-
1
-
-
85017102460
-
mTOR signaling in growth, metabolism, and disease
-
1 Saxton, R.A., Sabatini, D.M., mTOR signaling in growth, metabolism, and disease. Cell 169 (2017), 361–371.
-
(2017)
Cell
, vol.169
, pp. 361-371
-
-
Saxton, R.A.1
Sabatini, D.M.2
-
2
-
-
84860237060
-
Regulation and function of mTOR signalling in T cell fate decisions
-
2 Chi, H., Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12 (2012), 325–338.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 325-338
-
-
Chi, H.1
-
3
-
-
84919634599
-
Metabolic control of regulatory T cell development and function
-
3 Zeng, H., Chi, H., Metabolic control of regulatory T cell development and function. Trends Immunol. 36 (2015), 3–12.
-
(2015)
Trends Immunol.
, vol.36
, pp. 3-12
-
-
Zeng, H.1
Chi, H.2
-
4
-
-
84934280782
-
mTOR links environmental signals to T cell fate decisions
-
4 Chapman, N.M., Chi, H., mTOR links environmental signals to T cell fate decisions. Front. Immunol., 5, 2014, 686.
-
(2014)
Front. Immunol.
, vol.5
, pp. 686
-
-
Chapman, N.M.1
Chi, H.2
-
5
-
-
84881192927
-
mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
-
5 Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P., Chi, H., mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499 (2013), 485–490.
-
(2013)
Nature
, vol.499
, pp. 485-490
-
-
Zeng, H.1
Yang, K.2
Cloer, C.3
Neale, G.4
Vogel, P.5
Chi, H.6
-
6
-
-
84945474595
-
Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants
-
6 De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo, M., Zuchegna, C., Romano, A., De Simone, S., Procaccini, C., La Rocca, C., et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16 (2015), 1174–1184.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 1174-1184
-
-
De Rosa, V.1
Galgani, M.2
Porcellini, A.3
Colamatteo, A.4
Santopaolo, M.5
Zuchegna, C.6
Romano, A.7
De Simone, S.8
Procaccini, C.9
La Rocca, C.10
-
7
-
-
84890040690
-
TSC1 regulates the balance between effector and regulatory T cells
-
7 Park, Y., Jin, H.S., Lopez, J., Elly, C., Kim, G., Murai, M., Kronenberg, M., Liu, Y.C., TSC1 regulates the balance between effector and regulatory T cells. J. Clin. Invest. 123 (2013), 5165–5178.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 5165-5178
-
-
Park, Y.1
Jin, H.S.2
Lopez, J.3
Elly, C.4
Kim, G.5
Murai, M.6
Kronenberg, M.7
Liu, Y.C.8
-
8
-
-
80051997049
-
The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
-
8 Yang, K., Neale, G., Green, D.R., He, W., Chi, H., The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12 (2011), 888–897.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 888-897
-
-
Yang, K.1
Neale, G.2
Green, D.R.3
He, W.4
Chi, H.5
-
9
-
-
80054721266
-
Regulation of T-cell survival and mitochondrial homeostasis by TSC1
-
9 O'Brien, T.F., Gorentla, B.K., Xie, D., Srivatsan, S., McLeod, I.X., He, Y.W., Zhong, X.P., Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur. J. Immunol. 41 (2011), 3361–3370.
-
(2011)
Eur. J. Immunol.
, vol.41
, pp. 3361-3370
-
-
O'Brien, T.F.1
Gorentla, B.K.2
Xie, D.3
Srivatsan, S.4
McLeod, I.X.5
He, Y.W.6
Zhong, X.P.7
-
10
-
-
80051617288
-
The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells
-
10 Wu, Q., Liu, Y., Chen, C., Ikenoue, T., Qiao, Y., Li, C.S., Li, W., Guan, K.L., Liu, Y., Zheng, P., The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J. Immunol. 187 (2011), 1106–1112.
-
(2011)
J. Immunol.
, vol.187
, pp. 1106-1112
-
-
Wu, Q.1
Liu, Y.2
Chen, C.3
Ikenoue, T.4
Qiao, Y.5
Li, C.S.6
Li, W.7
Guan, K.L.8
Liu, Y.9
Zheng, P.10
-
11
-
-
84885101700
-
Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice
-
11 Chen, H., Zhang, L., Zhang, H., Xiao, Y., Shao, L., Li, H., Yin, H., Wang, R., Liu, G., Corley, D., et al. Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice. FASEB J. 27 (2013), 3979–3990.
-
(2013)
FASEB J.
, vol.27
, pp. 3979-3990
-
-
Chen, H.1
Zhang, L.2
Zhang, H.3
Xiao, Y.4
Shao, L.5
Li, H.6
Yin, H.7
Wang, R.8
Liu, G.9
Corley, D.10
-
12
-
-
84922930171
-
Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses
-
Ref. [12••] revealed that excessive activation of mTORC2 disrupts Treg stability and impairs their ability to specifically suppress Th1 and Tfh cells.
