메뉴 건너뛰기




Volumn 35, Issue , 2017, Pages 119-147

Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing

Author keywords

Epithelial restitution; Innate lymphoid cells; Intestinal epithelial cells; Intra lymphoid tissue resident commensal bacteria; M cells; Mesenchymal cells; Mucosal healing

Indexed keywords

ACTIVE TRANSPORT; CELL INTERACTION; CELL REGENERATION; COMMENSAL; ENTEROENDOCRINE CELL; EPITHELIUM CELL; EXOCRINE CELL; GLYCOSYLATION; GOBLET CELL; HEALING; HOMEOSTASIS; HUMAN; IMMUNOCOMPETENT CELL; INTESTINE; INTESTINE FLORA; LYMPHOID TISSUE; MESENCHYME CELL; PANETH CELL; PRIORITY JOURNAL; REVIEW; SYMBIOSIS; ANIMAL; CELL COMMUNICATION; IMMUNOLOGY; INNATE IMMUNITY; INTESTINE MUCOSA; METABOLISM; PATHOLOGY; PHYSIOLOGY; WOUND HEALING;

EID: 85018310296     PISSN: 07320582     EISSN: 15453278     Source Type: Book Series    
DOI: 10.1146/annurev-immunol-051116-052424     Document Type: Review
Times cited : (224)

References (200)
  • 1
    • 84927662069 scopus 로고    scopus 로고
    • Microbiota-mediated inflammation and antimicrobial defense in the intestine
    • Caballero S, Pamer EG. 2015. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 33:227-56
    • (2015) Annu. Rev. Immunol. , vol.33 , pp. 227-256
    • Caballero, S.1    Pamer, E.G.2
  • 2
    • 0030297089 scopus 로고    scopus 로고
    • The indigenous gastrointestinal microflora
    • Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4:430-35
    • (1996) Trends Microbiol. , vol.4 , pp. 430-435
    • Berg, R.D.1
  • 3
    • 84954442290 scopus 로고    scopus 로고
    • Viral immunity: Transkingdom control of viral infection and immunity in the mammalian intestine
    • Pfeiffer JK, Virgin HW. 2016. Viral immunity: transkingdom control of viral infection and immunity in the mammalian intestine. Science 351:6270. doi: 10.1126/science.aad5872
    • (2016) Science , vol.351 , pp. 6270
    • Pfeiffer, J.K.1    Virgin, H.W.2
  • 4
    • 84879373236 scopus 로고    scopus 로고
    • Resident viruses and their interactions with the immune system
    • Duerkop BA, Hooper LV. 2013. Resident viruses and their interactions with the immune system. Nat. Immunol. 14:654-59
    • (2013) Nat. Immunol. , vol.14 , pp. 654-659
    • Duerkop, B.A.1    Hooper, L.V.2
  • 5
    • 84879786685 scopus 로고    scopus 로고
    • The emerging world of the fungal microbiome
    • Huffnagle GB, Noverr MC. 2013. The emerging world of the fungal microbiome. Trends Microbiol. 21:334-41
    • (2013) Trends Microbiol. , vol.21 , pp. 334-341
    • Huffnagle, G.B.1    Noverr, M.C.2
  • 6
    • 84947441717 scopus 로고    scopus 로고
    • Immune interactions with pathogenic and commensal fungi: A twoway street
    • Underhill DM, Pearlman E. 2015. Immune interactions with pathogenic and commensal fungi: a twoway street. Immunity 43:845-58
    • (2015) Immunity , vol.43 , pp. 845-858
    • Underhill, D.M.1    Pearlman, E.2
  • 7
    • 84859389254 scopus 로고    scopus 로고
    • The microbiome in infectious disease and inflammation
    • Honda K, Littman DR. 2012. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30:759-95
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 759-795
    • Honda, K.1    Littman, D.R.2
  • 8
    • 84891848483 scopus 로고    scopus 로고
    • Understanding and modulating mammalian-microbial communication for improved human health
    • Mani S, Boelsterli UA, Redinbo MR. 2014. Understanding and modulating mammalian-microbial communication for improved human health. Annu. Rev. Pharmacol. Toxicol. 54:559-80
    • (2014) Annu. Rev. Pharmacol. Toxicol. , vol.54 , pp. 559-580
    • Mani, S.1    Boelsterli, U.A.2    Redinbo, M.R.3
  • 9
    • 84896851032 scopus 로고    scopus 로고
    • Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
    • Peterson LW, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141-53
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 141-153
    • Peterson, L.W.1    Artis, D.2
  • 10
    • 83655191565 scopus 로고    scopus 로고
    • Epithelial barrier: An interface for the cross-communication between gut flora and immune system
    • Goto Y, Kiyono H. 2012. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev. 245:147-63
    • (2012) Immunol. Rev. , vol.245 , pp. 147-163
    • Goto, Y.1    Kiyono, H.2
  • 11
    • 0033558504 scopus 로고    scopus 로고
    • Lineage commitment and maturation of epithelial cells in the gut
    • Karam SM. 1999. Lineage commitment and maturation of epithelial cells in the gut. Front. Biosci. 4:D286-98
    • (1999) Front. Biosci. , vol.4 , pp. D286-D298
    • Karam, S.M.1
  • 13
    • 84904707313 scopus 로고    scopus 로고
    • Stem cells marked by theR-spondin receptor LGR5
    • Koo BK, CleversH. 2014. Stem cells marked by theR-spondin receptor LGR5. Gastroenterology 147:289-302
    • (2014) Gastroenterology , vol.147 , pp. 289-302
    • Koo, B.K.1    Clevers, H.2
  • 14
    • 84954074277 scopus 로고    scopus 로고
    • Innate lymphoid cells in intestinal immunity and inflammation
    • Bostick JW, Zhou L. 2016. Innate lymphoid cells in intestinal immunity and inflammation. Cell Mol. Life Sci. 73:237-52
    • (2016) Cell Mol. Life Sci. , vol.73 , pp. 237-252
    • Bostick, J.W.1    Zhou, L.2
  • 15
    • 77949875637 scopus 로고    scopus 로고
    • Epithelium: The interplay between innate andTh2 immunity
    • Bulek K, Swaidani S, Aronica M, Li X. 2010. Epithelium: the interplay between innate andTh2 immunity. Immunol. Cell Biol. 88:257-68
    • (2010) Immunol. Cell Biol. , vol.88 , pp. 257-268
    • Bulek, K.1    Swaidani, S.2    Aronica, M.3    Li, X.4
  • 16
    • 84859399981 scopus 로고    scopus 로고
    • Microbial translocation across the GI tract
    • Brenchley JM, Douek DC. 2012. Microbial translocation across the GI tract. Annu. Rev. Immunol. 30:149-73
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 149-173
    • Brenchley, J.M.1    Douek, D.C.2
  • 17
    • 84875829724 scopus 로고    scopus 로고
    • Antigen sampling in the small intestine
    • Schulz O, Pabst O. 2013. Antigen sampling in the small intestine. Trends Immunol. 34:155-61
