell
, vol.33
, pp. 775-783
-
-
Sims, J.J.1
Cohen, R.E.2
-
83
-
-
85047669941
-
The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway
-
Hofmann K, Bucher P. 1996. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21:172-73
-
(1996)
Trends Biochem. Sci.
, vol.21
, pp. 172-173
-
-
Hofmann, K.1
Bucher, P.2
-
84
-
-
0034762028
-
Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly
-
Chen L, Shinde U, Ortolan TG, Madura K. 2001. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2:933-38
-
(2001)
EMBO Rep.
, vol.2
, pp. 933-938
-
-
Chen, L.1
Shinde, U.2
Ortolan, T.G.3
Madura, K.4
-
85
-
-
0037154160
-
Budding yeast Dsk2p is a polyubiquitinbinding protein that can interact with the proteasome
-
Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H. 2002. Budding yeast Dsk2p is a polyubiquitinbinding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99:745-50
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 745-750
-
-
Funakoshi, M.1
Sasaki, T.2
Nishimoto, T.3
Kobayashi, H.4
-
86
-
-
23144449583
-
Delivery of ubiquitinated substrates to protein-unfolding machines
-
Elsasser S, Finley D. 2005. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7:742-49
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 742-749
-
-
Elsasser, S.1
Finley, D.2
-
87
-
-
65249166493
-
Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins
-
Grabbe C, Dikic I. 2009. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109:1481-94
-
(2009)
Chem. Rev.
, vol.109
, pp. 1481-1494
-
-
Grabbe, C.1
Dikic, I.2
-
88
-
-
0034798985
-
Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
-
Wilkinson CR, Seeger M, Hartmann-Petersen R, StoneM, Wallace M, et al. 2001. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell Biol. 3:939-43
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 939-943
-
-
Wilkinson, C.R.1
Seeger, M.2
Hartmann-Petersen, R.3
Stone, M.4
Wallace, M.5
-
89
-
-
0037646406
-
Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains
-
Raasi S, PickartCM. 2003. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278:8951-59
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 8951-8959
-
-
Raasi, S.1
Pickart, C.M.2
-
90
-
-
4143061786
-
Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A
-
Raasi S, Orlov I, FlemingKG, PickartCM. 2004. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341:1367-79
-
(2004)
J. Mol. Biol.
, vol.341
, pp. 1367-1379
-
-
Raasi, S.1
Orlov, I.2
Fleming, K.G.3
Pickart, C.M.4
-
91
-
-
20444391345
-
Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain
-
Varadan R, Assfalg M, Raasi S, Pickart C, Fushman D. 2005. Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol. Cell 18:687-98
-
(2005)
Mol. Cell
, vol.18
, pp. 687-698
-
-
Varadan, R.1
Assfalg, M.2
Raasi, S.3
Pickart, C.4
Fushman, D.5
-
92
-
-
17044368771
-
The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation
-
Heessen S, Masucci MG, Dantuma NP. 2005. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18:225-35
-
(2005)
Mol. Cell
, vol.18
, pp. 225-235
-
-
Heessen, S.1
Masucci, M.G.2
Dantuma, N.P.3
-
93
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11:830-37
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 830-837
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
95
-
-
84878270699
-
Rad23 escapes degradation because it lacks a proteasome initiation region
-
Fishbain S, Prakash S, Herrig A, Elsasser S, Matouschek A. 2011. Rad23 escapes degradation because it lacks a proteasome initiation region. Nat. Commun. 2:192
-
(2011)
Nat. Commun.
, vol.2
, pp. 192
-
-
Fishbain, S.1
Prakash, S.2
Herrig, A.3
Elsasser, S.4
Matouschek, A.5
-
96
-
-
84867582157
-
C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation
-
Heinen C, Acs K, Hoogstraten D, Dantuma NP. 2011. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation. Nat. Commun. 2:191
-
(2011)
Nat. Commun.
, vol.2
, pp. 191
-
-
Heinen, C.1
Acs, K.2
Hoogstraten, D.3
Dantuma, N.P.4
-
97
-
-
33746023341
-
The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10
-
Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, et al. 2006. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J. Biol. Chem. 281:20045-54
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 20045-20054
-
-
Schmidtke, G.1
Kalveram, B.2
Weber, E.3
Bochtler, P.4
Lukasiak, S.5
-
98
-
-
58649086714
-
Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L
-
Schmidtke G, Kalveram B, Groettrup M. 2009. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583:591-94
-
(2009)
FEBS Lett.