-
12•• Shrestha, S., Yang, K., Guy, C., Vogel, P., Neale, G., Chi, H., Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16 (2015), 178–187 Ref. [12••] revealed that excessive activation of mTORC2 disrupts Treg stability and impairs their ability to specifically suppress Th1 and Tfh cells.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 178-187
-
-
Shrestha, S.1
Yang, K.2
Guy, C.3
Vogel, P.4
Neale, G.5
Chi, H.6
-
13
-
-
84922917657
-
Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability
-
Ref. [13••] revealed that excessive activation of mTORC2 disrupts Treg stability and impairs their ability to specifically suppress Th1 and Tfh cells.
-
13•• Huynh, A., DuPage, M., Priyadharshini, B., Sage, P.T., Quiros, J., Borges, C.M., Townamchai, N., Gerriets, V.A., Rathmell, J.C., Sharpe, A.H., et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16 (2015), 188–196 Ref. [13••] revealed that excessive activation of mTORC2 disrupts Treg stability and impairs their ability to specifically suppress Th1 and Tfh cells.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 188-196
-
-
Huynh, A.1
DuPage, M.2
Priyadharshini, B.3
Sage, P.T.4
Quiros, J.5
Borges, C.M.6
Townamchai, N.7
Gerriets, V.A.8
Rathmell, J.C.9
Sharpe, A.H.10
-
14
-
-
76749133610
-
Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
-
14 Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X.P., Forbush, K., Rudensky, A.Y., Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463 (2010), 808–812.
-
(2010)
Nature
, vol.463
, pp. 808-812
-
-
Zheng, Y.1
Josefowicz, S.2
Chaudhry, A.3
Peng, X.P.4
Forbush, K.5
Rudensky, A.Y.6
-
15
-
-
84869148187
-
T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development
-
15 Ohkura, N., Hamaguchi, M., Morikawa, H., Sugimura, K., Tanaka, A., Ito, Y., Osaki, M., Tanaka, Y., Yamashita, R., Nakano, N., et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37 (2012), 785–799.
-
(2012)
Immunity
, vol.37
, pp. 785-799
-
-
Ohkura, N.1
Hamaguchi, M.2
Morikawa, H.3
Sugimura, K.4
Tanaka, A.5
Ito, Y.6
Osaki, M.7
Tanaka, Y.8
Yamashita, R.9
Nakano, N.10
-
16
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
16 Delgoffe, G.M., Kole, T.P., Zheng, Y., Zarek, P.E., Matthews, K.L., Xiao, B., Worley, P.F., Kozma, S.C., Powell, J.D., The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30 (2009), 832–844.
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
Worley, P.F.7
Kozma, S.C.8
Powell, J.D.9
-
17
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
17 Delgoffe, G.M., Pollizzi, K.N., Waickman, A.T., Heikamp, E., Meyers, D.J., Horton, M.R., Xiao, B., Worley, P.F., Powell, J.D., The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12 (2011), 295–303.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 295-303
-
-
Delgoffe, G.M.1
Pollizzi, K.N.2
Waickman, A.T.3
Heikamp, E.4
Meyers, D.J.5
Horton, M.R.6
Xiao, B.7
Worley, P.F.8
Powell, J.D.9
-
18
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
18 Lee, K., Gudapati, P., Dragovic, S., Spencer, C., Joyce, S., Killeen, N., Magnuson, M.A., Boothby, M., Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32 (2010), 743–753.
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
Gudapati, P.2
Dragovic, S.3
Spencer, C.4
Joyce, S.5
Killeen, N.6
Magnuson, M.A.7
Boothby, M.8
-
19
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming
-
19 Yang, K., Shrestha, S., Zeng, H., Karmaus, P.W., Neale, G., Vogel, P., Guertin, D.A., Lamb, R.F., Chi, H., T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39 (2013), 1043–1056.
-
(2013)
Immunity
, vol.39
, pp. 1043-1056
-
-
Yang, K.1
Shrestha, S.2
Zeng, H.3
Karmaus, P.W.4
Neale, G.5
Vogel, P.6
Guertin, D.A.7
Lamb, R.F.8
Chi, H.9
-
20
-
-
84861134382
-
PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma
-
20 Kurebayashi, Y., Nagai, S., Ikejiri, A., Ohtani, M., Ichiyama, K., Baba, Y., Yamada, T., Egami, S., Hoshii, T., Hirao, A., et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep. 1 (2012), 360–373.
-
(2012)
Cell Rep.