    • (2013) Trends Immunol. , vol.34 , pp. 155-161
    • Schulz, O.1    Pabst, O.2
  • 18
    • 0020046328 scopus 로고
    • In vivo immune response to a T-cell-dependent antigen by cultures of disassociated murine Peyer's patch
    • Kiyono H, McGhee JR, Wannemuehler MJ, Frangakis MV, Spalding DM, et al. 1982. In vivo immune response to a T-cell-dependent antigen by cultures of disassociated murine Peyer's patch. PNAS 79:596-600
    • (1982) PNAS , vol.79 , pp. 596-600
    • Kiyono, H.1    McGhee, J.R.2    Wannemuehler, M.J.3    Frangakis, M.V.4    Spalding, D.M.5
  • 19
    • 4544258068 scopus 로고    scopus 로고
    • NALT-versus Peyer's-patch-mediated mucosal immunity
    • Kiyono H, Fukuyama S. 2004. NALT-versus Peyer's-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4:699-710
    • (2004) Nat. Rev. Immunol. , vol.4 , pp. 699-710
    • Kiyono, H.1    Fukuyama, S.2
  • 20
    • 77952208123 scopus 로고    scopus 로고
    • Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis
    • Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, et al. 2010. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. PNAS 107:7419-24
    • (2010) PNAS , vol.107 , pp. 7419-7424
    • Obata, T.1    Goto, Y.2    Kunisawa, J.3    Sato, S.4    Sakamoto, M.5
  • 21
    • 84960341158 scopus 로고    scopus 로고
    • Lymphoid-tissue-resident commensal bacteria promote members of the IL10 cytokine family to establish mutualism
    • Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, et al. 2016. Lymphoid-tissue-resident commensal bacteria promote members of the IL10 cytokine family to establish mutualism. Immunity 44:634-46
    • (2016) Immunity , vol.44 , pp. 634-646
    • Fung, T.C.1    Bessman, N.J.2    Hepworth, M.R.3    Kumar, N.4    Shibata, N.5
  • 22
    • 84893614670 scopus 로고    scopus 로고
    • Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation
    • Kurashima Y, Goto Y, KiyonoH. 2013. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur. J. Immunol. 43:3108-15
    • (2013) Eur. J. Immunol. , vol.43 , pp. 3108-3115
    • Kurashima, Y.1    Goto, Y.2    Kiyono, H.3
  • 23
    • 84874064642 scopus 로고    scopus 로고
    • Alcaligenes is commensal bacteria habituating in the gut-associated lymphoid tissue for the regulation of intestinal IgA responses
    • Kunisawa J, KiyonoH. 2012. Alcaligenes is commensal bacteria habituating in the gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front. Immunol. 3:65
    • (2012) Front. Immunol. , vol.3 , pp. 65
    • Kunisawa, J.1    Kiyono, H.2
  • 27
    • 80455176842 scopus 로고    scopus 로고
    • Intestinal development and differentiation
    • Noah TK, Donahue B, Shroyer NF. 2011. Intestinal development and differentiation. Exp. Cell Res. 317:2702-10
    • (2011) Exp. Cell Res. , vol.317 , pp. 2702-2710
    • Noah, T.K.1    Donahue, B.2    Shroyer, N.F.3
  • 28
    • 70649103789 scopus 로고    scopus 로고
    • Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region
    • UK IBD Genet. Consort.
    • UK IBD Genet. Consort., Barrett JC, Lee JC, Lees CW, Prescott NJ, et al. 2009. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41:1330-34
    • (2009) Nat. Genet. , vol.41 , pp. 1330-1334
    • Barrett, J.C.1    Lee, J.C.2    Lees, C.W.3    Prescott, N.J.4
  • 29
    • 33745746660 scopus 로고    scopus 로고
    • Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
    • Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117-29
    • (2006) Gastroenterology , vol.131 , pp. 117-129
    • Van Der Sluis, M.1    De Koning, B.A.2    De Bruijn, A.C.3    Velcich, A.4    Meijerink, J.P.5
  • 30
    • 78649489009 scopus 로고    scopus 로고
    • Genome-wide metaanalysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
    • Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, et al. 2010. Genome-wide metaanalysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42:1118-25
    • (2010) Nat. Genet. , vol.42 , pp. 1118-1125
    • Franke, A.1    McGovern, D.P.2    Barrett, J.C.3    Wang, K.4    Radford-Smith, G.L.5
  • 31
    • 0035824487 scopus 로고    scopus 로고
    • Requirement of Math1 for secretory cell lineage commitment in the mouse intestine
    • Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155-58
    • (2001) Science , vol.294 , pp. 2155-2158
    • Yang, Q.1    Bermingham, N.A.2    Finegold, M.J.3    Zoghbi, H.Y.4
  • 32
    • 77956883150 scopus 로고    scopus 로고
    • Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate
    • VanDussen KL, Samuelson LC. 2010. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev. Biol. 346:215-23
    • (2010) Dev. Biol. , vol.346 , pp. 215-223
    • VanDussen, K.L.1    Samuelson, L.C.2
  • 33
    • 3242692641 scopus 로고    scopus 로고
    • Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C
    • Cario E, Gerken G, Podolsky DK. 2004. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224-38
    • (2004) Gastroenterology , vol.127 , pp. 224-238
    • Cario, E.1    Gerken, G.2    Podolsky, D.K.3
  • 34
    • 0034128634 scopus 로고    scopus 로고
    • Claudins regulate the intestinal barrier in response to immune mediators
    • Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. 2000. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118:1001-11
    • (2000) Gastroenterology , vol.118 , pp. 1001-1011
    • Kinugasa, T.1    Sakaguchi, T.2    Gu, X.3    Reinecker, H.C.4
  • 35
    • 46049083963 scopus 로고    scopus 로고
    • Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease
    • Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, et al. 2008. Unique role of junctional adhesion molecule-A in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135:173-84
    • (2008) Gastroenterology , vol.135 , pp. 173-184
    • Vetrano, S.1    Rescigno, M.2    Cera, M.R.3    Correale, C.4    Rumio, C.5
  • 36
    • 0035321325 scopus 로고    scopus 로고
    • Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
    • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361-67
    • (2001) Nat. Immunol. , vol.2 , pp. 361-367
    • Rescigno, M.1    Urbano, M.2    Valzasina, B.3    Francolini, M.4    Rotta, G.5