, vol.583
, pp. 591-594
-
-
Schmidtke, G.1
Kalveram, B.2
Groettrup, M.3
-
99
-
-
1942533448
-
NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation
-
Hipp MS, Raasi S, Groettrup M, Schmidtke G. 2004. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem. 279:16503-10
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 16503-16510
-
-
Hipp, M.S.1
Raasi, S.2
Groettrup, M.3
Schmidtke, G.4
-
100
-
-
0032489524
-
Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a
-
Young P, DeverauxQ, BealRE, PickartCM, RechsteinerM. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273:5461-67
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 5461-5467
-
-
Young, P.1
Deveraux, Q.2
Beal, R.E.3
Pickart, C.M.4
Rechsteiner, M.5
-
102
-
-
0037065732
-
Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
-
Walters KJ, KleijnenMF, Goh AM, Wagner G, Howley PM. 2002. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41:1767-77
-
(2002)
Biochemistry
, vol.41
, pp. 1767-1777
-
-
Walters, K.J.1
Kleijnen, M.F.2
Goh, A.M.3
Wagner, G.4
Howley, P.M.5
-
103
-
-
17144417404
-
Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
-
Wang Q, Young P, Walters KJ. 2005. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348:727-39
-
(2005)
J. Mol. Biol.
, vol.348
, pp. 727-739
-
-
Wang, Q.1
Young, P.2
Walters, K.J.3
-
104
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481-88
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
-
105
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548-52
-
(2008)
Nature
, vol.453
, pp. 548-552
-
-
Schreiner, P.1
Chen, X.2
Husnjak, K.3
Randles, L.4
Zhang, N.5
-
106
-
-
0030747914
-
Machado-Joseph disease gene products carrying different carboxyl termini
-
Goto J, Watanabe M, Ichikawa Y, Yee SB, Ihara N, et al. 1997. Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci. Res. 28:373-77
-
(1997)
Neurosci. Res.
, vol.28
, pp. 373-377
-
-
Goto, J.1
Watanabe, M.2
Ichikawa, Y.3
Yee, S.B.4
Ihara, N.5
-
107
-
-
0942287194
-
Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways
-
Chai Y, Berke SS, Cohen RE, Paulson HL. 2004. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J. Biol. Chem. 279:3605-11
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3605-3611
-
-
Chai, Y.1
Berke, S.S.2
Cohen, R.E.3
Paulson, H.L.4
-
108
-
-
78049272810
-
Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains
-
Song AX, Zhou CJ, Peng Y, Gao XC, Zhou ZR, et al. 2010. Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains. PLoS One 5:e13202
-
(2010)
PLoS One
, vol.5
-
-
Song, A.X.1
Zhou, C.J.2
Peng, Y.3
Gao, X.C.4
Zhou, Z.R.5
-
109
-
-
0345099501
-
The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity
-
Burnett B, Li F, Pittman RN. 2003. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12:3195-205
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 3195-3205
-
-
Burnett, B.1
Li, F.2
Pittman, R.N.3
-
110
-
-
71749115321
-
Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites
-
Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, et al. 2009. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91:1203-14
-
(2009)
Biopolymers
, vol.91
, pp. 1203-1214
-
-
Nicastro, G.1
Masino, L.2
Esposito, V.3
Menon, R.P.4
De Simone, A.5
-
111
-
-
77957879514
-
Understanding the role of the Josephin domain in the polyUb binding and cleavage properties of ataxin-3
-
Nicastro G, Todi SV, Karaca E, Bonvin AM, Paulson HL, Pastore A. 2010. Understanding the role of the Josephin domain in the polyUb binding and cleavage properties of ataxin-3. PLoS One 5:e12430
-
(2010)
PLoS One
, vol.5
-
-
Nicastro, G.1
Todi, S.V.2
Karaca, E.3
Bonvin, A.M.4
Paulson, H.L.5
Pastore, A.6
-
112
-
-
59649086030
-
Nonproteolytic functions of ubiquitin in cell signaling
-
Chen ZJ, Sun LJ. 2009. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33:275-86
-
(2009)
Mol. Cell
, vol.33
, pp. 275-286
-
-
Chen, Z.J.1
Sun, L.J.2
-
113
-
-
71449095149
-
Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain
-
Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D. 2009. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol. 16:1328-30
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1328-1330
-
-
Kulathu, Y.1
Akutsu, M.2
Bremm, A.3
Hofmann, K.4
Komander, D.5
-
114
-
-
72449162040
-
Structural basis for specific recognition of Lys63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3
-
Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. 2009. Structural basis for specific recognition of Lys63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J. 28:3903-9
-
(2009)
EMBO J.
