메뉴 건너뛰기




Volumn 81, Issue , 2012, Pages 291-322

Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions

Author keywords

26S proteasome; autophagy; endocytosis; NF B; ubiquitin receptor; ubiquitination

Indexed keywords

BINDING PROTEIN; UBIQUITIN; UBIQUITIN BINDING PROTEIN; UNCLASSIFIED DRUG; ZINC FINGER PROTEIN;

EID: 84861783400     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-051810-094654     Document Type: Article
Times cited : (615)

References (180)
  • 2
    • 20444404618 scopus 로고    scopus 로고
    • Regulated protein degradation
    • Varshavsky A. 2005. Regulated protein degradation. Trends Biochem. Sci. 30:283-86
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 283-286
    • Varshavsky, A.1
  • 3
    • 33846471122 scopus 로고    scopus 로고
    • Proteasome-independent functions of ubiquitin in endocytosis and signaling
    • Mukhopadhyay D, Riezman H. 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201-5
    • (2007) Science , vol.315 , pp. 201-205
    • Mukhopadhyay, D.1    Riezman, H.2
  • 4
    • 79955484976 scopus 로고    scopus 로고
    • The spatial and temporal organization of ubiquitin networks
    • Grabbe C, Husnjak K, Dikic I. 2011. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12:295-307
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 295-307
    • Grabbe, C.1    Husnjak, K.2    Dikic, I.3
  • 5
    • 63649161943 scopus 로고    scopus 로고
    • The ubiquitylation machinery of the endoplasmic reticulum
    • Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T. 2009. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453-60
    • (2009) Nature , vol.458 , pp. 453-460
    • Hirsch, C.1    Gauss, R.2    Horn, S.C.3    Neuber, O.4    Sommer, T.5
  • 6
    • 63649144413 scopus 로고    scopus 로고
    • Principles of ubiquitin and SUMO modifications in DNA repair
    • Bergink S, Jentsch S. 2009. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461-67
    • (2009) Nature , vol.458 , pp. 461-467
    • Bergink, S.1    Jentsch, S.2
  • 7
    • 79959539790 scopus 로고    scopus 로고
    • Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death
    • Vucic D, Dixit VM, Wertz IE. 2011. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12:439-52
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 439-452
    • Vucic, D.1    Dixit, V.M.2    Wertz, I.E.3
  • 8
    • 71149119391 scopus 로고    scopus 로고
    • A tangled web of ubiquitin chains: Breaking news in TNF-R1 signaling
    • Bianchi K, Meier P. 2009. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36:736-42
    • (2009) Mol. Cell , vol.36 , pp. 736-742
    • Bianchi, K.1    Meier, P.2
  • 9
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin V, McEwan DG, Novak I, Dikic I. 2009. A role for ubiquitin in selective autophagy. Mol. Cell 34:259-69
    • (2009) Mol. Cell , vol.34 , pp. 259-269
    • Kirkin, V.1    McEwan, D.G.2    Novak, I.3    Dikic, I.4
  • 10
    • 1442323729 scopus 로고    scopus 로고
    • N-terminal ubiquitination: More protein substrates join in
    • Ciechanover A, Ben-Saadon R. 2004. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14:103-6
    • (2004) Trends Cell Biol. , vol.14 , pp. 103-106
    • Ciechanover, A.1    Ben-Saadon, R.2
  • 11
    • 21744433861 scopus 로고    scopus 로고
    • Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase
    • Cadwell K, Coscoy L. 2005. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127-30
    • (2005) Science , vol.309 , pp. 127-130
    • Cadwell, K.1    Coscoy, L.2
  • 12
    • 33947539481 scopus 로고    scopus 로고
    • Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue
    • Ravid T, Hochstrasser M. 2007. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 9:422-27
    • (2007) Nat. Cell Biol. , vol.9 , pp. 422-427
    • Ravid, T.1    Hochstrasser, M.2
  • 13
    • 34249042608 scopus 로고    scopus 로고
    • Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3
    • Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. 2007. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177:613-24
    • (2007) J. Cell Biol. , vol.177 , pp. 613-624
    • Wang, X.1    Herr, R.A.2    Chua, W.J.3    Lybarger, L.4    Wiertz, E.J.5    Hansen, T.H.6
  • 15
    • 80054033461 scopus 로고    scopus 로고
    • A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles
    • 013284
    • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, et al. 2011. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10:M111.013284
    • (2011) Mol. Cell Proteomics , vol.10
    • Wagner, S.A.1    Beli, P.2    Weinert, B.T.3    Nielsen, M.L.4    Cox, J.5
  • 16
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • KimW, Bennett EJ, Huttlin EL, Guo A, Li J, et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44:325-40
    • (2011) Mol. Cell. , vol.44 , pp. 325-340
    • Kim Bennett W, E.J.1    Huttlin, E.L.2    Guo, A.3    Li, J.4
  • 17
    • 9644268864 scopus 로고    scopus 로고
    • Mechanism and function of deubiquitinating enzymes
    • Amerik AY, Hochstrasser M. 2004. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695:189-207
    • (2004) Biochim. Biophys. Acta , vol.1695 , pp. 189-207
    • Amerik, A.Y.1    Hochstrasser, M.2
  • 18
    • 67650620318 scopus 로고    scopus 로고
    • Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes
    • Reyes-Turcu FE, Ventii KH, Wilkinson KD. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78:363-97
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 363-397
    • Reyes-Turcu, F.E.1    Ventii, K.H.2    Wilkinson, K.D.3
  • 19
    • 44649101850 scopus 로고    scopus 로고
    • Atypical ubiquitin chains: New molecular signals'ProteinModifications: Beyond the Usual Suspects' review series
    • Ikeda F, Dikic I. 2008. Atypical ubiquitin chains: new molecular signals. 'ProteinModifications: Beyond the Usual Suspects' review series. EMBO Rep. 9:536-42
    • (2008) EMBO Rep. , vol.9 , pp. 536-542
    • Ikeda, F.1    Dikic, I.2
  • 20
    • 67650064603 scopus 로고    scopus 로고
    • Linear polyubiquitination: A new regulator of NF-kappaB activation
    • Iwai K, Tokunaga F. 2009. Linear polyubiquitination: a new regulator of NF-kappaB activation. EMBO Rep. 10:706-13
    • (2009) EMBO Rep. , vol.10 , pp. 706-713
    • Iwai, K.1    Tokunaga, F.2
  • 21
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477-513
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 22
    • 27144529182 scopus 로고    scopus 로고
    • Ubiquitylation and cell signaling
    • Haglund K, Dikic I. 2005. Ubiquitylation and cell signaling. EMBO J. 24:3353-59
    • (2005) EMBO J. , vol.24 , pp. 3353-3359
    • Haglund, K.1    Dikic, I.2