, vol.1
, pp. 360-373
-
-
Kurebayashi, Y.1
Nagai, S.2
Ikejiri, A.3
Ohtani, M.4
Ichiyama, K.5
Baba, Y.6
Yamada, T.7
Egami, S.8
Hoshii, T.9
Hirao, A.10
-
21
-
-
84944681622
-
The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells
-
21 Ray, J.P., Staron, M.M., Shyer, J.A., Ho, P.C., Marshall, H.D., Gray, S.M., Laidlaw, B.J., Araki, K., Ahmed, R., Kaech, S.M., et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43 (2015), 690–702.
-
(2015)
Immunity
, vol.43
, pp. 690-702
-
-
Ray, J.P.1
Staron, M.M.2
Shyer, J.A.3
Ho, P.C.4
Marshall, H.D.5
Gray, S.M.6
Laidlaw, B.J.7
Araki, K.8
Ahmed, R.9
Kaech, S.M.10
-
22
-
-
84955283575
-
Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation
-
Ref. [22•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
22• Ramiscal, R.R., Parish, I.A., Lee-Young, R.S., Babon, J.J., Blagih, J., Pratama, A., Martin, J., Hawley, N., Cappello, J.Y., Nieto, P.F., et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. Elife, 4, 2015, e08698 Ref. [22•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
(2015)
Elife
, vol.4
, pp. e08698
-
-
Ramiscal, R.R.1
Parish, I.A.2
Lee-Young, R.S.3
Babon, J.J.4
Blagih, J.5
Pratama, A.6
Martin, J.7
Hawley, N.8
Cappello, J.Y.9
Nieto, P.F.10
-
23
-
-
84990996523
-
mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation
-
Ref. [23•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
23• Zeng, H., Cohen, S., Guy, C., Shrestha, S., Neale, G., Brown, S.A., Cloer, C., Kishton, R.J., Gao, X., Youngblood, B., et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45 (2016), 540–554 Ref. [23•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
(2016)
Immunity
, vol.45
, pp. 540-554
-
-
Zeng, H.1
Cohen, S.2
Guy, C.3
Shrestha, S.4
Neale, G.5
Brown, S.A.6
Cloer, C.7
Kishton, R.J.8
Gao, X.9
Youngblood, B.10
-
24
-
-
84991625002
-
Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses
-
Ref. [24•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
24• Yang, J., Lin, X., Pan, Y., Wang, J., Chen, P., Huang, H., Xue, H.H., Gao, J., Zhong, X.P., Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. Elife, 5, 2016 Ref. [24•] showed that mTOR signaling promotes Tfh differentiation and function, while Ref. [21•] revealed that silencing of mTORC1 increases Tfh generation, but preserves their function.
-
(2016)
Elife
, vol.5
-
-
Yang, J.1
Lin, X.2
Pan, Y.3
Wang, J.4
Chen, P.5
Huang, H.6
Xue, H.H.7
Gao, J.8
Zhong, X.P.9
-
25
-
-
77958134778
-
Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction
-
25 Rolf, J., Bell, S.E., Kovesdi, D., Janas, M.L., Soond, D.R., Webb, L.M., Santinelli, S., Saunders, T., Hebeis, B., Killeen, N., et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J. Immunol. 185 (2010), 4042–4052.
-
(2010)
J. Immunol.
, vol.185
, pp. 4042-4052
-
-
Rolf, J.1
Bell, S.E.2
Kovesdi, D.3
Janas, M.L.4
Soond, D.R.5
Webb, L.M.6
Santinelli, S.7
Saunders, T.8
Hebeis, B.9
Killeen, N.10
-
26
-
-
85014720851
-
Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation
-
26 Tan, H., Yang, K., Li, Y., Shaw, T.I., Wang, Y., Blanco, D.B., Wang, X., Cho, J.H., Wang, H., Rankin, S., et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46 (2017), 488–503.
-
(2017)
Immunity
, vol.46
, pp. 488-503
-
-
Tan, H.1
Yang, K.2
Li, Y.3
Shaw, T.I.4
Wang, Y.5
Blanco, D.B.6
Wang, X.7
Cho, J.H.8
Wang, H.9
Rankin, S.10
-
27
-
-
84939617686
-
LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6
-
27 Choi, Y.S., Gullicksrud, J.A., Xing, S., Zeng, Z., Shan, Q., Li, F., Love, P.E., Peng, W., Xue, H.H., Crotty, S., LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16 (2015), 980–990.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 980-990
-
-
Choi, Y.S.1
Gullicksrud, J.A.2
Xing, S.3
Zeng, Z.4
Shan, Q.5
Li, F.6
Love, P.E.7
Peng, W.8
Xue, H.H.9
Crotty, S.10
-
28
-
-
84939603374
-
The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection
-
28 Xu, L., Cao, Y., Xie, Z., Huang, Q., Bai, Q., Yang, X., He, R., Hao, Y., Wang, H., Zhao, T., et al. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat. Immunol. 16 (2015), 991–999.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 991-999
-
-
Xu, L.1
Cao, Y.2
Xie, Z.3
Huang, Q.4
Bai, Q.5
Yang, X.6
He, R.7
Hao, Y.8
Wang, H.9
Zhao, T.10
-
29
-
-
84890412893
-
Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios(+) T cells and autoantibodies
-
29 Daley, S.R., Coakley, K.M., Hu, D.Y., Randall, K.L., Jenne, C.N., Limnander, A., Myers, D.R., Polakos, N.K., Enders, A., Roots, C., et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios(+) T cells and autoantibodies. Elife, 2, 2013, e01020.