, vol.28
, pp. 3903-3909
-
-
Sato, Y.1
Yoshikawa, A.2
Yamashita, M.3
Yamagata, A.4
Fukai, S.5
-
115
-
-
77953915005
-
Ubiquitin signalling in DNA replication and repair
-
Ulrich HD, Walden H. 2010. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11:479-89
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 479-489
-
-
Ulrich, H.D.1
Walden, H.2
-
116
-
-
53249113644
-
RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites
-
Yan J, Jetten AM. 2008. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett. 271:179-90
-
(2008)
Cancer Lett.
, vol.271
, pp. 179-190
-
-
Yan, J.1
Jetten, A.M.2
-
117
-
-
69149088033
-
Structural basis for specific recognition of Lys63-linked polyubiquitin chains by tandem UIMs of RAP80
-
Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S. 2009. Structural basis for specific recognition of Lys63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28:2461-68
-
(2009)
EMBO J.
, vol.28
, pp. 2461-2468
-
-
Sato, Y.1
Yoshikawa, A.2
Mimura, H.3
Yamashita, M.4
Yamagata, A.5
Fukai, S.6
-
118
-
-
33644852909
-
Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain
-
Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. 2006. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21:737-48
-
(2006)
Mol. Cell
, vol.21
, pp. 737-748
-
-
Huang, F.1
Kirkpatrick, D.2
Jiang, X.3
Gygi, S.4
Sorkin, A.5
-
119
-
-
0030881952
-
Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein
-
Galan JM, Haguenauer-Tsapis R. 1997. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16:5847-54
-
(1997)
EMBO J.
, vol.16
, pp. 5847-5854
-
-
Galan, J.M.1
Haguenauer-Tsapis, R.2
-
120
-
-
4143080425
-
AMSH is an endosome-associated ubiquitin isopeptidase
-
McCullough J, Clague MJ, Urbe S. 2004. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166:487-92
-
(2004)
J. Cell Biol.
, vol.166
, pp. 487-492
-
-
Mc Cullough, J.1
Clague, M.J.2
Urbe, S.3
-
121
-
-
27644438783
-
Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes
-
Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. 2005. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol. Biol. Cell 16:5163-74
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5163-5174
-
-
Mizuno, E.1
Iura, T.2
Mukai, A.3
Yoshimori, T.4
Kitamura, N.5
Komada, M.6
-
122
-
-
33750744827
-
STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH
-
Kim MS, Kim JA, Song HK, Jeon H. 2006. STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH. Biochem. Biophys. Res. Commun. 351:612-18
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.351
, pp. 612-618
-
-
Kim, M.S.1
Kim, J.A.2
Song, H.K.3
Jeon, H.4
-
123
-
-
52149103164
-
Structural basis for specific cleavage of Lys63-linked polyubiquitin chains
-
Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, et al. 2008. Structural basis for specific cleavage of Lys63-linked polyubiquitin chains. Nature 455:358-62
-
(2008)
Nature
, vol.455
, pp. 358-362
-
-
Sato, Y.1
Yoshikawa, A.2
Yamagata, A.3
Mimura, H.4
Yamashita, M.5
-
124
-
-
44649166613
-
Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins
-
Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, et al. 2008. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27:3739-45
-
(2008)
Oncogene
, vol.27
, pp. 3739-3745
-
-
Wagner, S.1
Carpentier, I.2
Rogov, V.3
Kreike, M.4
Ikeda, F.5
-
125
-
-
61649103747
-
Structural basis for recognition of diubiquitins by NEMO
-
Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, et al. 2009. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33:602-15
-
(2009)
Mol. Cell
, vol.33
, pp. 602-615
-
-
Lo, Y.C.1
Lin, S.C.2
Rospigliosi, C.C.3
Conze, D.B.4
Wu, C.J.5
-
126
-
-
3943054838
-
De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
-
Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694-99
-
(2004)
Nature
, vol.430
, pp. 694-699
-
-
Wertz, I.E.1
O'Rourke, K.M.2
Zhou, H.3
Eby, M.4
Aravind, L.5
-
127
-
-
67650895663
-
NEMO oligomerization and its ubiquitin-binding properties
-
Ivins FJ, Montgomery MG, Smith SJ, Morris-Davies AC, Taylor IA, Rittinger K. 2009. NEMO oligomerization and its ubiquitin-binding properties. Biochem. J. 421:243-51
-
(2009)
Biochem. J.