  • 23
    • 79955780837 scopus 로고    scopus 로고
    • A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis
    • 009753
    • Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, et al. 2011. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell Proteomics 10:M111.009753
    • (2011) Mol. Cell Proteomics , vol.10
    • Ziv, I.1    Matiuhin, Y.2    Kirkpatrick, D.S.3    Erpapazoglou, Z.4    Leon, S.5
  • 24
    • 79953197650 scopus 로고    scopus 로고
    • Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease
    • Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, et al. 2011. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J. Biol. Chem. 286:10457-65
    • (2011) J. Biol. Chem. , vol.286 , pp. 10457-10465
    • Dammer, E.B.1    Na, C.H.2    Xu, P.3    Seyfried, N.T.4    Duong, D.M.5
  • 25
    • 79953240109 scopus 로고    scopus 로고
    • Linear ubiquitination prevents inflammation and regulates immune signalling
    • Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, et al. 2011. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471:591-96
    • (2011) Nature , vol.471 , pp. 591-596
    • Gerlach, B.1    Cordier, S.M.2    Schmukle, A.C.3    Emmerich, C.H.4    Rieser, E.5
  • 26
    • 79953239980 scopus 로고    scopus 로고
    • SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis
    • Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, et al. 2011. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471:637-41
    • (2011) Nature , vol.471 , pp. 637-641
    • Ikeda, F.1    Deribe, Y.L.2    Skanland, S.S.3    Stieglitz, B.4    Grabbe, C.5
  • 27
    • 79953237668 scopus 로고    scopus 로고
    • SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex
    • Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, et al. 2011. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471:633-36
    • (2011) Nature , vol.471 , pp. 633-636
    • Tokunaga, F.1    Nakagawa, T.2    Nakahara, M.3    Saeki, Y.4    Taniguchi, M.5
  • 28
    • 59649103156 scopus 로고    scopus 로고
    • Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
    • Tokunaga F, Sakata S, SaekiY, SatomiY, KirisakoT, et al. 2009. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11:123-32
    • (2009) Nat. Cell Biol. , vol.11 , pp. 123-132
    • Tokunaga, F.1    Sakata, S.2    Satomiy Kirisakot, S.3
  • 29
    • 77955516435 scopus 로고    scopus 로고
    • K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody
    • Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, et al. 2010. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39:477-84
    • (2010) Mol. Cell , vol.39 , pp. 477-484
    • Matsumoto, M.L.1    Wickliffe, K.E.2    Dong, K.C.3    Yu, C.4    Bosanac, I.5
  • 30
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, et al. 2009. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133-45
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1    Duong, D.M.2    Seyfried, N.T.3    Cheng, D.4    Xie, Y.5
  • 31
    • 43049162227 scopus 로고    scopus 로고
    • Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
    • Jin L, Williamson A, Banerjee S, Philipp I, Rape M. 2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653-65
    • (2008) Cell , vol.133 , pp. 653-665
    • Jin, L.1    Williamson, A.2    Banerjee, S.3    Philipp, I.4    Rape, M.5
  • 32
    • 78650300883 scopus 로고    scopus 로고
    • C-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling
    • Dynek JN, GoncharovT, DueberEC, Fedorova AV, Izrael-Tomasevic A, et al. 2010. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29:4198-209
    • (2010) EMBO J. , vol.29 , pp. 4198-4209
    • Dynek, J.N.1    Goncharov, T.2    Dueber, E.C.3    Fedorova, A.V.4    Izrael-Tomasevic, A.5
  • 34
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson ES, Ma PC, Ota IM, Varshavsky A. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442-56
    • (1995) J. Biol. Chem. , vol.270 , pp. 17442-17456
    • Johnson, E.S.1    Ma, P.C.2    Ota, I.M.3    Varshavsky, A.4
  • 35
    • 33750219981 scopus 로고    scopus 로고
    • A ubiquitin ligase complex assembles linear polyubiquitin chains
    • Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, et al. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25:4877-87
    • (2006) EMBO J. , vol.25 , pp. 4877-4887
    • Kirisako, T.1    Kamei, K.2    Murata, S.3    Kato, M.4    Fukumoto, H.5
  • 36
    • 62549155321 scopus 로고    scopus 로고
    • Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation
    • Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, et al. 2009. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098-109
    • (2009) Cell , vol.136 , pp. 1098-1109
    • Rahighi, S.1    Ikeda, F.2    Kawasaki, M.3    Akutsu, M.4    Suzuki, N.5
  • 37
    • 77956903406 scopus 로고    scopus 로고
    • Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase
    • Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. 2010. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat. Chem. Biol. 6:750-57
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 750-757
    • Virdee, S.1    Ye, Y.2    Nguyen, D.P.3    Komander, D.4    Chin, J.W.5
  • 38
    • 67649211954 scopus 로고    scopus 로고
    • Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks
    • Jung JE, WollscheidHP, MarquardtA, Manea M, ScheffnerM, PrzybylskiM. 2009. Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks. Bioconjug. Chem. 20:1152-62
    • (2009) Bioconjug. Chem. , vol.20 , pp. 1152-1162
    • Jung, J.E.1    Wollscheid, H.P.2    Marquardt, A.3    Manea, M.4    Scheffner, M.5    Przybylski, M.6
  • 39
    • 77956841522 scopus 로고    scopus 로고
    • Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine
    • Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. 2010. Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. Chem. Commun. 46:7199-201
    • (2010) Chem. Commun. , vol.46 , pp. 7199-7201
    • Yang, R.1    Pasunooti, K.K.2    Li, F.3    Liu, X.W.4    Liu, C.F.5
  • 43
    • 29144499065 scopus 로고    scopus 로고
    • Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis
    • Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, et al. 2005. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821-24
    • (2005) Science , vol.310 , pp. 1821-1824
    • Bienko, M.1    Green, C.M.2    Crosetto, N.3    Rudolf, F.4    Zapart, G.5
  • 44
    • 75949107942 scopus 로고    scopus 로고
    • Unconventional ubiquitin recognition by the ubiquitin-binding motif within the y family DNA polymerases iota and Rev1
    • Bomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P. 2010. Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol. Cell 37:408-17