-
(2013)
Elife
, vol.2
, pp. e01020
-
-
Daley, S.R.1
Coakley, K.M.2
Hu, D.Y.3
Randall, K.L.4
Jenne, C.N.5
Limnander, A.6
Myers, D.R.7
Polakos, N.K.8
Enders, A.9
Roots, C.10
-
30
-
-
74649085700
-
The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
-
30 Rao, R.R., Li, Q., Odunsi, K., Shrikant, P.A., The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32 (2010), 67–78.
-
(2010)
Immunity
, vol.32
, pp. 67-78
-
-
Rao, R.R.1
Li, Q.2
Odunsi, K.3
Shrikant, P.A.4
-
31
-
-
84929008302
-
mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation
-
+ T cell formation with elevated recall response.
-
+ T cell formation with elevated recall response.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.H.3
Oh, M.H.4
Waickman, A.T.5
Wen, J.6
Delgoffe, G.M.7
Powell, J.D.8
-
32
-
-
84903136755
-
Role of tumor suppressor TSC1 in regulating antigen-specific primary and memory CD8 T cell responses to bacterial infection
-
32 Krishna, S., Yang, J., Wang, H., Qiu, Y., Zhong, X.P., Role of tumor suppressor TSC1 in regulating antigen-specific primary and memory CD8 T cell responses to bacterial infection. Infect. Immun. 82 (2014), 3045–3057.
-
(2014)
Infect. Immun.
, vol.82
, pp. 3045-3057
-
-
Krishna, S.1
Yang, J.2
Wang, H.3
Qiu, Y.4
Zhong, X.P.5
-
33
-
-
67650074206
-
mTOR regulates memory CD8 T-cell differentiation
-
33 Araki, K., Turner, A.P., Shaffer, V.O., Gangappa, S., Keller, S.A., Bachmann, M.F., Larsen, C.P., Ahmed, R., mTOR regulates memory CD8 T-cell differentiation. Nature 460 (2009), 108–112.
-
(2009)
Nature
, vol.460
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
Gangappa, S.4
Keller, S.A.5
Bachmann, M.F.6
Larsen, C.P.7
Ahmed, R.8
-
34
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
34 Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L.S., Jones, R.G., Choi, Y., Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460 (2009), 103–107.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
Harms, G.M.4
Shen, H.5
Wang, L.S.6
Jones, R.G.7
Choi, Y.8
-
35
-
-
84907886513
-
Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs
-
35 Shrestha, S., Yang, K., Wei, J., Karmaus, P.W., Neale, G., Chi, H., Tsc1 promotes the differentiation of memory CD8+ T cells via orchestrating the transcriptional and metabolic programs. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 14858–14863.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 14858-14863
-
-
Shrestha, S.1
Yang, K.2
Wei, J.3
Karmaus, P.W.4
Neale, G.5
Chi, H.6
-
36
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
-
36 van der Windt, G.J., Everts, B., Chang, C.H., Curtis, J.D., Freitas, T.C., Amiel, E., Pearce, E.J., Pearce, E.L., Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36 (2012), 68–78.
-
(2012)
Immunity
, vol.36
, pp. 68-78
-
-
van der Windt, G.J.1
Everts, B.2
Chang, C.H.3
Curtis, J.D.4
Freitas, T.C.5
Amiel, E.6
Pearce, E.J.7
Pearce, E.L.8
-
37
-
-
84957963858
-
Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner
-
+ T cell generation and function through a Foxo1-dependent mechanism.
-
+ T cell generation and function through a Foxo1-dependent mechanism.
-
(2016)
Cell Rep.