, vol.421
, pp. 243-251
-
-
Ivins, F.J.1
Montgomery, M.G.2
Smith, S.J.3
Morris-Davies, A.C.4
Taylor, I.A.5
Rittinger, K.6
-
128
-
-
70350020147
-
NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain
-
Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, et al. 2009. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28:2885-95
-
(2009)
EMBO J.
, vol.28
, pp. 2885-2895
-
-
Laplantine, E.1
Fontan, E.2
Chiaravalli, J.3
Lopez, T.4
Lakisic, G.5
-
129
-
-
0036845476
-
Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4
-
Meyer HH, Wang Y, Warren G. 2002. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21:5645-52
-
(2002)
EMBO J.
, vol.21
, pp. 5645-5652
-
-
Meyer, H.H.1
Wang, Y.2
Warren, G.3
-
130
-
-
71149105333
-
Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNFmediated gene induction
-
Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, et al. 2009. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNFmediated gene induction. Mol. Cell 36:831-44
-
(2009)
Mol. Cell
, vol.36
, pp. 831-844
-
-
Haas, T.L.1
Emmerich, C.H.2
Gerlach, B.3
Schmukle, A.C.4
Cordier, S.M.5
-
131
-
-
84855517985
-
Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex
-
Sato Y, Fujita H, Yoshikawa A, Yamashita M, Yamagata A, et al. 2011. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc. Natl. Acad. Sci. USA 108:20520-25
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 20520-20525
-
-
Sato, Y.1
Fujita, H.2
Yoshikawa, A.3
Yamashita, M.4
Yamagata, A.5
-
132
-
-
63049096813
-
Ubiquitin-binding domains and their role in the DNA damage response
-
Hofmann K. 2009. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair 8:544-56
-
(2009)
DNA Repair
, vol.8
, pp. 544-556
-
-
Hofmann, K.1
-
133
-
-
77954286076
-
A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
-
Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, et al. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39:36-47
-
(2010)
Mol. Cell
, vol.39
, pp. 36-47
-
-
Smogorzewska, A.1
Desetty, R.2
Saito, T.T.3
Schlabach, M.4
Lach, F.P.5
-
134
-
-
77954279611
-
Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
-
Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, et al. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77-88
-
(2010)
Cell
, vol.142
, pp. 77-88
-
-
Kratz, K.1
Schopf, B.2
Kaden, S.3
Sendoel, A.4
Eberhard, R.5
-
135
-
-
77954274685
-
Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
-
MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, et al. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-76
-
(2010)
Cell
, vol.142
, pp. 65-76
-
-
Mac Kay, C.1
Declais, A.C.2
Lundin, C.3
Agostinho, A.4
Deans, A.J.5
-
136
-
-
77955290719
-
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
-
Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-96
-
(2010)
Science
, vol.329
, pp. 693-696
-
-
Liu, T.1
Ghosal, G.2
Yuan, J.3
Chen, J.4
Huang, J.5
-
137
-
-
34548156750
-
Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain
-
Bish RA, Myers MP. 2007. Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J. Biol. Chem. 282:23184-93
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 23184-23193
-
-
Bish, R.A.1
Myers, M.P.2
-
138
-
-
58049199509
-
HumanWrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner
-
Crosetto N, Bienko M, Hibbert RG, Perica T, Ambrogio C, et al. 2008. HumanWrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J. Biol. Chem. 283:35173-85
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35173-35185
-
-
Crosetto, N.1
Bienko, M.2
Hibbert, R.G.3
Perica, T.4
Ambrogio, C.5
-
139
-
-
70350450808
-
The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215-21
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
Von Muhlinen, N.4
Randow, F.5
-
140
-
-
39449129941
-
Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation
-
Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, et al. 2008. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. 27:629-41
-
(2008)
EMBO J.