  • 37
    • 0030669302 scopus 로고    scopus 로고
    • Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation
    • Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, et al. 1997. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol. 273:C1378-85
    • (1997) Am. J. Physiol. , vol.273 , pp. C1378-C1385
    • Turner, J.R.1    Rill, B.K.2    Carlson, S.L.3    Carnes, D.4    Kerner, R.5
  • 38
    • 33745193296 scopus 로고    scopus 로고
    • Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure
    • Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, et al. 2006. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci. 119:2095-106
    • (2006) J. Cell Sci. , vol.119 , pp. 2095-2106
    • Shen, L.1    Black, E.D.2    Witkowski, E.D.3    Lencer, W.I.4    Guerriero, V.5
  • 40
    • 0034886074 scopus 로고    scopus 로고
    • Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms
    • Song JC, Hanson CM, Tsai V, Farokhzad OC, Lotz M, et al. 2001. Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms. Am. J. Physiol. Cell. Physiol. 281:C649-61
    • (2001) Am. J. Physiol. Cell. Physiol. , vol.281 , pp. C649-C661
    • Song, J.C.1    Hanson, C.M.2    Tsai, V.3    Farokhzad, O.C.4    Lotz, M.5
  • 41
    • 38349108166 scopus 로고    scopus 로고
    • Novel role of the Vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier
    • Kong J, Zhang Z, Musch MW, Ning G, Sun J, et al. 2008. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G208-16
    • (2008) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.294 , pp. G208-G216
    • Kong, J.1    Zhang, Z.2    Musch, M.W.3    Ning, G.4    Sun, J.5
  • 42
    • 79953839845 scopus 로고    scopus 로고
    • Degradation of the extracellular matrix components by bacterial-derived metalloproteases: Implications for inflammatory bowel diseases
    • Pruteanu M, Hyland NP, Clarke DJ, Kiely B, Shanahan F. 2011. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 17:1189-200
    • (2011) Inflamm. Bowel Dis. , vol.17 , pp. 1189-1200
    • Pruteanu, M.1    Hyland, N.P.2    Clarke, D.J.3    Kiely, B.4    Shanahan, F.5
  • 43
    • 84887575263 scopus 로고    scopus 로고
    • Digestion of epithelial tight junction proteins by the commensal Clostridium perfringens
    • Pruteanu M, Shanahan F. 2013. Digestion of epithelial tight junction proteins by the commensal Clostridium perfringens. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G740-48
    • (2013) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.305 , pp. G740-G748
    • Pruteanu, M.1    Shanahan, F.2
  • 44
  • 45
    • 0028954002 scopus 로고
    • Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin aM290β7 (aEβ7)
    • Karecla PI, Bowden SJ, Green SJ, Kilshaw PJ. 1995. Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin aM290β7 (aEβ7). Eur. J. Immunol. 25:852-56
    • (1995) Eur. J. Immunol. , vol.25 , pp. 852-856
    • Karecla, P.I.1    Bowden, S.J.2    Green, S.J.3    Kilshaw, P.J.4
  • 46
    • 79959664629 scopus 로고    scopus 로고
    • The light and dark sides of intestinal intraepithelial lymphocytes
    • Cheroutre H, Lambolez F, Mucida D. 2011. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11:445-56
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 445-456
    • Cheroutre, H.1    Lambolez, F.2    Mucida, D.3
  • 47
    • 33748124825 scopus 로고    scopus 로고
    • Intraepithelial γδ+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection
    • Dalton JE, Cruickshank SM, Egan CE, Mears R, Newton DJ, et al. 2006. Intraepithelial γδ+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131:818-29
    • (2006) Gastroenterology , vol.131 , pp. 818-829
    • Dalton, J.E.1    Cruickshank, S.M.2    Egan, C.E.3    Mears, R.4    Newton, D.J.5
  • 48
    • 84930023376 scopus 로고    scopus 로고
    • γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice
    • Edelblum KL, Singh G, Odenwald MA, Lingaraju A, El Bissati K, et al. 2015. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 148:1417-26
    • (2015) Gastroenterology , vol.148 , pp. 1417-1426
    • Edelblum, K.L.1    Singh, G.2    Odenwald, M.A.3    Lingaraju, A.4    El Bissati, K.5
  • 49
    • 84930226970 scopus 로고    scopus 로고
    • Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance
    • Swamy M, Abeler-Dorner L, Chettle J, Mahlakoiv T, Goubau D, et al. 2015. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun. 6:7090
    • (2015) Nat. Commun. , vol.6 , pp. 7090
    • Swamy, M.1    Abeler-Dorner, L.2    Chettle, J.3    Mahlakoiv, T.4    Goubau, D.5
  • 50
    • 0037195101 scopus 로고    scopus 로고
    • Protection of the intestinal mucosa by intraepithelial gamma delta T cells
    • Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R. 2002. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. PNAS 99:14338-43
    • (2002) PNAS , vol.99 , pp. 14338-14343
    • Chen, Y.1    Chou, K.2    Fuchs, E.3    Havran, W.L.4    Boismenu, R.5
  • 51
    • 84890900390 scopus 로고    scopus 로고
    • Protection against colitis by CD100-dependentmodulation of intraepithelial γδT lymphocyte function
    • Meehan TF, Witherden DA, Kim CH, Sendaydiego K, Ye I, Garijo O, et al. 2014. Protection against colitis by CD100-dependentmodulation of intraepithelial γδT lymphocyte function. Mucosal. Immunol. 7:134-42
    • (2014) Mucosal. Immunol. , vol.7 , pp. 134-142
    • Meehan, T.F.1    Witherden, D.A.2    Kim, C.H.3    Sendaydiego, K.4    Ye, I.5    Garijo, O.6
  • 53
    • 54449083567 scopus 로고    scopus 로고
    • The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
    • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, et al. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:15064-69
    • (2008) PNAS , vol.105 , pp. 15064-15069
    • Johansson, M.E.1    Phillipson, M.2    Petersson, J.3    Velcich, A.4    Holm, L.5
  • 55
    • 0036500996 scopus 로고    scopus 로고
    • Colorectal cancer in mice genetically deficient in the mucin Muc2
    • Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, et al. 2002. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295:1726-29