    • (2010) Mol. Cell , vol.37 , pp. 408-417
    • Bomar, M.G.1    D'Souza, S.2    Bienko, M.3    Dikic, I.4    Walker, G.C.5    Zhou, P.6
  • 45
    • 33646036373 scopus 로고    scopus 로고
    • Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin
    • Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, et al. 2006. Crystal structure of the ubiquitin binding domains of Rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183-95
    • (2006) Cell , vol.124 , pp. 1183-1195
    • Penengo, L.1    Mapelli, M.2    Murachelli, A.G.3    Confalonieri, S.4    Magri, L.5
  • 47
    • 33646066025 scopus 로고    scopus 로고
    • The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
    • Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. 2006. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197-208
    • (2006) Cell , vol.124 , pp. 1197-1208
    • Reyes-Turcu, F.E.1    Horton, J.R.2    Mullally, J.E.3    Heroux, A.4    Cheng, X.5    Wilkinson, K.D.6
  • 49
    • 72149107116 scopus 로고    scopus 로고
    • Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin-HECTNEDD4L complex
    • Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, et al. 2009. Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin-HECTNEDD4L complex. Mol. Cell 36:1095-102
    • (2009) Mol. Cell , vol.36 , pp. 1095-1102
    • Kamadurai, H.B.1    Souphron, J.2    Scott, D.C.3    Duda, D.M.4    Miller, D.J.5
  • 51
  • 52
    • 77953108542 scopus 로고    scopus 로고
    • The diversity of ubiquitin recognition: Hot spots and varied specificity
    • Winget JM, Mayor T. 2010. The diversity of ubiquitin recognition: hot spots and varied specificity. Mol. Cell 38:627-35
    • (2010) Mol. Cell , vol.38 , pp. 627-635
    • Winget, J.M.1    Mayor, T.2
  • 53
    • 45849131354 scopus 로고    scopus 로고
    • Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution
    • Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, et al. 2008. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471-75
    • (2008) Science , vol.320 , pp. 1471-1475
    • Lange, O.F.1    Lakomek, N.A.2    Fares, C.3    Schroder, G.F.4    Walter, K.F.5
  • 54
    • 73349117207 scopus 로고    scopus 로고
    • Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin
    • Wlodarski T, Zagrovic B. 2009. Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin. Proc. Natl. Acad. Sci. USA 106:19346-51
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 19346-19351
    • Wlodarski, T.1    Zagrovic, B.2
  • 55
    • 0036922992 scopus 로고    scopus 로고
    • Structural properties of polyubiquitin chains in solution
    • Varadan R, Walker O, Pickart C, Fushman D. 2002. Structural properties of polyubiquitin chains in solution. J. Mol. Biol. 324:637-47
    • (2002) J. Mol. Biol. , vol.324 , pp. 637-647
    • Varadan, R.1    Walker, O.2    Pickart, C.3    Fushman, D.4
  • 56
    • 33646773525 scopus 로고    scopus 로고
    • Interdomain mobility in di-ubiquitin revealed byNMR
    • Ryabov Y, FushmanD. 2006. Interdomain mobility in di-ubiquitin revealed byNMR. Proteins 63:787-96
    • (2006) Proteins , vol.63 , pp. 787-796
    • Ryabov, Y.1    Fushman, D.2
  • 57
    • 1342304089 scopus 로고    scopus 로고
    • Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling
    • Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D. 2004. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279:7055-63
    • (2004) J. Biol. Chem. , vol.279 , pp. 7055-7063
    • Varadan, R.1    Assfalg, M.2    Haririnia, A.3    Raasi, S.4    Pickart, C.5    Fushman, D.6
  • 58
    • 73649116305 scopus 로고    scopus 로고
    • Exploring the linkage dependence of polyubiquitin conformations using molecular modeling
    • Fushman D, Walker O. 2010. Exploring the linkage dependence of polyubiquitin conformations using molecular modeling. J. Mol. Biol. 395:803-14
    • (2010) J. Mol. Biol. , vol.395 , pp. 803-814
    • Fushman, D.1    Walker, O.2
  • 59
    • 0038820381 scopus 로고    scopus 로고
    • Solution structure of a CUEubiquitin complex reveals a conserved mode of ubiquitin binding
    • Kang RS, Daniels CM, Francis SA, Shih SC, Salerno WJ, et al. 2003. Solution structure of a CUEubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113:621-30
    • (2003) Cell , vol.113 , pp. 621-630
    • Kang, R.S.1    Daniels, C.M.2    Francis, S.A.3    Shih, S.C.4    Salerno, W.J.5
  • 62
    • 79961000536 scopus 로고    scopus 로고
    • Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools
    • Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, et al. 2011. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods 8:691-96
    • (2011) Nat. Methods , vol.8 , pp. 691-696
    • Kaiser, S.E.1    Riley, B.E.2    Shaler, T.A.3    Trevino, R.S.4    Becker, C.H.5
  • 63
    • 14444284098 scopus 로고    scopus 로고
    • Hrs is associated with STAM, a signaltransducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth
    • Asao H, Sasaki Y, Arita T, Tanaka N, Endo K, et al. 1997. Hrs is associated with STAM, a signaltransducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J. Biol. Chem. 272:32785-91
    • (1997) J. Biol. Chem. , vol.272 , pp. 32785-32791
    • Asao, H.1    Sasaki, Y.2    Arita, T.3    Tanaka, N.4    Endo, K.5
  • 64
    • 0038323973 scopus 로고    scopus 로고
    • STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes
    • Bache KG, Raiborg C, Mehlum A, Stenmark H. 2003. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278:12513-21
    • (2003) J. Biol. Chem. , vol.278 , pp. 12513-12521
    • Bache, K.G.1    Raiborg, C.2    Mehlum, A.3    Stenmark, H.4
  • 65
    • 0032552056 scopus 로고    scopus 로고
    • Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis
    • Chen H, Fre S, Slepnev VI, Capua MR, Takei K, et al. 1998. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394:793-97
    • (1998) Nature , vol.394 , pp. 793-797
    • Chen, H.1    Fre, S.2    Slepnev, V.I.3    Capua, M.R.4    Takei, K.5
  • 66
    • 0035369556 scopus 로고    scopus 로고
    • A ubiquitin-interactingmotif conserved in components of the proteasomal and lysosomal protein degradation systems
    • HofmannK, Falquet L. 2001. A ubiquitin-interactingmotif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26:347-50
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 347-350
    • Hofmann, K.1    Falquet, L.2
  • 67
  • 68
    • 1542373897 scopus 로고    scopus 로고
    • Distinct monoubiquitin signals in receptor endocytosis
    • Haglund K, Di Fiore PP, Dikic I. 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28:598-603
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 598-603