, vol.27
, pp. 629-641
-
-
Iha, H.1
Peloponese, J.M.2
Verstrepen, L.3
Zapart, G.4
Ikeda, F.5
-
142
-
-
0034915764
-
Mechanisms underlying ubiquitination
-
Pickart CM. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503-33
-
(2001)
Annu. Rev. Biochem.
, vol.70
, pp. 503-533
-
-
Pickart, C.M.1
-
143
-
-
33644850903
-
AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
-
Brzovic PS, Lissounov A, ChristensenDE, Hoyt DW, Klevit RE. 2006. AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21:873-80
-
(2006)
Mol. Cell
, vol.21
, pp. 873-880
-
-
Brzovic, P.S.1
Lissounov, A.2
Christensen, D.E.3
Hoyt, D.W.4
Klevit, R.E.5
-
144
-
-
33749506057
-
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
-
Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. 2006. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13:915-20
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 915-920
-
-
Eddins, M.J.1
Carlile, C.M.2
Gomez, K.M.3
Pickart, C.M.4
Wolberger, C.5
-
145
-
-
1842421429
-
Ubiquitin recognition by the human TSG101 protein
-
Sundquist WI, Schubert HL, Kelly BN, Hill GC, Holton JM, Hill CP. 2004. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13:783-89
-
(2004)
Mol. Cell
, vol.13
, pp. 783-789
-
-
Sundquist, W.I.1
Schubert, H.L.2
Kelly, B.N.3
Hill, G.C.4
Holton, J.M.5
Hill, C.P.6
-
146
-
-
66449125689
-
Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site
-
French ME, Kretzmann BR, Hicke L. 2009. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J. Biol. Chem. 284:12071-79
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12071-12079
-
-
French, M.E.1
Kretzmann, B.R.2
Hicke, L.3
-
147
-
-
77949888615
-
The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates
-
Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, et al. 2010. The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J. Biol. Chem. 285:6308-15
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 6308-6315
-
-
Ogunjimi, A.A.1
Wiesner, S.2
Briant, D.J.3
Varelas, X.4
Sicheri, F.5
-
148
-
-
79953310074
-
Structure and function of a HECT domain ubiquitin-binding site
-
Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM. 2011. Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 12:334-41
-
(2011)
EMBO Rep.
, vol.12
, pp. 334-341
-
-
Kim, H.C.1
Steffen, A.M.2
Oldham, M.L.3
Chen, J.4
Huibregtse, J.M.5
-
149
-
-
79953325889
-
Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation
-
Maspero E, Mari S, Valentini E, Musacchio A, Fish A, et al. 2011. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12:342-49
-
(2011)
EMBO Rep.
, vol.12
, pp. 342-349
-
-
Maspero, E.1
Mari, S.2
Valentini, E.3
Musacchio, A.4
Fish, A.5
-
150
-
-
77954930632
-
IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer
-
Gyrd-HansenM, Meier P. 2010. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 10:561-74
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 561-574
-
-
Gyrd-Hansen, M.1
Meier, P.2
-
151
-
-
58249086500
-
Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1)
-
Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, et al. 2009. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). Biochem. J. 417:149-60
-
(2009)
Biochem. J.
, vol.417
, pp. 149-160
-
-
Blankenship, J.W.1
Varfolomeev, E.2
Goncharov, T.3
Fedorova, A.V.4
Kirkpatrick, D.S.5
-
152
-
-
55549140475
-
IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis
-
Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, et al. 2008. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat. Cell Biol. 10:1309-17
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1309-1317
-
-
Gyrd-Hansen, M.1
Darding, M.2
Miasari, M.3
Santoro, M.M.4
Zender, L.5
-
153
-
-
27444445613
-
C-Cbl and Cbl-b ubiquitin ligases: Substrate diversity and the negative regulation of signalling responses
-
Thien CB, Langdon WY. 2005. c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem. J. 391:153-66
-
(2005)
Biochem. J.