    • (2002) Science , vol.295 , pp. 1726-1729
    • Velcich, A.1    Yang, W.2    Heyer, J.3    Fragale, A.4    Nicholas, C.5
  • 56
    • 84945182619 scopus 로고    scopus 로고
    • ColonicMUC2mucin regulates the expression and antimicrobial activity of beta-defensin 2
    • Cobo ER, Kissoon-Singh V, Moreau F, Chadee K. 2015. ColonicMUC2mucin regulates the expression and antimicrobial activity of beta-defensin 2. Mucosal. Immunol. 8:1360-72
    • (2015) Mucosal. Immunol. , vol.8 , pp. 1360-1372
    • Cobo, E.R.1    Kissoon-Singh, V.2    Moreau, F.3    Chadee, K.4
  • 57
    • 84906707282 scopus 로고    scopus 로고
    • Microbialinduced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus
    • Schutte A, Ermund A, Becker-Pauly C, Johansson ME, Rodriguez-Pineiro AM, et al. 2014. Microbialinduced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. PNAS 111:12396-401
    • (2014) PNAS , vol.111 , pp. 12396-12401
    • Schutte, A.1    Ermund, A.2    Becker-Pauly, C.3    Johansson, M.E.4    Rodriguez-Pineiro, A.M.5
  • 58
    • 0029828745 scopus 로고    scopus 로고
    • Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor
    • Mashimo H, Wu DC, Podolsky DK, Fishman MC. 1996. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262-5
    • (1996) Science , vol.274 , pp. 262-265
    • Mashimo, H.1    Wu, D.C.2    Podolsky, D.K.3    Fishman, M.C.4
  • 59
    • 44449177969 scopus 로고    scopus 로고
    • Aging in the absence of TLR2 is associated with reduced IFN-gamma responses in the large intestine and increased severity of induced colitis
    • Albert EJ, Marshall JS. 2008. Aging in the absence of TLR2 is associated with reduced IFN-gamma responses in the large intestine and increased severity of induced colitis. J. Leukoc. Biol. 83:833-42
    • (2008) J. Leukoc. Biol. , vol.83 , pp. 833-842
    • Albert, E.J.1    Marshall, J.S.2
  • 60
    • 67649231565 scopus 로고    scopus 로고
    • Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency
    • Podolsky DK, Gerken G, Eyking A, Cario E. 2009. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 137:209-20
    • (2009) Gastroenterology , vol.137 , pp. 209-220
    • Podolsky, D.K.1    Gerken, G.2    Eyking, A.3    Cario, E.4
  • 61
    • 77953295344 scopus 로고    scopus 로고
    • Review: Gp-340/DMBT1 in mucosal innate immunity
    • Madsen J, Mollenhauer J, Holmskov U. 2010. Review: Gp-340/DMBT1 in mucosal innate immunity. Innate Immun. 16:160-67
    • (2010) Innate Immun. , vol.16 , pp. 160-167
    • Madsen, J.1    Mollenhauer, J.2    Holmskov, U.3
  • 62
    • 84877772051 scopus 로고    scopus 로고
    • A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3)
    • Madsen J, Sorensen GL, Nielsen O, Tornoe I, Thim L, et al. 2013. A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLOS ONE 8:e64441
    • (2013) PLOS ONE , vol.8 , pp. e64441
    • Madsen, J.1    Sorensen, G.L.2    Nielsen, O.3    Tornoe, I.4    Thim, L.5
  • 63
    • 0242490269 scopus 로고    scopus 로고
    • Bacterial colonization leads to the colonic secretion of RELMβ/FIZZ2, a novel goblet cell-specific protein
    • He W, Wang ML, Jiang HQ, Steppan CM, Shin ME, et al. 2003. Bacterial colonization leads to the colonic secretion of RELMβ/FIZZ2, a novel goblet cell-specific protein. Gastroenterology 125:1388-97
    • (2003) Gastroenterology , vol.125 , pp. 1388-1397
    • He, W.1    Wang, M.L.2    Jiang, H.Q.3    Steppan, C.M.4    Shin, M.E.5
  • 64
    • 4544300682 scopus 로고    scopus 로고
    • RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract
    • Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, et al. 2004. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. PNAS 101:13596-600
    • (2004) PNAS , vol.101 , pp. 13596-13600
    • Artis, D.1    Wang, M.L.2    Keilbaugh, S.A.3    He, W.4    Brenes, M.5
  • 65
    • 0033696860 scopus 로고    scopus 로고
    • IL9-deficient mice establish fundamental roles for IL9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development
    • Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, et al. 2000. IL9-deficient mice establish fundamental roles for IL9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13:573-83
    • (2000) Immunity , vol.13 , pp. 573-583
    • Townsend, J.M.1    Fallon, G.P.2    Matthews, J.D.3    Smith, P.4    Jolin, E.H.5
  • 67
    • 84928884676 scopus 로고    scopus 로고
    • Conditional IL4/IL13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths
    • Oeser K, Schwartz C, Voehringer D. 2015. Conditional IL4/IL13-deficient mice reveal a critical role of innate immune cells for protective immunity against gastrointestinal helminths. Mucosal. Immunol. 8:672-82
    • (2015) Mucosal. Immunol. , vol.8 , pp. 672-682
    • Oeser, K.1    Schwartz, C.2    Voehringer, D.3
  • 68
    • 84954286513 scopus 로고    scopus 로고
    • Tuft-cell-derived IL25 regulates an intestinal ILC2-epithelial response circuit
    • von Moltke J, Ji M, Liang HE, Locksley RM. 2016. Tuft-cell-derived IL25 regulates an intestinal ILC2-epithelial response circuit. Nature 529: 221-25
    • (2016) Nature , vol.529 , pp. 221-225
    • Von Moltke, J.1    Ji, M.2    Liang, H.E.3    Locksley, R.M.4
  • 69
    • 84944682245 scopus 로고    scopus 로고
    • Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy
    • Chen CY, Lee JB, Liu B, Ohta S, Wang PY, et al. 2015. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43:788-802
    • (2015) Immunity , vol.43 , pp. 788-802
    • Chen, C.Y.1    Lee, J.B.2    Liu, B.3    Ohta, S.4    Wang, P.Y.5
  • 70
    • 84887315051 scopus 로고    scopus 로고
    • IL22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection
    • Turner JE, Stockinger B, Helmby H. 2013. IL22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PLOS Pathog. 9:e1003698
    • (2013) PLOS Pathog. , vol.9 , pp. e1003698
    • Turner, J.E.1    Stockinger, B.2    Helmby, H.3
  • 71
    • 65249123621 scopus 로고    scopus 로고
    • IL9 promotes IL13-dependent Paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa
    • Steenwinckel V, Louahed J, Lemaire MM, Sommereyns C, Warnier G, et al. 2009. IL9 promotes IL13-dependent Paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 182:4737-43
    • (2009) J. Immunol. , vol.182 , pp. 4737-4743
    • Steenwinckel, V.1    Louahed, J.2    Lemaire, M.M.3    Sommereyns, C.4    Warnier, G.5
  • 72
    • 84911497229 scopus 로고    scopus 로고
    • TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium
    • McCauley HA, Liu CY, Attia AC, Wikenheiser-Brokamp KA, Zhang Y, et al. 2014. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development 141:4628-39
    • (2014) Development , vol.141 , pp. 4628-4639
    • McCauley, H.A.1    Liu, C.Y.2    Attia, A.C.3    Wikenheiser-Brokamp, K.A.4    Zhang, Y.5
  • 73
    • 84896691062 scopus 로고    scopus 로고
    • NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
    • Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, et al. 2014. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045-59
    • (2014) Cell , vol.156 , pp. 1045-1059
    • Wlodarska, M.1    Thaiss, C.A.2    Nowarski, R.3    Henao-Mejia, J.4    Zhang, J.P.5
  • 74
    • 79959540809 scopus 로고    scopus 로고
    • Afunctional role for Nlrp6 in intestinal inflammation and tumorigenesis
    • Chen GY, Liu M, Wang F, Bertin J, Nunez G. 2011.Afunctional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186:7187-94
    • (2011) J. Immunol. , vol.186 , pp. 7187-7194
    • Chen, G.Y.1    Liu, M.2    Wang, F.3    Bertin, J.4    Nunez, G.5
  • 75
    • 79959369355 scopus 로고    scopus 로고
    • Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury
    • Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, et al. 2011. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. PNAS 108:9601-6
    • (2011) PNAS , vol.108 , pp. 9601-9606
    • Normand, S.1    Delanoye-Crespin, A.2    Bressenot, A.3    Huot, L.4    Grandjean, T.5
  • 76
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745-57
    • (2011) Cell , vol.145 , pp. 745-757
    • Elinav, E.1    Strowig, T.2    Kau, A.L.3    Henao-Mejia, J.4    Thaiss, C.A.5
  • 77
    • 84949255269 scopus 로고    scopus 로고
    • Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling
    • Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, et al. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428-43
    • (2015) Cell , vol.163 , pp. 1428-1443
    • Levy, M.1    Thaiss, C.A.2    Zeevi, D.3    Dohnalova, L.4    Zilberman-Schapira, G.5
  • 78
    • 84949309790 scopus 로고    scopus 로고
    • Epithelial IL18 equilibrium controls barrier function in colitis
    • Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, et al. 2015. Epithelial IL18 equilibrium controls barrier function in colitis. Cell 163:1444-56
    • (2015) Cell , vol.163 , pp. 1444-1456
    • Nowarski, R.1    Jackson, R.2    Gagliani, N.3    De Zoete, M.R.4    Palm, N.W.5
  • 79
    • 84863230541 scopus 로고    scopus 로고
    • Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
    • McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, et al. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:345-49
    • (2012) Nature , vol.483 , pp. 345-349
    • McDole, J.R.1    Wheeler, L.W.2    McDonald, K.G.3    Wang, B.4    Konjufca, V.5
  • 80
    • 84922600148 scopus 로고    scopus 로고
    • Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon
    • Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. 2015. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8:198-210
    • (2015) Mucosal Immunol. , vol.8 , pp. 198-210
    • Knoop, K.A.1    McDonald, K.G.2    McCrate, S.3    McDole, J.R.4    Newberry, R.D.5
  • 81
    • 78751644734 scopus 로고    scopus 로고
    • Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
    • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, et al. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415-18
    • (2011) Nature , vol.469 , pp. 415-418
    • Sato, T.1    Van Es, J.H.2    Snippert, H.J.3    De, S.4    Vries, R.G.5
  • 82
    • 84868581997 scopus 로고    scopus 로고
    • Paneth cells and necrotizing enterocolitis
    • Underwood MA. 2012. Paneth cells and necrotizing enterocolitis. Gut Microbes 3:562-65
    • (2012) Gut Microbes , vol.3 , pp. 562-565
    • Underwood, M.A.1
  • 83
    • 67651159312 scopus 로고    scopus 로고
    • Stem cells, self-renewal, and differentiation in the intestinal epithelium
    • van der Flier LG, Clevers H. 2009. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:241-60
    • (2009) Annu. Rev. Physiol. , vol.71 , pp. 241-260
    • Van Der Flier, L.G.1    Clevers, H.2
  • 84
    • 70349435300 scopus 로고    scopus 로고
    • The Ets-domain transcription factor Spdef promotesmaturation of goblet and Paneth cells in the intestinal epithelium
    • Gregorieff A, Stange DE, Kujala P, Begthel H, van denBorn M, et al. 2009. The Ets-domain transcription factor Spdef promotesmaturation of goblet and Paneth cells in the intestinal epithelium. Gastroenterology 137:1333-45.e3
    • (2009) Gastroenterology , vol.137 , pp. 1333-1333e3
    • Gregorieff, A.1    De, S.2    Kujala, P.3    Begthel, H.4    Van Den Born, M.5
  • 85
    • 26944474424 scopus 로고    scopus 로고
    • Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation
    • Shroyer NF, Wallis D, Venken KJ, Bellen HJ, Zoghbi HY. 2005. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19:2412-17
    • (2005) Genes Dev. , vol.19 , pp. 2412-2417
    • Shroyer, N.F.1    Wallis, D.2    Venken, K.J.3    Bellen, H.J.4    Zoghbi, H.Y.5
  • 86
    • 77955508897 scopus 로고    scopus 로고
    • Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium
    • Bjerknes M, Cheng H. 2010. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev. Biol. 345:49-63
    • (2010) Dev. Biol. , vol.345 , pp. 49-63
    • Bjerknes, M.1    Cheng, H.2
  • 89
    • 0026457997 scopus 로고
    • Paneth cells of the human small intestine express an antimicrobial peptide gene
    • Jones DE, Bevins CL. 1992. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267:23216-25
    • (1992) J. Biol. Chem. , vol.267 , pp. 23216-23225
    • De, J.1    Bevins, C.L.2
  • 90
    • 0034252293 scopus 로고    scopus 로고