    • Haglund, K.1    Di Fiore, P.P.2    Dikic, I.3
  • 69
    • 33646070471 scopus 로고    scopus 로고
    • The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain
    • Mattera R, Tsai YC, Weissman AM, Bonifacino JS. 2006. The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J. Biol. Chem. 281:6874-83
    • (2006) J. Biol. Chem. , vol.281 , pp. 6874-6883
    • Mattera, R.1    Tsai, Y.C.2    Weissman, A.M.3    Bonifacino, J.S.4
  • 70
    • 0141744750 scopus 로고    scopus 로고
    • STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif
    • Mizuno E, Kawahata K, Kato M, Kitamura N, Komada M. 2003. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14:3675-89
    • (2003) Mol. Biol. Cell , vol.14 , pp. 3675-3689
    • Mizuno, E.1    Kawahata, K.2    Kato, M.3    Kitamura, N.4    Komada, M.5
  • 71
    • 77949567362 scopus 로고    scopus 로고
    • VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo
    • Ren X, Hurley JH. 2010. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 29:1045-54
    • (2010) EMBO J. , vol.29 , pp. 1045-1054
    • Ren, X.1    Hurley, J.H.2
  • 72
    • 50349102579 scopus 로고    scopus 로고
    • Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T
    • Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. 2008. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283:19581-92
    • (2008) J. Biol. Chem. , vol.283 , pp. 19581-19592
    • Reyes-Turcu, F.E.1    Shanks, J.R.2    Komander, D.3    Wilkinson, K.D.4
  • 73
    • 19944419643 scopus 로고    scopus 로고
    • Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide- interacting GLUE domain
    • Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, et al. 2005. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280:19600-6
    • (2005) J. Biol. Chem. , vol.280 , pp. 19600-19606
    • Slagsvold, T.1    Aasland, R.2    Hirano, S.3    Bache, K.G.4    Raiborg, C.5
  • 76
    • 78650534710 scopus 로고    scopus 로고
    • Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins
    • Tyrrell A, Flick K, Kleiger G, Zhang H, Deshaies RJ, Kaiser P. 2010. Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proc. Natl. Acad. Sci. USA 107:19796-801
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 19796-19801
    • Tyrrell, A.1    Flick, K.2    Kleiger, G.3    Zhang, H.4    Deshaies, R.J.5    Kaiser, P.6
  • 77
    • 0034604341 scopus 로고    scopus 로고
    • Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4
    • Kaiser P, Flick K, Wittenberg C, Reed SI. 2000. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102:303-14
    • (2000) Cell , vol.102 , pp. 303-314
    • Kaiser, P.1    Flick, K.2    Wittenberg, C.3    Reed, S.I.4
  • 78
    • 0036348150 scopus 로고    scopus 로고
    • Dual regulation of the Met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment
    • Kuras L, Rouillon A, Lee T, Barbey R, Tyers M, Thomas D. 2002. Dual regulation of the Met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell 10:69-80
    • (2002) Mol. Cell , vol.10 , pp. 69-80
    • Kuras, L.1    Rouillon, A.2    Lee, T.3    Barbey, R.4    Tyers, M.5    Thomas, D.6
  • 79
    • 33751544234 scopus 로고    scopus 로고
    • Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4
    • Chandrasekaran S, Deffenbaugh AE, Ford DA, Bailly E, Mathias N, Skowyra D. 2006. Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4. Mol. Cell 24:689-99
    • (2006) Mol. Cell , vol.24 , pp. 689-699
    • Chandrasekaran, S.1    Deffenbaugh, A.E.2    Ford, D.A.3    Bailly, E.4    Mathias, N.5    Skowyra, D.6
  • 80
    • 3242696232 scopus 로고    scopus 로고
    • Proteolysis-independent regulation of the transcription factor Met4 by a single Lys48-linked ubiquitin chain
    • Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, et al. 2004. Proteolysis-independent regulation of the transcription factor Met4 by a single Lys48-linked ubiquitin chain. Nat. Cell Biol. 6:634-41
    • (2004) Nat. Cell Biol. , vol.6 , pp. 634-641
    • Flick, K.1    Ouni, I.2    Wohlschlegel, J.A.3    Capati, C.4    McDonald, W.H.5
  • 81
    • 79251482771 scopus 로고    scopus 로고
    • What determines the specificity and outcomes of ubiquitin signaling?
    • Ikeda F, Crosetto N, Dikic I. 2010. What determines the specificity and outcomes of ubiquitin signaling? Cell 143:677-81
    • (2010) Cell , vol.143 , pp. 677-681
    • Ikeda, F.1    Crosetto, N.2    Dikic, I.3
  • 82
    • 62549161305 scopus 로고    scopus 로고
    • Linkage-specific avidity defines the lysine 63-linked polyubiquitinbinding preference of Rap80
    • Sims JJ, Cohen RE. 2009. Linkage-specific avidity defines the lysine 63-linked polyubiquitinbinding preference of Rap80. Mol. Cell 33:775-83
    • (2009) Mol. Cell , vol.33 , pp. 775-783
    • Sims, J.J.1    Cohen, R.E.2
  • 83
    • 85047669941 scopus 로고    scopus 로고
    • The UBA domain: A sequence motif present in multiple enzyme classes of the ubiquitination pathway
    • Hofmann K, Bucher P. 1996. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21:172-73
    • (1996) Trends Biochem. Sci. , vol.21 , pp. 172-173
    • Hofmann, K.1    Bucher, P.2
  • 84
    • 0034762028 scopus 로고    scopus 로고
    • Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly
    • Chen L, Shinde U, Ortolan TG, Madura K. 2001. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2:933-38
    • (2001) EMBO Rep. , vol.2 , pp. 933-938
    • Chen, L.1    Shinde, U.2    Ortolan, T.G.3    Madura, K.4
  • 85
    • 0037154160 scopus 로고    scopus 로고
    • Budding yeast Dsk2p is a polyubiquitinbinding protein that can interact with the proteasome
    • Funakoshi M, Sasaki T, Nishimoto T, Kobayashi H. 2002. Budding yeast Dsk2p is a polyubiquitinbinding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99:745-50
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 745-750
    • Funakoshi, M.1    Sasaki, T.2    Nishimoto, T.3    Kobayashi, H.4
  • 86
    • 23144449583 scopus 로고    scopus 로고
    • Delivery of ubiquitinated substrates to protein-unfolding machines
    • Elsasser S, Finley D. 2005. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7:742-49
    • (2005) Nat. Cell Biol. , vol.7 , pp. 742-749
    • Elsasser, S.1    Finley, D.2
  • 87
    • 65249166493 scopus 로고    scopus 로고
    • Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins
    • Grabbe C, Dikic I. 2009. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109:1481-94
    • (2009) Chem. Rev. , vol.109 , pp. 1481-1494
    • Grabbe, C.1    Dikic, I.2
  • 89
    • 0037646406 scopus 로고    scopus 로고
    • Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains
    • Raasi S, PickartCM. 2003. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278:8951-59