, vol.14
, pp. 1206-1217
-
-
Zhang, L.1
Tschumi, B.O.2
Lopez-Mejia, I.C.3
Oberle, S.G.4
Meyer, M.5
Samson, G.6
Ruegg, M.A.7
Hall, M.N.8
Fajas, L.9
Zehn, D.10
-
38
-
-
77958151145
-
The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
-
38 Liu, G., Yang, K., Burns, S., Shrestha, S., Chi, H., The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat. Immunol. 11 (2010), 1047–1056.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1047-1056
-
-
Liu, G.1
Yang, K.2
Burns, S.3
Shrestha, S.4
Chi, H.5
-
39
-
-
67649185215
-
The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR
-
39 Liu, G., Burns, S., Huang, G., Boyd, K., Proia, R.L., Flavell, R.A., Chi, H., The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat. Immunol. 10 (2009), 769–777.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 769-777
-
-
Liu, G.1
Burns, S.2
Huang, G.3
Boyd, K.4
Proia, R.L.5
Flavell, R.A.6
Chi, H.7
-
40
-
-
84867899425
-
Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells
-
S1721
-
40 Weiss, J.M., Bilate, A.M., Gobert, M., Ding, Y., Curotto de Lafaille, M.A., Parkhurst, C.N., Xiong, H., Dolpady, J., Frey, A.B., Ruocco, M.G., et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209 (2012), 1723–1742 S1721.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1723-1742
-
-
Weiss, J.M.1
Bilate, A.M.2
Gobert, M.3
Ding, Y.4
Curotto de Lafaille, M.A.5
Parkhurst, C.N.6
Xiong, H.7
Dolpady, J.8
Frey, A.B.9
Ruocco, M.G.10
-
41
-
-
84867901322
-
Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo
-
S1711–1719
-
41 Yadav, M., Louvet, C., Davini, D., Gardner, J.M., Martinez-Llordella, M., Bailey-Bucktrout, S., Anthony, B.A., Sverdrup, F.M., Head, R., Kuster, D.J., et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209 (2012), 1713–1722 S1711–1719.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1713-1722
-
-
Yadav, M.1
Louvet, C.2
Davini, D.3
Gardner, J.M.4
Martinez-Llordella, M.5
Bailey-Bucktrout, S.6
Anthony, B.A.7
Sverdrup, F.M.8
Head, R.9
Kuster, D.J.10
-
42
-
-
84884206864
-
Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis
-
42 Delgoffe, G.M., Woo, S.R., Turnis, M.E., Gravano, D.M., Guy, C., Overacre, A.E., Bettini, M.L., Vogel, P., Finkelstein, D., Bonnevier, J., et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501 (2013), 252–256.
-
(2013)
Nature
, vol.501
, pp. 252-256
-
-
Delgoffe, G.M.1
Woo, S.R.2
Turnis, M.E.3
Gravano, D.M.4
Guy, C.5
Overacre, A.E.6
Bettini, M.L.7
Vogel, P.8
Finkelstein, D.9
Bonnevier, J.10
-
43
-
-
84869777544
-
Neuropilin 1 deficiency on CD4 + Foxp3+ regulatory T cells impairs mouse melanoma growth
-
43 Hansen, W., Hutzler, M., Abel, S., Alter, C., Stockmann, C., Kliche, S., Albert, J., Sparwasser, T., Sakaguchi, S., Westendorf, A.M., et al. Neuropilin 1 deficiency on CD4 + Foxp3+ regulatory T cells impairs mouse melanoma growth. J. Exp. Med. 209 (2012), 2001–2016.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 2001-2016
-
-
Hansen, W.1
Hutzler, M.2
Abel, S.3
Alter, C.4
Stockmann, C.5
Kliche, S.6
Albert, J.7
Sparwasser, T.8
Sakaguchi, S.9
Westendorf, A.M.10
-
44
-
-
84989966066
-
Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression
-
Ref [44•] revealed that mTORC1 is positively and negatively regulated by TLR1/2 and FOXP3, respectively. TLR1/2 signaling promotes Treg proliferation, but impairs Treg suppressive activity. In contrast, FOXP3 expression inhibits mTORC1 activation and glycolysis, and promotes mitochondrial oxidative phosphorylation.
-
44• Gerriets, V.A., Kishton, R.J., Johnson, M.O., Cohen, S., Siska, P.J., Nichols, A.G., Warmoes, M.O., de Cubas, A.A., MacIver, N.J., Locasale, J.W., et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17 (2016), 1459–1466 Ref [44•] revealed that mTORC1 is positively and negatively regulated by TLR1/2 and FOXP3, respectively. TLR1/2 signaling promotes Treg proliferation, but impairs Treg suppressive activity. In contrast, FOXP3 expression inhibits mTORC1 activation and glycolysis, and promotes mitochondrial oxidative phosphorylation.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 1459-1466
-
-
Gerriets, V.A.1
Kishton, R.J.2
Johnson, M.O.3
Cohen, S.4
Siska, P.J.5
Nichols, A.G.6
Warmoes, M.O.7
de Cubas, A.A.8
MacIver, N.J.9
Locasale, J.W.10
-
45
-
-
84983783238
-
A novel mTORC1-dependent, Akt-independent pathway differentiates the gut tropism of regulatory and conventional CD4 T cells
-
45 Chen, L.C., Nicholson, Y.T., Rosborough, B.R., Thomson, A.W., Raimondi, G., A novel mTORC1-dependent, Akt-independent pathway differentiates the gut tropism of regulatory and conventional CD4 T cells. J. Immunol. 197 (2016), 1137–1147.
