메뉴 건너뛰기




Volumn 23, Issue 9, 2016, Pages 778-785

An atomic structure of the human 26S proteasome

Author keywords

[No Author keywords available]

Indexed keywords

26S PROTEASOME; DEUBIQUITINASE; PROTEASOME; UNCLASSIFIED DRUG; ATP DEPENDENT 26S PROTEASE; PROTEIN BINDING;

EID: 84978676943     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3273     Document Type: Article
Times cited : (174)

References (65)
  • 1
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley, D., Chen, X. & Walters, K.J. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77-93 (2016).
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 2
    • 0028235965 scopus 로고
    • A 26 S protease subunit that binds ubiquitin conjugates
    • Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059-7061 (1994).
    • (1994) J. Biol. Chem. , vol.269 , pp. 7059-7061
    • Deveraux, Q.1    Ustrell, V.2    Pickart, C.3    Rechsteiner, M.4
  • 3
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481-488 (2008).
    • (2008) Nature , vol.453 , pp. 481-488
    • Husnjak, K.1
  • 4
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang, F. et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34, 473-484 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 5
    • 79952816898 scopus 로고    scopus 로고
    • Structure and mechanism of the hexameric MecA-ClpC molecular machine
    • Wang, F. et al. Structure and mechanism of the hexameric MecA-ClpC molecular machine. Nature 471, 331-335 (2011).
    • (2011) Nature , vol.471 , pp. 331-335
    • Wang, F.1
  • 6
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander, G.C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 (2012).
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 7
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407 (2002).
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 8
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615 (2002).
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1
  • 9
    • 84892882219 scopus 로고    scopus 로고
    • Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases
    • Nyquist, K. & Martin, A. Marching to the beat of the ring: polypeptide translocation by AAA+ proteases. Trends Biochem. Sci. 39, 53-60 (2014).
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 53-60
    • Nyquist, K.1    Martin, A.2
  • 10
    • 68349157358 scopus 로고    scopus 로고
    • PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika
    • Pick, E., Hofmann, K. & Glickman, M.H. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 35, 260-264 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 260-264
    • Pick, E.1    Hofmann, K.2    Glickman, M.H.3
  • 11
    • 34248350363 scopus 로고    scopus 로고
    • MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
    • Maytal-Kivity, V., Reis, N., Hofmann, K. & Glickman, M.H. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem. 3, 28 (2002).
    • (2002) BMC Biochem. , vol.3 , pp. 28
    • Maytal-Kivity, V.1    Reis, N.2    Hofmann, K.3    Glickman, M.H.4
  • 12
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • Estrin, E., Lopez-Blanco, J.R., Chacón, P. & Martin, A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid.. Structure 21, 1624-1635 (2013).
    • (2013) Structure , vol.21 , pp. 1624-1635
    • Estrin, E.1    Lopez-Blanco, J.R.2    Chacón, P.3    Martin, A.4
  • 13
    • 84943612692 scopus 로고    scopus 로고
    • A single a helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
    • Tomko, R.J. Jr. et al. A single a helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163, 432-444 (2015).
    • (2015) Cell , vol.163 , pp. 432-444
    • Tomko, R.J.1
  • 14
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang, Q., Young, P. & Walters, K.J. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348, 727-739 (2005).
    • (2005) J. Mol. Biol. , vol.348 , pp. 727-739
    • Wang, Q.1    Young, P.2    Walters, K.J.3
  • 15
    • 68349135106 scopus 로고    scopus 로고
    • Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13
    • Zhang, N. et al. Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol. Cell 35, 280-290 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 280-290
    • Zhang, N.1
  • 16
    • 84863115607 scopus 로고    scopus 로고
    • Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
    • Sakata, E. et al. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 109, 1479-1484 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 1479-1484
    • Sakata, E.1
  • 17
    • 9644268864 scopus 로고    scopus 로고
    • Mechanism and function of deubiquitinating enzymes
    • Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189-207 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1695 , pp. 189-207
    • Amerik, A.Y.1    Hochstrasser, M.2
  • 18
    • 84964453431 scopus 로고    scopus 로고
    • USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites.
    • Lee, B.H. et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532, 398-401 (2016).
    • (2016) Nature , vol.532 , pp. 398-401
    • Lee, B.H.1
  • 19
    • 0037184947 scopus 로고    scopus 로고
    • Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
    • Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041-1054 (2002).
    • (2002) Cell , vol.111 , pp. 1041-1054
    • Hu, M.1
  • 20
    • 27744516748 scopus 로고    scopus 로고
    • Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14
    • Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747-3756 (2005).
    • (2005) EMBO J. , vol.24 , pp. 3747-3756
    • Hu, M.1
  • 21
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. Acidophilum at 3-4 A resolution
    • Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3-4 A resolution. Science 268, 533-539 (1995).
    • (1995) Science , vol.268 , pp. 533-539
    • Lowe, J.1
  • 22
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2-4A resolution
    • Groll, M. et al. Structure of 20S proteasome from yeast at 2-4A resolution. Nature 386, 463-471 (1997).
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 23
    • 0036103598 scopus 로고    scopus 로고
    • The structure of the mammalian 20S proteasome at 2.75 A resolution
    • Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10, 609. 618 (2002).
    • (2002) Structure , vol.10 , pp. 609-618
    • Unno, M.1
  • 24
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable near-atomicresolution single-particle cryo-EM
    • Li, X. et al. Electron counting and beam-induced motion correction enable near-atomicresolution single-particle cryo-EM. Nat. Methods 10, 584-590 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 584-590
    • Li, X.1
  • 25
    • 84878131964 scopus 로고    scopus 로고
    • Reconfiguration of the proteasome during chaperone-mediated assembly
    • Park, S. et al. Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497, 512-516 (2013).
    • (2013) Nature , vol.497 , pp. 512-516
    • Park, S.1
  • 26
    • 84924617498 scopus 로고    scopus 로고
    • 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy
    • Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S. & Carragher, B. 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife 4, e06380 (2015).
    • (2015) ELife , vol.4 , pp. e06380
    • Campbell, M.G.1    Veesler, D.2    Cheng, A.3    Potter, C.S.4    Carragher, B.5
  • 27
    • 84986883266 scopus 로고    scopus 로고
    • Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core
    • da Fonseca, P.C. & Morris, E.P. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. Nat. Commun. 6, 7573 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7573
    • Da Fonseca, P.C.1    Morris, E.P.2
  • 28
    • 84930188528 scopus 로고    scopus 로고
    • Crystal structure of the human 20S proteasome in complex with carfilzomib
    • Harshbarger, W., Miller, C., Diedrich, C. & Sacchettini, J. Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23, 418-424 (2015).
    • (2015) Structure , vol.23 , pp. 418-424
    • Harshbarger, W.1    Miller, C.2    Diedrich, C.3    Sacchettini, J.4
  • 29
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. USA 109, 1380-1387 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 1380-1387
    • Lasker, K.1
  • 30
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. USA 109, 14870-14875 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 31
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca, P.C., He, J. & Morris, E.P. Molecular model of the human 26S proteasome. Mol. Cell 46, 54-66 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 32
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela, M.E., Lander, G.C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 33
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • led, P. et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.. Proc. Natl. Acad. Sci. USA 110, 7264-7269 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 7264-7269
    • Led, P.1
  • 34
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben, P. et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl. Acad. Sci. USA 111, 5544-5549 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 5544-5549
    • Unverdorben, P.1
  • 35
    • 84937111175 scopus 로고    scopus 로고
    • Structural characterization of the interaction of Ubp6 with the 26S proteasome
    • Aufderheide, A. et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc. Natl. Acad. Sci. USA 112, 8626-8631 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 8626-8631
    • Aufderheide, A.1
  • 36
    • 84878438614 scopus 로고    scopus 로고
    • Localization of the regulatory particle subunit Sem1 in the 26S proteasome
    • Bohn, S. et al. Localization of the regulatory particle subunit Sem1 in the 26S proteasome. Biochem. Biophys. Res. Commun. 435, 250-254 (2013).
    • (2013) Biochem. Biophys. Res. Commun. , vol.435 , pp. 250-254
    • Bohn, S.1
  • 37
    • 84940984237 scopus 로고    scopus 로고
    • Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
    • Bashore, C. et al. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22, 712-719 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 712-719
    • Bashore, C.1
  • 38
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan, B. et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc. Natl. Acad. Sci. USA 113, 2642-2647 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 2642-2647
    • Luan, B.1
  • 39
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee, B.H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-184 (2010).
    • (2010) Nature , vol.467 , pp. 179-184
    • Lee, B.H.1
  • 40
    • 33947380146 scopus 로고    scopus 로고
    • Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
    • Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565 (2007).
    • (2007) Biochemistry , vol.46 , pp. 3553-3565
    • Wang, X.1
  • 41
    • 69949136026 scopus 로고    scopus 로고
    • Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
    • Thompson, D., Hakala, K. & DeMartino, G.N. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 284, 24891-24903 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 24891-24903
    • Thompson, D.1    Hakala, K.2    DeMartino, G.N.3
  • 42
    • 76349089770 scopus 로고    scopus 로고
    • Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
    • Yu, Y. et al. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 29, 692-702 (2010).
    • (2010) EMBO J. , vol.29 , pp. 692-702
    • Yu, Y.1
  • 43
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian, G. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nat. Struct. Mol. Biol. 18, 1259-1267 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1259-1267
    • Tian, G.1
  • 44
    • 19444387760 scopus 로고    scopus 로고
    • The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
    • Forster, A., Masters, E.I., Whitby, F.G., Robinson, H. & Hill, C.P. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18, 589-599 (2005).
    • (2005) Mol. Cell , vol.18 , pp. 589-599
    • Forster, A.1    Masters, E.I.2    Whitby, F.G.3    Robinson, H.4    Hill, C.P.5
  • 46
    • 84855198520 scopus 로고    scopus 로고
    • Structure and function of the AAA+ nucleotide binding pocket
    • Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2-14 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 2-14
    • Wendler, P.1    Ciniawsky, S.2    Kock, M.3    Kube, S.4
  • 47
    • 84958883175 scopus 로고    scopus 로고
    • 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition
    • Banerjee, S. et al. 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871.875 (2016).
    • (2016) Science , vol.351 , pp. 871-875
    • Banerjee, S.1
  • 48
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177-184 (2001).
    • (2001) Structure , vol.9 , pp. 177-184
    • Wang, J.1
  • 49
    • 0348010363 scopus 로고    scopus 로고
    • Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
    • Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182-50187 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 50182-50187
    • Yamada-Inagawa, T.1    Okuno, T.2    Karata, K.3    Yamanaka, K.4    Ogura, T.5
  • 50
    • 84978042613 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome at a resolution of 3.9 A
    • Schweitzer, A. et al. Structure of the human 26S proteasome at a resolution of 3.9 A. Proc. Natl. Acad. Sci. USA 113, 7816-7821 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 7816-7821
    • Schweitzer, A.1
  • 51
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher, C.M., Worden, E.J., Herzik, M.A., Martin, A. & Lander, G.C. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition.. eLife 5, e13027 (2016).
    • (2016) ELife , vol.5 , pp. e13027
    • Dambacher, C.M.1    Worden, E.J.2    Herzik, M.A.3    Martin, A.4    Lander, G.C.5
  • 52
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith, D.M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27, 731-744 (2007).
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 53
    • 70350772363 scopus 로고    scopus 로고
    • Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
    • Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744-756 (2009).
    • (2009) Cell , vol.139 , pp. 744-756
    • Glynn, S.E.1    Martin, A.2    Nager, A.R.3    Baker, T.A.4    Sauer, R.T.5
  • 54
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera: A visualization system for exploratory research and analysis
    • Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 55
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
    • Leggett, D.S., Glickman, M.H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast.. Methods Mol. Biol. 301, 57-70 (2005).
    • (2005) Methods Mol. Biol. , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3
  • 56
    • 0038441501 scopus 로고    scopus 로고
    • Accurate determination of local defocus and specimen tilt in electron microscopy
    • Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334-347 (2003).
    • (2003) J. Struct. Biol. , vol.142 , pp. 334-347
    • Mindell, J.A.1    Grigorieff, N.2
  • 57
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
    • (2012) J. Struct. Biol. , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 58
    • 84928924892 scopus 로고    scopus 로고
    • Cryo-EM structure of SNAP-SNARE assembly in 20S particle
    • Zhou, Q. et al. Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Cell Res. 25, 551-560 (2015).
    • (2015) Cell Res. , vol.25 , pp. 551-560
    • Zhou, Q.1
  • 59
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63-65 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 61
    • 43749083257 scopus 로고    scopus 로고
    • CHAINSAW: A program for mutating pdb files used as templates in molecular replacement
    • Stein, N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641-643 (2008).
    • (2008) J. Appl. Crystallogr. , vol.41 , pp. 641-643
    • Stein, N.1
  • 62
    • 84893717532 scopus 로고    scopus 로고
    • The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
    • Tomko, R.J. Jr. & Hochstrasser, M. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis.. Mol. Cell 53, 433-443 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 433-443
    • Tomko, R.J.1    Hochstrasser, M.2
  • 63
    • 14244272868 scopus 로고    scopus 로고
    • PHENIX: Building new software for automated crystallographic structure determination
    • Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954 (2002).
    • (2002) Acta Crystallogr. D Biol. Crystallogr. , vol.58 , pp. 1948-1954
    • Adams, P.D.1
  • 65
    • 84897000112 scopus 로고    scopus 로고
    • Structure of the yeast mitochondrial large ribosomal subunit
    • Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485-1489 (2014).
    • (2014) Science , vol.343 , pp. 1485-1489
    • Amunts, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.