    • (2003) J. Biol. Chem. , vol.278 , pp. 8951-8959
    • Raasi, S.1    Pickart, C.M.2
  • 90
    • 4143061786 scopus 로고    scopus 로고
    • Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A
    • Raasi S, Orlov I, FlemingKG, PickartCM. 2004. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341:1367-79
    • (2004) J. Mol. Biol. , vol.341 , pp. 1367-1379
    • Raasi, S.1    Orlov, I.2    Fleming, K.G.3    Pickart, C.M.4
  • 91
    • 20444391345 scopus 로고    scopus 로고
    • Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain
    • Varadan R, Assfalg M, Raasi S, Pickart C, Fushman D. 2005. Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol. Cell 18:687-98
    • (2005) Mol. Cell , vol.18 , pp. 687-698
    • Varadan, R.1    Assfalg, M.2    Raasi, S.3    Pickart, C.4    Fushman, D.5
  • 92
    • 17044368771 scopus 로고    scopus 로고
    • The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation
    • Heessen S, Masucci MG, Dantuma NP. 2005. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18:225-35
    • (2005) Mol. Cell , vol.18 , pp. 225-235
    • Heessen, S.1    Masucci, M.G.2    Dantuma, N.P.3
  • 96
    • 84867582157 scopus 로고    scopus 로고
    • C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation
    • Heinen C, Acs K, Hoogstraten D, Dantuma NP. 2011. C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation. Nat. Commun. 2:191
    • (2011) Nat. Commun. , vol.2 , pp. 191
    • Heinen, C.1    Acs, K.2    Hoogstraten, D.3    Dantuma, N.P.4
  • 97
    • 33746023341 scopus 로고    scopus 로고
    • The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10
    • Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, et al. 2006. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J. Biol. Chem. 281:20045-54
    • (2006) J. Biol. Chem. , vol.281 , pp. 20045-20054
    • Schmidtke, G.1    Kalveram, B.2    Weber, E.3    Bochtler, P.4    Lukasiak, S.5
  • 98
    • 58649086714 scopus 로고    scopus 로고
    • Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L
    • Schmidtke G, Kalveram B, Groettrup M. 2009. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583:591-94
    • (2009) FEBS Lett. , vol.583 , pp. 591-594
    • Schmidtke, G.1    Kalveram, B.2    Groettrup, M.3
  • 99
    • 1942533448 scopus 로고    scopus 로고
    • NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation
    • Hipp MS, Raasi S, Groettrup M, Schmidtke G. 2004. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem. 279:16503-10
    • (2004) J. Biol. Chem. , vol.279 , pp. 16503-16510
    • Hipp, M.S.1    Raasi, S.2    Groettrup, M.3    Schmidtke, G.4
  • 100
    • 0032489524 scopus 로고    scopus 로고
    • Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a
    • Young P, DeverauxQ, BealRE, PickartCM, RechsteinerM. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273:5461-67
    • (1998) J. Biol. Chem. , vol.273 , pp. 5461-5467
    • Young, P.1    Deveraux, Q.2    Beal, R.E.3    Pickart, C.M.4    Rechsteiner, M.5
  • 102
    • 0037065732 scopus 로고    scopus 로고
    • Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
    • Walters KJ, KleijnenMF, Goh AM, Wagner G, Howley PM. 2002. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41:1767-77
    • (2002) Biochemistry , vol.41 , pp. 1767-1777
    • Walters, K.J.1    Kleijnen, M.F.2    Goh, A.M.3    Wagner, G.4    Howley, P.M.5
  • 103
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang Q, Young P, Walters KJ. 2005. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348:727-39
    • (2005) J. Mol. Biol. , vol.348 , pp. 727-739
    • Wang, Q.1    Young, P.2    Walters, K.J.3
  • 104
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481-88
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1    Elsasser, S.2    Zhang, N.3    Chen, X.4    Randles, L.5
  • 105
    • 44349094727 scopus 로고    scopus 로고
    • Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
    • Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548-52
    • (2008) Nature , vol.453 , pp. 548-552
    • Schreiner, P.1    Chen, X.2    Husnjak, K.3    Randles, L.4    Zhang, N.5
  • 106
    • 0030747914 scopus 로고    scopus 로고
    • Machado-Joseph disease gene products carrying different carboxyl termini
    • Goto J, Watanabe M, Ichikawa Y, Yee SB, Ihara N, et al. 1997. Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci. Res. 28:373-77
    • (1997) Neurosci. Res. , vol.28 , pp. 373-377
    • Goto, J.1    Watanabe, M.2    Ichikawa, Y.3    Yee, S.B.4    Ihara, N.5
  • 107
    • 0942287194 scopus 로고    scopus 로고
    • Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways
    • Chai Y, Berke SS, Cohen RE, Paulson HL. 2004. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J. Biol. Chem. 279:3605-11
    • (2004) J. Biol. Chem. , vol.279 , pp. 3605-3611
    • Chai, Y.1    Berke, S.S.2    Cohen, R.E.3    Paulson, H.L.4
  • 108
    • 78049272810 scopus 로고    scopus 로고
    • Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains
    • Song AX, Zhou CJ, Peng Y, Gao XC, Zhou ZR, et al. 2010. Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains. PLoS One 5:e13202
    • (2010) PLoS One , vol.5
    • Song, A.X.1    Zhou, C.J.2    Peng, Y.3    Gao, X.C.4    Zhou, Z.R.5
  • 109
    • 0345099501 scopus 로고    scopus 로고
    • The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity
    • Burnett B, Li F, Pittman RN. 2003. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12:3195-205
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 3195-3205
    • Burnett, B.1    Li, F.2    Pittman, R.N.3
  • 110
    • 71749115321 scopus 로고    scopus 로고
    • Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites
    • Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, et al. 2009. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91:1203-14
    • (2009) Biopolymers , vol.91 , pp. 1203-1214
    • Nicastro, G.1    Masino, L.2    Esposito, V.3    Menon, R.P.4    De Simone, A.5
  • 111
    • 77957879514 scopus 로고    scopus 로고
    • Understanding the role of the Josephin domain in the polyUb binding and cleavage properties of ataxin-3
    • Nicastro G, Todi SV, Karaca E, Bonvin AM, Paulson HL, Pastore A. 2010. Understanding the role of the Josephin domain in the polyUb binding and cleavage properties of ataxin-3. PLoS One 5:e12430
    • (2010) PLoS One , vol.5
    • Nicastro, G.1    Todi, S.V.2    Karaca, E.3    Bonvin, A.M.4    Paulson, H.L.5    Pastore, A.6
  • 112
    • 59649086030 scopus 로고    scopus 로고
    • Nonproteolytic functions of ubiquitin in cell signaling
    • Chen ZJ, Sun LJ. 2009. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33:275-86