-
(2016)
J. Immunol.
, vol.197
, pp. 1137-1147
-
-
Chen, L.C.1
Nicholson, Y.T.2
Rosborough, B.R.3
Thomson, A.W.4
Raimondi, G.5
-
46
-
-
84955590563
-
Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
-
46 Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., Wu, C., Vogel, P., Neale, G., Green, D.R., et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17 (2016), 277–285.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 277-285
-
-
Wei, J.1
Long, L.2
Yang, K.3
Guy, C.4
Shrestha, S.5
Chen, Z.6
Wu, C.7
Vogel, P.8
Neale, G.9
Green, D.R.10
-
47
-
-
84961262270
-
The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation
-
47 Kabat, A.M., Harrison, O.J., Riffelmacher, T., Moghaddam, A.E., Pearson, C.F., Laing, A., Abeler-Dorner, L., Forman, S.P., Grencis, R.K., Sattentau, Q., et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife, 5, 2016, e12444.
-
(2016)
Elife
, vol.5
, pp. e12444
-
-
Kabat, A.M.1
Harrison, O.J.2
Riffelmacher, T.3
Moghaddam, A.E.4
Pearson, C.F.5
Laing, A.6
Abeler-Dorner, L.7
Forman, S.P.8
Grencis, R.K.9
Sattentau, Q.10
-
48
-
-
84961226881
-
Phosphatase PP2A is requisite for the function of regulatory T cells
-
48 Apostolidis, S.A., Rodriguez-Rodriguez, N., Suarez-Fueyo, A., Dioufa, N., Ozcan, E., Crispin, J.C., Tsokos, M.G., Tsokos, G.C., Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 17 (2016), 556–564.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 556-564
-
-
Apostolidis, S.A.1
Rodriguez-Rodriguez, N.2
Suarez-Fueyo, A.3
Dioufa, N.4
Ozcan, E.5
Crispin, J.C.6
Tsokos, M.G.7
Tsokos, G.C.8
-
49
-
-
22944433872
-
Aberrant T cell differentiation in the absence of Dicer
-
49 Muljo, S.A., Ansel, K.M., Kanellopoulou, C., Livingston, D.M., Rao, A., Rajewsky, K., Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202 (2005), 261–269.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 261-269
-
-
Muljo, S.A.1
Ansel, K.M.2
Kanellopoulou, C.3
Livingston, D.M.4
Rao, A.5
Rajewsky, K.6
-
50
-
-
33750499991
-
A role for Dicer in immune regulation
-
50 Cobb, B.S., Hertweck, A., Smith, J., O'Connor, E., Graf, D., Cook, T., Smale, S.T., Sakaguchi, S., Livesey, F.J., Fisher, A.G., et al. A role for Dicer in immune regulation. J. Exp. Med. 203 (2006), 2519–2527.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2519-2527
-
-
Cobb, B.S.1
Hertweck, A.2
Smith, J.3
O'Connor, E.4
Graf, D.5
Cook, T.6
Smale, S.T.7
Sakaguchi, S.8
Livesey, F.J.9
Fisher, A.G.10
-
51
-
-
51049089025
-
The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease
-
51 Chong, M.M., Rasmussen, J.P., Rudensky, A.Y., Littman, D.R., The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205 (2008), 2005–2017.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2005-2017
-
-
Chong, M.M.1
Rasmussen, J.P.2
Rudensky, A.Y.3
Littman, D.R.4
-
52
-
-
84929027816
-
Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation
-
52 Warth, S.C., Hoefig, K.P., Hiekel, A., Schallenberg, S., Jovanovic, K., Klein, L., Kretschmer, K., Ansel, K.M., Heissmeyer, V., Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J. 34 (2015), 1195–1213.
-
(2015)
EMBO J.
, vol.34
, pp. 1195-1213
-
-
Warth, S.C.1
Hoefig, K.P.2
Hiekel, A.3
Schallenberg, S.4
Jovanovic, K.5
Klein, L.6
Kretschmer, K.7
Ansel, K.M.8
Heissmeyer, V.9
-
53
-
-
84958260183
-
MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of rictor and mTOR
-
53 Singh, Y., Garden, O.A., Lang, F., Cobb, B.S., MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of rictor and mTOR. J. Immunol. 195 (2015), 5667–5677.
-
(2015)
J. Immunol.
, vol.195
, pp. 5667-5677
-
-
Singh, Y.1
Garden, O.A.2
Lang, F.3
Cobb, B.S.4
-
54
-
-
84900440370
-
Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation
-
54 Nakaya, M., Xiao, Y., Zhou, X., Chang, J.H., Chang, M., Cheng, X., Blonska, M., Lin, X., Sun, S.C., Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40 (2014), 692–705.