    • Secretion of microbicidal a-defensins by intestinal Paneth cells in response to bacteria
    • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, et al. 2000. Secretion of microbicidal a-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1:113-18
    • (2000) Nat. Immunol. , vol.1 , pp. 113-118
    • Ayabe, T.1    Satchell, D.P.2    Wilson, C.L.3    Parks, W.C.4    Selsted, M.E.5
  • 92
    • 0035978651 scopus 로고    scopus 로고
    • Association ofNOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
    • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, et al. 2001. Association ofNOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599-603
    • (2001) Nature , vol.411 , pp. 599-603
    • Hugot, J.P.1    Chamaillard, M.2    Zouali, H.3    Lesage, S.4    Cezard, J.P.5
  • 93
    • 29144483937 scopus 로고    scopus 로고
    • Reduced Paneth cell a-defensins in ileal Crohn's disease
    • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, et al. 2005. Reduced Paneth cell a-defensins in ileal Crohn's disease. PNAS 102:18129-34
    • (2005) PNAS , vol.102 , pp. 18129-18134
    • Wehkamp, J.1    Salzman, N.H.2    Porter, E.3    Nuding, S.4    Weichenthal, M.5
  • 94
    • 0033214433 scopus 로고    scopus 로고
    • Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense
    • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, et al. 1999. Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113-17
    • (1999) Science , vol.286 , pp. 113-117
    • Wilson, C.L.1    Ouellette, A.J.2    Satchell, D.P.3    Ayabe, T.4    Lopez-Boado, Y.S.5
  • 95
    • 84864335926 scopus 로고    scopus 로고
    • Human a-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets
    • Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, et al. 2012. Human a-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477-81
    • (2012) Science , vol.337 , pp. 477-481
    • Chu, H.1    Pazgier, M.2    Jung, G.3    Nuccio, S.P.4    Castillo, P.A.5
  • 96
    • 58549111588 scopus 로고    scopus 로고
    • Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
    • Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. PNAS 105:20858-63
    • (2008) PNAS , vol.105 , pp. 20858-20863
    • Vaishnava, S.1    Behrendt, C.L.2    Ismail, A.S.3    Eckmann, L.4    Hooper, L.V.5
  • 97
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine
    • Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255-58
    • (2011) Science , vol.334 , pp. 255-258
    • Vaishnava, S.1    Yamamoto, M.2    Severson, K.M.3    Ruhn, K.A.4    Yu, X.5
  • 98
    • 28144437207 scopus 로고    scopus 로고
    • Paneth cells: Their role in innate immunity and inflammatory disease
    • Elphick DA, Mahida YR. 2005. Paneth cells: their role in innate immunity and inflammatory disease. Gut 54:1802-9
    • (2005) Gut , vol.54 , pp. 1802-1809
    • Elphick, D.A.1    Mahida, Y.R.2
  • 99
    • 0842304596 scopus 로고    scopus 로고
    • Antimicrobial polypeptides
    • Ganz T. 2004. Antimicrobial polypeptides. J. Leukoc. Biol. 75:34-38
    • (2004) J. Leukoc. Biol. , vol.75 , pp. 34-38
    • Ganz, T.1
  • 100
    • 10544223740 scopus 로고    scopus 로고
    • Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells
    • Qu XD, Lloyd KC, Walsh JH, Lehrer RI. 1996. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun. 64:5161-65
    • (1996) Infect. Immun. , vol.64 , pp. 5161-5165
    • Qu, X.D.1    Lloyd, K.C.2    Walsh, J.H.3    Lehrer, R.I.4
  • 101
    • 0033966028 scopus 로고    scopus 로고
    • Resistance of transgenic mice expressing human group II phospholipase A2 to Escherichia coli infection
    • Laine VJ, Grass DS, Nevalainen TJ. 2000. Resistance of transgenic mice expressing human group II phospholipase A2 to Escherichia coli infection. Infect. Immun. 68:87-92
    • (2000) Infect. Immun. , vol.68 , pp. 87-92
    • Laine, V.J.1    Grass, D.S.2    Nevalainen, T.J.3
  • 102
    • 0033104949 scopus 로고    scopus 로고
    • Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against gram-positive bacteria
    • Foreman-Wykert AK, Weinrauch Y, Elsbach P, Weiss J. 1999. Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against gram-positive bacteria. J. Clin. Investig. 103:715-21
    • (1999) J. Clin. Investig. , vol.103 , pp. 715-721
    • Foreman-Wykert, A.K.1    Weinrauch, Y.2    Elsbach, P.3    Weiss, J.4
  • 103
    • 84888201085 scopus 로고    scopus 로고
    • Gutmicrobiota, enteroendocrine functions and metabolism
    • Cani PD, Everard A, Duparc T. 2013. Gutmicrobiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13:935-40
    • (2013) Curr. Opin. Pharmacol. , vol.13 , pp. 935-940
    • Cani, P.D.1    Everard, A.2    Duparc, T.3
  • 104
    • 84958620086 scopus 로고    scopus 로고
    • Enteroendocrine cells: Chemosensors in the intestinal epithelium
    • Gribble FM, Reimann F. 2016. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78:277-99
    • (2016) Annu. Rev. Physiol. , vol.78 , pp. 277-299
    • Gribble, F.M.1    Reimann, F.2
  • 105
    • 0037011171 scopus 로고    scopus 로고
    • Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium
    • Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, et al. 2002. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 21:6338-47
    • (2002) EMBO J. , vol.21 , pp. 6338-6347
    • Jenny, M.1    Uhl, C.2    Roche, C.3    Duluc, I.4    Guillermin, V.5
  • 106
    • 77951849336 scopus 로고    scopus 로고
    • Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival
    • Mellitzer G, Beucher A, Lobstein V, Michel P, Robine S, et al. 2010. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Investig. 120:1708-21
    • (2010) J. Clin. Investig. , vol.120 , pp. 1708-1721
    • Mellitzer, G.1    Beucher, A.2    Lobstein, V.3    Michel, P.4    Robine, S.5
  • 107
    • 84875985453 scopus 로고    scopus 로고
    • Glucagon-like peptides 1 and 2 in health and disease: A review
    • Marathe CS, Rayner CK, Jones KL, Horowitz M. 2013. Glucagon-like peptides 1 and 2 in health and disease: a review. Peptides 44:75-86
    • (2013) Peptides , vol.44 , pp. 75-86