    • (2009) Mol. Cell , vol.33 , pp. 275-286
    • Chen, Z.J.1    Sun, L.J.2
  • 114
    • 72449162040 scopus 로고    scopus 로고
    • Structural basis for specific recognition of Lys63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3
    • Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. 2009. Structural basis for specific recognition of Lys63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J. 28:3903-9
    • (2009) EMBO J. , vol.28 , pp. 3903-3909
    • Sato, Y.1    Yoshikawa, A.2    Yamashita, M.3    Yamagata, A.4    Fukai, S.5
  • 115
    • 77953915005 scopus 로고    scopus 로고
    • Ubiquitin signalling in DNA replication and repair
    • Ulrich HD, Walden H. 2010. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11:479-89
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 479-489
    • Ulrich, H.D.1    Walden, H.2
  • 116
    • 53249113644 scopus 로고    scopus 로고
    • RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites
    • Yan J, Jetten AM. 2008. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett. 271:179-90
    • (2008) Cancer Lett. , vol.271 , pp. 179-190
    • Yan, J.1    Jetten, A.M.2
  • 117
    • 69149088033 scopus 로고    scopus 로고
    • Structural basis for specific recognition of Lys63-linked polyubiquitin chains by tandem UIMs of RAP80
    • Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S. 2009. Structural basis for specific recognition of Lys63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28:2461-68
    • (2009) EMBO J. , vol.28 , pp. 2461-2468
    • Sato, Y.1    Yoshikawa, A.2    Mimura, H.3    Yamashita, M.4    Yamagata, A.5    Fukai, S.6
  • 118
    • 33644852909 scopus 로고    scopus 로고
    • Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain
    • Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. 2006. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21:737-48
    • (2006) Mol. Cell , vol.21 , pp. 737-748
    • Huang, F.1    Kirkpatrick, D.2    Jiang, X.3    Gygi, S.4    Sorkin, A.5
  • 119
    • 0030881952 scopus 로고    scopus 로고
    • Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein
    • Galan JM, Haguenauer-Tsapis R. 1997. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16:5847-54
    • (1997) EMBO J. , vol.16 , pp. 5847-5854
    • Galan, J.M.1    Haguenauer-Tsapis, R.2
  • 120
    • 4143080425 scopus 로고    scopus 로고
    • AMSH is an endosome-associated ubiquitin isopeptidase
    • McCullough J, Clague MJ, Urbe S. 2004. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166:487-92
    • (2004) J. Cell Biol. , vol.166 , pp. 487-492
    • Mc Cullough, J.1    Clague, M.J.2    Urbe, S.3
  • 121
    • 27644438783 scopus 로고    scopus 로고
    • Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes
    • Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. 2005. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol. Biol. Cell 16:5163-74
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5163-5174
    • Mizuno, E.1    Iura, T.2    Mukai, A.3    Yoshimori, T.4    Kitamura, N.5    Komada, M.6
  • 122
    • 33750744827 scopus 로고    scopus 로고
    • STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH
    • Kim MS, Kim JA, Song HK, Jeon H. 2006. STAM-AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH. Biochem. Biophys. Res. Commun. 351:612-18
    • (2006) Biochem. Biophys. Res. Commun. , vol.351 , pp. 612-618
    • Kim, M.S.1    Kim, J.A.2    Song, H.K.3    Jeon, H.4
  • 123
    • 52149103164 scopus 로고    scopus 로고
    • Structural basis for specific cleavage of Lys63-linked polyubiquitin chains
    • Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, et al. 2008. Structural basis for specific cleavage of Lys63-linked polyubiquitin chains. Nature 455:358-62
    • (2008) Nature , vol.455 , pp. 358-362
    • Sato, Y.1    Yoshikawa, A.2    Yamagata, A.3    Mimura, H.4    Yamashita, M.5
  • 124
    • 44649166613 scopus 로고    scopus 로고
    • Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins
    • Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, et al. 2008. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27:3739-45
    • (2008) Oncogene , vol.27 , pp. 3739-3745
    • Wagner, S.1    Carpentier, I.2    Rogov, V.3    Kreike, M.4    Ikeda, F.5
  • 126
    • 3943054838 scopus 로고    scopus 로고
    • De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
    • Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694-99
    • (2004) Nature , vol.430 , pp. 694-699
    • Wertz, I.E.1    O'Rourke, K.M.2    Zhou, H.3    Eby, M.4    Aravind, L.5
  • 128
    • 70350020147 scopus 로고    scopus 로고
    • NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain
    • Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, et al. 2009. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28:2885-95
    • (2009) EMBO J. , vol.28 , pp. 2885-2895
    • Laplantine, E.1    Fontan, E.2    Chiaravalli, J.3    Lopez, T.4    Lakisic, G.5
  • 129
    • 0036845476 scopus 로고    scopus 로고
    • Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4
    • Meyer HH, Wang Y, Warren G. 2002. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21:5645-52
    • (2002) EMBO J. , vol.21 , pp. 5645-5652
    • Meyer, H.H.1    Wang, Y.2    Warren, G.3
  • 130
    • 71149105333 scopus 로고    scopus 로고
    • Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNFmediated gene induction
    • Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, et al. 2009. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNFmediated gene induction. Mol. Cell 36:831-44
    • (2009) Mol. Cell , vol.36 , pp. 831-844
    • Haas, T.L.1    Emmerich, C.H.2    Gerlach, B.3    Schmukle, A.C.4    Cordier, S.M.5
  • 131
    • 84855517985 scopus 로고    scopus 로고
    • Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex
    • Sato Y, Fujita H, Yoshikawa A, Yamashita M, Yamagata A, et al. 2011. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc. Natl. Acad. Sci. USA 108:20520-25
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 20520-20525
    • Sato, Y.1    Fujita, H.2    Yoshikawa, A.3    Yamashita, M.4    Yamagata, A.5
  • 132
    • 63049096813 scopus 로고    scopus 로고
    • Ubiquitin-binding domains and their role in the DNA damage response
    • Hofmann K. 2009. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair 8:544-56
    • (2009) DNA Repair , vol.8 , pp. 544-556
    • Hofmann, K.1
  • 133
    • 77954286076 scopus 로고    scopus 로고
    • A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
    • Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, et al. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39:36-47