, vol.391
, pp. 153-166
-
-
Thien, C.B.1
Langdon, W.Y.2
-
155
-
-
4844227729
-
Cbl-b interacts with ubiquitinated proteins; Differential functions of the UBA domains of c-Cbl and Cbl-b
-
Davies GC, Ettenberg SA, Coats AO, Mussante M, Ravichandran S, et al. 2004. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23:7104-15
-
(2004)
Oncogene
, vol.23
, pp. 7104-7115
-
-
Davies, G.C.1
Ettenberg, S.A.2
Coats, A.O.3
Mussante, M.4
Ravichandran, S.5
-
156
-
-
52949113457
-
Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b:NMRstructural and biochemical insights
-
Zhou ZR, Gao HC, Zhou CJ, Chang YG, Hong J, et al. 2008. Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b:NMRstructural and biochemical insights. Protein Sci. 17:1805-14
-
(2008)
Protein Sci.
, vol.17
, pp. 1805-1814
-
-
Zhou, Z.R.1
Gao, H.C.2
Zhou, C.J.3
Chang, Y.G.4
Hong, J.5
-
157
-
-
34548354844
-
High incidence of ubiquitin-like domains in human ubiquitin-specific proteases
-
Zhu X, Menard R, Sulea T. 2007. High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69:1-7
-
(2007)
Proteins
, vol.69
, pp. 1-7
-
-
Zhu, X.1
Menard, R.2
Sulea, T.3
-
158
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, et al. 2002. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10:495-507
-
(2002)
Mol. Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
Crosas, B.4
Schmidt, M.5
-
159
-
-
79953296816
-
Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain
-
Luna-VargasMP, Faesen AC, Van Dijk WJ, RapeM, FishA, SixmaTK. 2011. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. 12:365-72
-
(2011)
EMBO Rep.
, vol.12
, pp. 365-372
-
-
Luna-Vargas, M.P.1
Faesen, A.C.2
Van Dijk, W.J.3
Rape, M.4
Fish, A.5
Sixma, T.K.6
-
160
-
-
79960649509
-
Autoregulation of Parkin activity through its ubiquitin-like domain
-
Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. 2011. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30:2853-67
-
(2011)
EMBO J.
, vol.30
, pp. 2853-2867
-
-
Chaugule, V.K.1
Burchell, L.2
Barber, K.R.3
Sidhu, A.4
Leslie, S.J.5
-
161
-
-
0037187597
-
A singlemotif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins
-
Polo S, Sigismund S, Faretta M, GuidiM, Capua MR, et al. 2002. A singlemotif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416:451-55
-
(2002)
Nature
, vol.416
, pp. 451-455
-
-
Polo, S.1
Sigismund, S.2
Faretta, M.3
Guidi, M.4
Capua, M.R.5
-
162
-
-
33750532531
-
Molecular mechanisms of coupled monoubiquitination
-
Woelk T, Oldrini B, Maspero E, Confalonieri S, Cavallaro E, et al. 2006. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol. 8:1246-54
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1246-1254
-
-
Woelk, T.1
Oldrini, B.2
Maspero, E.3
Confalonieri, S.4
Cavallaro, E.5
-
163
-
-
33645148675
-
Regulation of ubiquitin-binding proteins by monoubiquitination
-
Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, et al. 2006. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8:163-69
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 163-169
-
-
Hoeller, D.1
Crosetto, N.2
Blagoev, B.3
Raiborg, C.4
Tikkanen, R.5
-
164
-
-
34250375116
-
E3-independent monoubiquitination of ubiquitin-binding proteins
-
Hoeller D, Hecker CM, Wagner S, Rogov V, Dotsch V, Dikic I. 2007. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26:891-98
-
(2007)
Mol. Cell
, vol.26
, pp. 891-898
-
-
Hoeller, D.1
Hecker, C.M.2
Wagner, S.3
Rogov, V.4
Dotsch, V.5
Dikic, I.6
-
165
-
-
75949122886
-
Regulation of translesion synthesis DNA polymerase ηby monoubiquitination
-
Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, et al. 2010. Regulation of translesion synthesis DNA polymerase ηby monoubiquitination. Mol. Cell 37:396-407
-
(2010)
Mol. Cell
, vol.37
, pp. 396-407
-
-
Bienko, M.1
Green, C.M.2
Sabbioneda, S.3
Crosetto, N.4
Matic, I.5
-
166
-
-
77953113655
-
Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
-
Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, et al. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38:733-45
-
(2010)
Mol. Cell
, vol.38
, pp. 733-745
-
-
Isasa, M.1
Katz, E.J.2
Kim, W.3
Yugo, V.4