    • Marathe, C.S.1    Rayner, C.K.2    Jones, K.L.3    Horowitz, M.4
  • 108
    • 0029795016 scopus 로고    scopus 로고
    • Induction of intestinal epithelial proliferation by glucagon-like peptide 2
    • Drucker DJ, Erlich P, Asa SL, Brubaker PL. 1996. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. PNAS 93:7911-16
    • (1996) PNAS , vol.93 , pp. 7911-7916
    • Drucker, D.J.1    Erlich, P.2    Asa, S.L.3    Brubaker, P.L.4
  • 109
    • 84938593528 scopus 로고    scopus 로고
    • IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations
    • Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, et al. 2015. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J. 29:2828-42
    • (2015) FASEB J. , vol.29 , pp. 2828-2842
    • Van Landeghem, L.1    Santoro, M.A.2    Mah, A.T.3    Krebs, A.E.4    Dehmer, J.J.5
  • 110
    • 84858079550 scopus 로고    scopus 로고
    • Insulin-like growth factor 1: Common mediator of multiple enterotrophic hormones and growth factors
    • Bortvedt SF, Lund PK. 2012. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors. Curr. Opin. Gastroenterol. 28:89-98
    • (2012) Curr. Opin. Gastroenterol. , vol.28 , pp. 89-98
    • Bortvedt, S.F.1    Lund, P.K.2
  • 111
    • 84897130335 scopus 로고    scopus 로고
    • Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine
    • Nagatake T, Fujita H, Minato N, Hamazaki Y. 2014. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine. PLOS ONE 9:e90638
    • (2014) PLOS ONE , vol.9 , pp. e90638
    • Nagatake, T.1    Fujita, H.2    Minato, N.3    Hamazaki, Y.4
  • 113
    • 84884693129 scopus 로고    scopus 로고
    • GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes
    • Nohr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, et al. 2013. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552-64
    • (2013) Endocrinology , vol.154 , pp. 3552-3564
    • Nohr, M.K.1    Pedersen, M.H.2    Gille, A.3    Egerod, K.L.4    Engelstoft, M.S.5
  • 114
    • 0030969362 scopus 로고    scopus 로고
    • Cholecystokinin cells
    • Liddle RA. 1997. Cholecystokinin cells. Annu. Rev. Physiol. 59:221-42
    • (1997) Annu. Rev. Physiol. , vol.59 , pp. 221-242
    • Liddle, R.A.1
  • 115
    • 33645112510 scopus 로고    scopus 로고
    • Immune control of food intake: Enteroendocrine cells are regulated by CD4+ T lymphocytes during small intestinal inflammation
    • McDermott JR, Leslie FC, D'Amato M, Thompson DG, Grencis RK, et al. 2006. Immune control of food intake: Enteroendocrine cells are regulated by CD4+ T lymphocytes during small intestinal inflammation. Gut 55:492-97
    • (2006) Gut , vol.55 , pp. 492-497
    • McDermott, J.R.1    Leslie, F.C.2    D'Amato, M.3    Thompson, D.G.4    Grencis, R.K.5
  • 116
    • 84938812082 scopus 로고    scopus 로고
    • The intestinal immunoendocrine axis: Novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease
    • Worthington JJ. 2015. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem. Soc. Trans. 43:727-33
    • (2015) Biochem. Soc. Trans. , vol.43 , pp. 727-733
    • Worthington, J.J.1
  • 117
    • 84865016748 scopus 로고    scopus 로고
    • The intestinal epithelium tuft cells: Specification and function
    • Gerbe F, Legraverend C, Jay P. 2012. The intestinal epithelium tuft cells: specification and function. Cell Mol. Life Sci. 69:2907-17
    • (2012) Cell Mol. Life Sci. , vol.69 , pp. 2907-2917
    • Gerbe, F.1    Legraverend, C.2    Jay, P.3
  • 118
    • 79952418471 scopus 로고    scopus 로고
    • Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium
    • Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, et al. 2011. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192:767-80
    • (2011) J. Cell Biol. , vol.192 , pp. 767-780
    • Gerbe, F.1    Van Es, J.H.2    Makrini, L.3    Brulin, B.4    Mellitzer, G.5
  • 120
    • 84954561117 scopus 로고    scopus 로고
    • Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites
    • Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226-30
    • (2016) Nature , vol.529 , pp. 226-230
    • Gerbe, F.1    Sidot, E.2    Smyth, D.J.3    Ohmoto, M.4    Matsumoto, I.5
  • 121
    • 84958767810 scopus 로고    scopus 로고
    • Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut
    • Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329-33
    • (2016) Science , vol.351 , pp. 1329-1333
    • Howitt, M.R.1    Lavoie, S.2    Michaud, M.3    Blum, A.M.4    Tran, S.V.5
  • 122
  • 123
    • 36549087144 scopus 로고    scopus 로고
    • AnovelMcell-specific carbohydratetargeted mucosal vaccine effectively induces antigen-specific immune responses
    • Nochi T, Yuki Y, Matsumura A, Mejima M, Terahara K, et al. 2007.AnovelMcell-specific carbohydratetargeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204:2789-96
    • (2007) J. Exp. Med. , vol.204 , pp. 2789-2796
    • Nochi, T.1    Yuki, Y.2    Matsumura, A.3    Mejima, M.4    Terahara, K.5
  • 124
    • 50949083497 scopus 로고    scopus 로고
    • Comprehensive gene expression profiling of Peyer's patchMcells, villous M-like cells, and intestinal epithelial cells
    • Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, et al. 2008. Comprehensive gene expression profiling of Peyer's patchMcells, villous M-like cells, and intestinal epithelial cells. J. Immunol. 180:7840-46
    • (2008) J. Immunol. , vol.180 , pp. 7840-7846
    • Terahara, K.1    Yoshida, M.2    Igarashi, O.3    Nochi, T.4    Pontes, G.S.5
  • 125
    • 0031913037 scopus 로고    scopus 로고
    • M-cell surface β1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells
    • Clark MA, Hirst BH, Jepson MA. 1998. M-cell surface β1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect. Immun. 66:1237-43
    • (1998) Infect. Immun. , vol.66 , pp. 1237-1243
    • Clark, M.A.1    Hirst, B.H.2    Jepson, M.A.3
  • 126
    • 24944576523 scopus 로고    scopus 로고
    • Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and Mcells
    • Hase K, Ohshima S, Kawano K, Hashimoto N, Matsumoto K, et al. 2005. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium andMcells. DNA Res. 12:127-37