-
(2014)
Immunity
, vol.40
, pp. 692-705
-
-
Nakaya, M.1
Xiao, Y.2
Zhou, X.3
Chang, J.H.4
Chang, M.5
Cheng, X.6
Blonska, M.7
Lin, X.8
Sun, S.C.9
-
55
-
-
84902457455
-
T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10
-
55 Hamilton, K.S., Phong, B., Corey, C., Cheng, J., Gorentla, B., Zhong, X., Shiva, S., Kane, L.P., T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci. Signal., 7, 2014, ra55.
-
(2014)
Sci. Signal.
, vol.7
, pp. ra55
-
-
Hamilton, K.S.1
Phong, B.2
Corey, C.3
Cheng, J.4
Gorentla, B.5
Zhong, X.6
Shiva, S.7
Kane, L.P.8
-
56
-
-
84905972007
-
Complex interactions of transcription factors in mediating cytokine biology in T cells
-
56 Li, P., Spolski, R., Liao, W., Leonard, W.J., Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol. Rev. 261 (2014), 141–156.
-
(2014)
Immunol. Rev.
, vol.261
, pp. 141-156
-
-
Li, P.1
Spolski, R.2
Liao, W.3
Leonard, W.J.4
-
57
-
-
77952584843
-
The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation
-
57 Chang, H.C., Sehra, S., Goswami, R., Yao, W., Yu, Q., Stritesky, G.L., Jabeen, R., McKinley, C., Ahyi, A.N., Han, L., et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11 (2010), 527–534.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 527-534
-
-
Chang, H.C.1
Sehra, S.2
Goswami, R.3
Yao, W.4
Yu, Q.5
Stritesky, G.L.6
Jabeen, R.7
McKinley, C.8
Ahyi, A.N.9
Han, L.10
-
58
-
-
84885831692
-
Th9 cells drive host immunity against gastrointestinal worm infection
-
58 Licona-Limon, P., Henao-Mejia, J., Temann, A.U., Gagliani, N., Licona-Limon, I., Ishigame, H., Hao, L., Herbert, D.R., Flavell, R.A., Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39 (2013), 744–757.
-
(2013)
Immunity
, vol.39
, pp. 744-757
-
-
Licona-Limon, P.1
Henao-Mejia, J.2
Temann, A.U.3
Gagliani, N.4
Licona-Limon, I.5
Ishigame, H.6
Hao, L.7
Herbert, D.R.8
Flavell, R.A.9
-
59
-
-
84975089491
-
Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells
-
59 Wang, Y., Bi, Y., Chen, X., Li, C., Li, Y., Zhang, Z., Wang, J., Lu, Y., Yu, Q., Su, H., et al. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells. Immunity 44 (2016), 1337–1349.
-
(2016)
Immunity
, vol.44
, pp. 1337-1349
-
-
Wang, Y.1
Bi, Y.2
Chen, X.3
Li, C.4
Li, Y.5
Zhang, Z.6
Wang, J.7
Lu, Y.8
Yu, Q.9
Su, H.10
-
60
-
-
84899760423
-
CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance
-
60 Koga, T., Hedrich, C.M., Mizui, M., Yoshida, N., Otomo, K., Lieberman, L.A., Rauen, T., Crispin, J.C., Tsokos, G.C., CaMK4-dependent activation of AKT/mTOR and CREM-alpha underlies autoimmunity-associated Th17 imbalance. J. Clin. Invest. 124 (2014), 2234–2245.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 2234-2245
-
-
Koga, T.1
Hedrich, C.M.2
Mizui, M.3
Yoshida, N.4
Otomo, K.5
Lieberman, L.A.6
Rauen, T.7
Crispin, J.C.8
Tsokos, G.C.9
-
61
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
61 Sinclair, L.V., Rolf, J., Emslie, E., Shi, Y.B., Taylor, P.M., Cantrell, D.A., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14 (2013), 500–508.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 500-508
-
-
Sinclair, L.V.1
Rolf, J.2
Emslie, E.3
Shi, Y.B.4
Taylor, P.M.5
Cantrell, D.A.6
-
62
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
-
62 Finlay, D.K., Rosenzweig, E., Sinclair, L.V., Feijoo-Carnero, C., Hukelmann, J.L., Rolf, J., Panteleyev, A.A., Okkenhaug, K., Cantrell, D.A., PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209 (2012), 2441–2453.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 2441-2453
-
-
Finlay, D.K.1
Rosenzweig, E.2
Sinclair, L.V.3
Feijoo-Carnero, C.4
Hukelmann, J.L.5
Rolf, J.6
Panteleyev, A.A.7
Okkenhaug, K.8
Cantrell, D.A.9
-
63
-
-
84937698850
-
mTOR complex signaling through the SEMA4A-plexin B2 axis is required for optimal activation and differentiation of CD8+ T cells
-
63 Ito, D., Nojima, S., Nishide, M., Okuno, T., Takamatsu, H., Kang, S., Kimura, T., Yoshida, Y., Morimoto, K., Maeda, Y., et al. mTOR complex signaling through the SEMA4A-plexin B2 axis is required for optimal activation and differentiation of CD8+ T cells. J. Immunol. 195 (2015), 934–943.