Gonzalez, S.5
-
167
-
-
67650517556
-
NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
-
Lamark T, Kirkin V, Dikic I, JohansenT. 2009. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986-90
-
(2009)
Cell Cycle
, vol.8
, pp. 1986-1990
-
-
Lamark, T.1
Kirkin, V.2
Dikic, I.3
Johansen, T.4
-
168
-
-
4444220680
-
Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
-
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24:8055-68
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8055-8068
-
-
Seibenhener, M.L.1
Babu, J.R.2
Geetha, T.3
Wong, H.C.4
Krishna, N.R.5
Wooten, M.W.6
-
169
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-16
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
-
170
-
-
82455172117
-
Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
-
Matsumoto M, Wada K, Okuno M, Kurosawa M, Nukina N. 2011. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44:279-89
-
(2011)
Mol. Cell
, vol.44
, pp. 279-289
-
-
Matsumoto, M.1
Wada, K.2
Okuno, M.3
Kurosawa, M.4
Nukina, N.5
-
171
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-33
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
-
172
-
-
59649087451
-
Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling
-
Stehmeier P, Muller S. 2009. Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling. Mol. Cell 33:400-9
-
(2009)
Mol. Cell
, vol.33
, pp. 400-409
-
-
Stehmeier, P.1
Muller, S.2
-
173
-
-
63649086487
-
Targeting the ubiquitin system in cancer therapy
-
Hoeller D, Dikic I. 2009. Targeting the ubiquitin system in cancer therapy. Nature 458:438-44
-
(2009)
Nature
, vol.458
, pp. 438-444
-
-
Hoeller, D.1
Dikic, I.2
-
174
-
-
31344457298
-
UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain
-
Kang Y, Vossler RA, Diaz-Martinez LA, WinterNS, Clarke DJ, Walters KJ. 2006. UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain. J. Mol. Biol. 356:1027-35
-
(2006)
J. Mol. Biol.
, vol.356
, pp. 1027-1035
-
-
Kang, Y.1
Vossler, R.A.2
Diaz-Martinez, L.A.3
Winter, N.S.4
Clarke, D.J.5
Walters, K.J.6
-
175
-
-
68249135262
-
Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains
-
Sims JJ, Haririnia A, Dickinson BC, FushmanD, Cohen RE. 2009. Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains. Nat. Struct. Mol. Biol. 16:883-89
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 883-889
-
-
Sims, J.J.1
Haririnia, A.2
Dickinson, B.C.3
Fushman, D.4
Cohen, R.E.5
-
176
-
-
79961002252
-
USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains
-
Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, et al. 2011. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J. Biol. Chem. 286:27333-41
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27333-27341
-
-
Scortegagna, M.1
Subtil, T.2
Qi, J.3
Kim, H.4
Zhao, W.5
-
177
-
-
68149163523
-
The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition
-
Denuc A, Bosch-Comas A, Gonzalez-Duarte R, Marfany G. 2009. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS One 4:e5571
-
(2009)
PLoS One
, vol.4
-
-
Denuc, A.1
Bosch-Comas, A.2
Gonzalez-Duarte, R.3
Marfany, G.4
-
178
-
-
0141625302
-
Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation
-
Swanson KA, Kang RS, Stamenova SD, Hicke L, Radhakrishnan I. 2003. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22:4597-606
-
(2003)
EMBO J.
, vol.22
, pp. 4597-4606
-
-
Swanson, K.A.1
Kang, R.S.2
Stamenova, S.D.3
Hicke, L.4
Radhakrishnan, I.5
-
179
-
-
20144366969
-
HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome
-
Westhoff B, Chapple JP, Van der Spuy J, Hohfeld J, Cheetham ME. 2005. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr. Biol. 15:1058-64
-
(2005)
Curr. Biol.
, vol.15
, pp. 1058-1064
-
-
Westhoff, B.1
Chapple, J.P.2
Van Der Spuy, J.3
Hohfeld, J.4
Cheetham, M.E.5
-
180
-
-
33644502037
-
Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein
-
Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. 2006. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 7:262-81
-
(2006)
Traffic
, vol.7
, pp. 262-281
-
-
Hawryluk, M.J.1
Keyel, P.A.2
Mishra, S.K.3
Watkins, S.C.4
Heuser, J.E.5
Traub, L.M.6
|