    • (2010) Mol. Cell , vol.39 , pp. 36-47
    • Smogorzewska, A.1    Desetty, R.2    Saito, T.T.3    Schlabach, M.4    Lach, F.P.5
  • 134
    • 77954279611 scopus 로고    scopus 로고
    • Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
    • Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, et al. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77-88
    • (2010) Cell , vol.142 , pp. 77-88
    • Kratz, K.1    Schopf, B.2    Kaden, S.3    Sendoel, A.4    Eberhard, R.5
  • 135
    • 77954274685 scopus 로고    scopus 로고
    • Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
    • MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, et al. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-76
    • (2010) Cell , vol.142 , pp. 65-76
    • Mac Kay, C.1    Declais, A.C.2    Lundin, C.3    Agostinho, A.4    Deans, A.J.5
  • 136
    • 77955290719 scopus 로고    scopus 로고
    • FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
    • Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-96
    • (2010) Science , vol.329 , pp. 693-696
    • Liu, T.1    Ghosal, G.2    Yuan, J.3    Chen, J.4    Huang, J.5
  • 137
    • 34548156750 scopus 로고    scopus 로고
    • Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain
    • Bish RA, Myers MP. 2007. Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J. Biol. Chem. 282:23184-93
    • (2007) J. Biol. Chem. , vol.282 , pp. 23184-23193
    • Bish, R.A.1    Myers, M.P.2
  • 138
    • 58049199509 scopus 로고    scopus 로고
    • HumanWrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner
    • Crosetto N, Bienko M, Hibbert RG, Perica T, Ambrogio C, et al. 2008. HumanWrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J. Biol. Chem. 283:35173-85
    • (2008) J. Biol. Chem. , vol.283 , pp. 35173-35185
    • Crosetto, N.1    Bienko, M.2    Hibbert, R.G.3    Perica, T.4    Ambrogio, C.5
  • 139
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215-21
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1    Ryzhakov, G.2    Bloor, S.3    Von Muhlinen, N.4    Randow, F.5
  • 140
    • 39449129941 scopus 로고    scopus 로고
    • Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation
    • Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, et al. 2008. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. 27:629-41
    • (2008) EMBO J. , vol.27 , pp. 629-641
    • Iha, H.1    Peloponese, J.M.2    Verstrepen, L.3    Zapart, G.4    Ikeda, F.5
  • 142
    • 0034915764 scopus 로고    scopus 로고
    • Mechanisms underlying ubiquitination
    • Pickart CM. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503-33
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 503-533
    • Pickart, C.M.1
  • 143
    • 33644850903 scopus 로고    scopus 로고
    • AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
    • Brzovic PS, Lissounov A, ChristensenDE, Hoyt DW, Klevit RE. 2006. AUbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21:873-80
    • (2006) Mol. Cell , vol.21 , pp. 873-880
    • Brzovic, P.S.1    Lissounov, A.2    Christensen, D.E.3    Hoyt, D.W.4    Klevit, R.E.5
  • 144
    • 33749506057 scopus 로고    scopus 로고
    • Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation
    • Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. 2006. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13:915-20
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 915-920
    • Eddins, M.J.1    Carlile, C.M.2    Gomez, K.M.3    Pickart, C.M.4    Wolberger, C.5
  • 146
    • 66449125689 scopus 로고    scopus 로고
    • Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site
    • French ME, Kretzmann BR, Hicke L. 2009. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. J. Biol. Chem. 284:12071-79
    • (2009) J. Biol. Chem. , vol.284 , pp. 12071-12079
    • French, M.E.1    Kretzmann, B.R.2    Hicke, L.3
  • 147
    • 77949888615 scopus 로고    scopus 로고
    • The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates
    • Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, et al. 2010. The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J. Biol. Chem. 285:6308-15
    • (2010) J. Biol. Chem. , vol.285 , pp. 6308-6315
    • Ogunjimi, A.A.1    Wiesner, S.2    Briant, D.J.3    Varelas, X.4    Sicheri, F.5
  • 149
    • 79953325889 scopus 로고    scopus 로고
    • Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation
    • Maspero E, Mari S, Valentini E, Musacchio A, Fish A, et al. 2011. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12:342-49
    • (2011) EMBO Rep. , vol.12 , pp. 342-349
    • Maspero, E.1    Mari, S.2    Valentini, E.3    Musacchio, A.4    Fish, A.5
  • 150
    • 77954930632 scopus 로고    scopus 로고
    • IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer
    • Gyrd-HansenM, Meier P. 2010. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 10:561-74
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 561-574
    • Gyrd-Hansen, M.1    Meier, P.2
  • 151
    • 58249086500 scopus 로고    scopus 로고
    • Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1)
    • Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, et al. 2009. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). Biochem. J. 417:149-60
    • (2009) Biochem. J. , vol.417 , pp. 149-160
    • Blankenship, J.W.1    Varfolomeev, E.2    Goncharov, T.3    Fedorova, A.V.4    Kirkpatrick, D.S.5
  • 152
    • 55549140475 scopus 로고    scopus 로고
    • IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis
    • Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, et al. 2008. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat. Cell Biol. 10:1309-17
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1309-1317
    • Gyrd-Hansen, M.1    Darding, M.2    Miasari, M.3    Santoro, M.M.4    Zender, L.5
  • 153
    • 27444445613 scopus 로고    scopus 로고
    • C-Cbl and Cbl-b ubiquitin ligases: Substrate diversity and the negative regulation of signalling responses
    • Thien CB, Langdon WY. 2005. c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem. J. 391:153-66
    • (2005) Biochem. J. , vol.391 , pp. 153-166
    • Thien, C.B.1    Langdon, W.Y.2
  • 155
    • 4844227729 scopus 로고    scopus 로고
    • Cbl-b interacts with ubiquitinated proteins; Differential functions of the UBA domains of c-Cbl and Cbl-b
    • Davies GC, Ettenberg SA, Coats AO, Mussante M, Ravichandran S, et al. 2004. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23:7104-15
    • (2004) Oncogene , vol.23 , pp. 7104-7115
    • Davies, G.C.1    Ettenberg, S.A.2    Coats, A.O.3    Mussante, M.4    Ravichandran, S.5
  • 156
    • 52949113457 scopus 로고    scopus 로고
    • Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b:NMRstructural and biochemical insights
    • Zhou ZR, Gao HC, Zhou CJ, Chang YG, Hong J, et al. 2008. Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b:NMRstructural and biochemical insights. Protein Sci. 17:1805-14
    • (2008) Protein Sci. , vol.17 , pp. 1805-1814
    • Zhou, Z.R.1    Gao, H.C.2    Zhou, C.J.3    Chang, Y.G.4    Hong, J.5
  • 157
    • 34548354844 scopus 로고    scopus 로고
    • High incidence of ubiquitin-like domains in human ubiquitin-specific proteases
    • Zhu X, Menard R, Sulea T. 2007. High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69:1-7
    • (2007) Proteins , vol.69 , pp. 1-7
    • Zhu, X.1    Menard, R.2    Sulea, T.3
  • 158
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, et al. 2002. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10:495-507
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1    Hanna, J.2    Borodovsky, A.3    Crosas, B.4    Schmidt, M.5
  • 160
    • 79960649509 scopus 로고    scopus 로고
    • Autoregulation of Parkin activity through its ubiquitin-like domain
    • Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, et al. 2011. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30:2853-67
    • (2011) EMBO J. , vol.30 , pp. 2853-2867
    • Chaugule, V.K.1    Burchell, L.2    Barber, K.R.3    Sidhu, A.4    Leslie, S.J.5
  • 161
    • 0037187597 scopus 로고    scopus 로고
    • A singlemotif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins
    • Polo S, Sigismund S, Faretta M, GuidiM, Capua MR, et al. 2002. A singlemotif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416:451-55
    • (2002) Nature , vol.416 , pp. 451-455
    • Polo, S.1    Sigismund, S.2    Faretta, M.3    Guidi, M.4    Capua, M.R.5
  • 165
    • 75949122886 scopus 로고    scopus 로고
    • Regulation of translesion synthesis DNA polymerase ηby monoubiquitination
    • Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, et al. 2010. Regulation of translesion synthesis DNA polymerase ηby monoubiquitination. Mol. Cell 37:396-407
    • (2010) Mol. Cell , vol.37 , pp. 396-407
    • Bienko, M.1    Green, C.M.2    Sabbioneda, S.3    Crosetto, N.4    Matic, I.5
  • 166
    • 77953113655 scopus 로고    scopus 로고
    • Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
    • Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, et al. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38:733-45
    • (2010) Mol. Cell , vol.38 , pp. 733-745
    • Isasa, M.1    Katz, E.J.2    Kim, W.3    Yugo, V.4    Gonzalez, S.5
  • 167
    • 67650517556 scopus 로고    scopus 로고
    • NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
    • Lamark T, Kirkin V, Dikic I, JohansenT. 2009. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986-90
    • (2009) Cell Cycle , vol.8 , pp. 1986-1990
    • Lamark, T.1    Kirkin, V.2    Dikic, I.3    Johansen, T.4
  • 168
    • 4444220680 scopus 로고    scopus 로고
    • Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
    • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24:8055-68
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8055-8068
    • Seibenhener, M.L.1    Babu, J.R.2    Geetha, T.3    Wong, H.C.4    Krishna, N.R.5    Wooten, M.W.6
  • 169
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-16
    • (2009) Mol. Cell , vol.33 , pp. 505-516
    • Kirkin, V.1    Lamark, T.2    Sou, Y.S.3    Bjorkoy, G.4    Nunn, J.L.5
  • 170
    • 82455172117 scopus 로고    scopus 로고
    • Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
    • Matsumoto M, Wada K, Okuno M, Kurosawa M, Nukina N. 2011. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44:279-89
    • (2011) Mol. Cell , vol.44 , pp. 279-289
    • Matsumoto, M.1    Wada, K.2    Okuno, M.3    Kurosawa, M.4    Nukina, N.5
  • 171
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-33
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1    Farhan, H.2    McEwan, D.G.3    Wagner, S.4    Rogov, V.V.5
  • 172
    • 59649087451 scopus 로고    scopus 로고
    • Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling
    • Stehmeier P, Muller S. 2009. Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling. Mol. Cell 33:400-9
    • (2009) Mol. Cell , vol.33 , pp. 400-409
    • Stehmeier, P.1    Muller, S.2
  • 173
    • 63649086487 scopus 로고    scopus 로고
    • Targeting the ubiquitin system in cancer therapy
    • Hoeller D, Dikic I. 2009. Targeting the ubiquitin system in cancer therapy. Nature 458:438-44
    • (2009) Nature , vol.458 , pp. 438-444
    • Hoeller, D.1    Dikic, I.2
  • 175
    • 68249135262 scopus 로고    scopus 로고
    • Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains
    • Sims JJ, Haririnia A, Dickinson BC, FushmanD, Cohen RE. 2009. Avid interactions underlie the Lys63-linked polyubiquitin binding specificities observed for UBA domains. Nat. Struct. Mol. Biol. 16:883-89
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 883-889
    • Sims, J.J.1    Haririnia, A.2    Dickinson, B.C.3    Fushman, D.4    Cohen, R.E.5
  • 176
    • 79961002252 scopus 로고    scopus 로고
    • USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains
    • Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, et al. 2011. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J. Biol. Chem. 286:27333-41
    • (2011) J. Biol. Chem. , vol.286 , pp. 27333-27341
    • Scortegagna, M.1    Subtil, T.2    Qi, J.3    Kim, H.4    Zhao, W.5
  • 177
    • 68149163523 scopus 로고    scopus 로고
    • The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition
    • Denuc A, Bosch-Comas A, Gonzalez-Duarte R, Marfany G. 2009. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS One 4:e5571
    • (2009) PLoS One , vol.4
    • Denuc, A.1    Bosch-Comas, A.2    Gonzalez-Duarte, R.3    Marfany, G.4
  • 178
    • 0141625302 scopus 로고    scopus 로고
    • Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation
    • Swanson KA, Kang RS, Stamenova SD, Hicke L, Radhakrishnan I. 2003. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22:4597-606
    • (2003) EMBO J. , vol.22 , pp. 4597-4606
    • Swanson, K.A.1    Kang, R.S.2    Stamenova, S.D.3    Hicke, L.4    Radhakrishnan, I.5
  • 179
    • 20144366969 scopus 로고    scopus 로고
    • HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome
    • Westhoff B, Chapple JP, Van der Spuy J, Hohfeld J, Cheetham ME. 2005. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr. Biol. 15:1058-64
    • (2005) Curr. Biol. , vol.15 , pp. 1058-1064
    • Westhoff, B.1    Chapple, J.P.2    Van Der Spuy, J.3    Hohfeld, J.4    Cheetham, M.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.