-
(2015)
J. Immunol.
, vol.195
, pp. 934-943
-
-
Ito, D.1
Nojima, S.2
Nishide, M.3
Okuno, T.4
Takamatsu, H.5
Kang, S.6
Kimura, T.7
Yoshida, Y.8
Morimoto, K.9
Maeda, Y.10
-
64
-
-
84989172165
-
Ionic immune suppression within the tumour microenvironment limits T cell effector function
-
64 Eil, R., Vodnala, S.K., Clever, D., Klebanoff, C.A., Sukumar, M., Pan, J.H., Palmer, D.C., Gros, A., Yamamoto, T.N., Patel, S.J., et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537 (2016), 539–543.
-
(2016)
Nature
, vol.537
, pp. 539-543
-
-
Eil, R.1
Vodnala, S.K.2
Clever, D.3
Klebanoff, C.A.4
Sukumar, M.5
Pan, J.H.6
Palmer, D.C.7
Gros, A.8
Yamamoto, T.N.9
Patel, S.J.10
-
65
-
-
33947730608
-
Asymmetric T lymphocyte division in the initiation of adaptive immune responses
-
65 Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315 (2007), 1687–1691.
-
(2007)
Science
, vol.315
, pp. 1687-1691
-
-
Chang, J.T.1
Palanivel, V.R.2
Kinjyo, I.3
Schambach, F.4
Intlekofer, A.M.5
Banerjee, A.6
Longworth, S.A.7
Vinup, K.E.8
Mrass, P.9
Oliaro, J.10
-
66
-
-
84963525930
-
Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation
-
Ref [66••] showed that asymmetric distribution of PI3K-mTOR signaling determines T cell fate. Low PI3K-mTOR-MYC predisposes cells to memory T cell differentiation, while high PI3K-mTOR-MYC skews cells to terminally differentiated effector cells.
-
66•• Pollizzi, K.N., Sun, I.H., Patel, C.H., Lo, Y.C., Oh, M.H., Waickman, A.T., Tam, A.J., Blosser, R.L., Wen, J., Delgoffe, G.M., et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat. Immunol. 17 (2016), 704–711 Ref [66••] showed that asymmetric distribution of PI3K-mTOR signaling determines T cell fate. Low PI3K-mTOR-MYC predisposes cells to memory T cell differentiation, while high PI3K-mTOR-MYC skews cells to terminally differentiated effector cells.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 704-711
-
-
Pollizzi, K.N.1
Sun, I.H.2
Patel, C.H.3
Lo, Y.C.4
Oh, M.H.5
Waickman, A.T.6
Tam, A.J.7
Blosser, R.L.8
Wen, J.9
Delgoffe, G.M.10
-
67
-
-
84964527036
-
Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
-
Ref [67••] showed that asymmetric distribution of PI3K-mTOR signaling determines T cell fate. Low PI3K-mTOR-MYC predisposes cells to memory T cell differentiation, while high PI3K-mTOR-MYC skews cells to terminally differentiated effector cells.
-
67•• Verbist, K.C., Guy, C.S., Milasta, S., Liedmann, S., Kaminski, M.M., Wang, R., Green, D.R., Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532 (2016), 389–393 Ref [67••] showed that asymmetric distribution of PI3K-mTOR signaling determines T cell fate. Low PI3K-mTOR-MYC predisposes cells to memory T cell differentiation, while high PI3K-mTOR-MYC skews cells to terminally differentiated effector cells.
-
(2016)
Nature
, vol.532
, pp. 389-393
-
-
Verbist, K.C.1
Guy, C.S.2
Milasta, S.3
Liedmann, S.4
Kaminski, M.M.5
Wang, R.6
Green, D.R.7
-
68
-
-
84949057974
-
Asymmetric PI3 K signaling driving developmental and regenerative cell fate bifurcation
-
68 Lin, W.H., Adams, W.C., Nish, S.A., Chen, Y.H., Yen, B., Rothman, N.J., Kratchmarov, R., Okada, T., Klein, U., Reiner, S.L., Asymmetric PI3 K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep. 13 (2015), 2203–2218.
-
(2015)
Cell Rep.
, vol.13
, pp. 2203-2218
-
-
Lin, W.H.1
Adams, W.C.2
Nish, S.A.3
Chen, Y.H.4
Yen, B.5
Rothman, N.J.6
Kratchmarov, R.7
Okada, T.8
Klein, U.9
Reiner, S.L.10
|