    • (2005) DNA Res. , vol.12 , pp. 127-137
    • Hase, K.1    Ohshima, S.2    Kawano, K.3    Hashimoto, N.4    Matsumoto, K.5
  • 127
    • 80054959499 scopus 로고    scopus 로고
    • Mcells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery
    • Kim SH, Jung DI, Yang IY, Kim J, Lee KY, et al. 2011.Mcells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. Eur. J. Immunol. 41:3219-29
    • (2011) Eur. J. Immunol. , vol.41 , pp. 3219-3229
    • Kim, S.H.1    Jung, D.I.2    Yang, I.Y.3    Kim, J.4    Lee, K.Y.5
  • 128
    • 0036721283 scopus 로고    scopus 로고
    • Immunofluorescence analysis of poliovirus receptor expression in Peyer's patches of humans, primates, and CD155 transgenic mice: Implications for poliovirus infection
    • Iwasaki A, Welker R, Mueller S, Linehan M, Nomoto A, et al. 2002. Immunofluorescence analysis of poliovirus receptor expression in Peyer's patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J. Infect. Dis. 186:585-92
    • (2002) J. Infect. Dis. , vol.186 , pp. 585-592
    • Iwasaki, A.1    Welker, R.2    Mueller, S.3    Linehan, M.4    Nomoto, A.5
  • 129
    • 0031883674 scopus 로고    scopus 로고
    • Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells
    • Freedman SD, Kern HF, Scheele GA. 1998. Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells. Eur. J. Cell Biol. 75:163-73
    • (1998) Eur. J. Cell Biol. , vol.75 , pp. 163-173
    • Freedman, S.D.1    Kern, H.F.2    Scheele, G.A.3
  • 130
    • 70449653428 scopus 로고    scopus 로고
    • Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response
    • Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, et al. 2009. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462:226-30
    • (2009) Nature , vol.462 , pp. 226-230
    • Hase, K.1    Kawano, K.2    Nochi, T.3    Pontes, G.S.4    Fukuda, S.5
  • 131
    • 0036258843 scopus 로고    scopus 로고
    • Adhesion and entry of uropathogenic Escherichia coli
    • Mulvey MA. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 4:257-71
    • (2002) Cell Microbiol. , vol.4 , pp. 257-271
    • Mulvey, M.A.1
  • 132
    • 84857635052 scopus 로고    scopus 로고
    • Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores
    • Lelouard H, Fallet M, de Bovis B, Meresse S, Gorvel JP. 2012. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142:592-601.e3
    • (2012) Gastroenterology , vol.142 , pp. 592-592e3
    • Lelouard, H.1    Fallet, M.2    De Bovis, B.3    Meresse, S.4    Gorvel, J.P.5
  • 133
    • 84963516373 scopus 로고    scopus 로고
    • Peyer's patches: Organizing B-cell responses at the intestinal frontier
    • Reboldi A, Cyster JG. 2016. Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271:230-45
    • (2016) Immunol. Rev. , vol.271 , pp. 230-245
    • Reboldi, A.1    Cyster, J.G.2
  • 134
    • 29644439799 scopus 로고    scopus 로고
    • Themembrane-bound chemokine CXCL16 expressed on follicle-associated epithelium andMcells mediates lympho-epithelial interaction in GALT
    • Hase K, Murakami T, Takatsu H, Shimaoka T, Iimura M, et al. 2006. Themembrane-bound chemokine CXCL16 expressed on follicle-associated epithelium andMcells mediates lympho-epithelial interaction in GALT. J. Immunol. 176:43-51
    • (2006) J. Immunol. , vol.176 , pp. 43-51
    • Hase, K.1    Murakami, T.2    Takatsu, H.3    Shimaoka, T.4    Iimura, M.5
  • 135
    • 19544367802 scopus 로고    scopus 로고
    • Absence of CCR6 inhibits CD4+ regulatory T-cell development and M-cell formation inside Peyer's patches
    • Lugering A, Floer M, Westphal S, Maaser C, Spahn TW, et al. 2005. Absence of CCR6 inhibits CD4+ regulatory T-cell development and M-cell formation inside Peyer's patches. Am. J. Pathol. 166:1647-54
    • (2005) Am. J. Pathol. , vol.166 , pp. 1647-1654
    • Lugering, A.1    Floer, M.2    Westphal, S.3    Maaser, C.4    Spahn, T.W.5
  • 136
    • 40449141521 scopus 로고    scopus 로고
    • Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: Evidence of defective M-cell formation in vivo
    • Westphal S, Lugering A, von Wedel J, von Eiff C, Maaser C, et al. 2008. Resistance of chemokine receptor 6-deficient mice to Yersinia enterocolitica infection: evidence of defective M-cell formation in vivo. Am. J. Pathol. 172:671-80
    • (2008) Am. J. Pathol. , vol.172 , pp. 671-680
    • Westphal, S.1    Lugering, A.2    Von Wedel, J.3    Von Eiff, C.4    Maaser, C.5
  • 137
    • 79953301149 scopus 로고    scopus 로고
    • CCR6hiCD11cint B cells promote M-cell differentiation in Peyer's patch
    • Ebisawa M, Hase K, Takahashi D, Kitamura H, Knoop KA, et al. 2011.CCR6hiCD11cint B cells promote M-cell differentiation in Peyer's patch. Int. Immunol. 23:261-69
    • (2011) Int. Immunol. , vol.23 , pp. 261-269
    • Ebisawa, M.1    Hase, K.2    Takahashi, D.3    Kitamura, H.4    Knoop, K.A.5
  • 138
    • 0038946003 scopus 로고    scopus 로고
    • Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria
    • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E. 1997. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949-52
    • (1997) Science , vol.277 , pp. 949-952
    • Kerneis, S.1    Bogdanova, A.2    Kraehenbuhl, J.P.3    Pringault, E.4
  • 139
    • 0020656366 scopus 로고
    • The IgA1 proteases of pathogenic bacteria
    • Plaut AG. 1983. The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603-22
    • (1983) Annu. Rev. Microbiol. , vol.37 , pp. 603-622
    • Plaut, A.G.1
  • 140
    • 84884580565 scopus 로고    scopus 로고
    • Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinalMcells
    • Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P, et al. 2013. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinalMcells.PLOS Biol. 11:e1001658
    • (2013) PLOS Biol. , vol.11 , pp. e1001658
    • Rochereau, N.1    Drocourt, D.2    Perouzel, E.3    Pavot, V.4    Redelinghuys, P.5
  • 141
    • 84924622817 scopus 로고    scopus 로고
    • Secretory IgA as a vaccine carrier for delivery of HIV antigen to M cells
    • Rochereau N, Pavot V, Verrier B, Ensinas A, Genin C, et al. 2015. Secretory IgA as a vaccine carrier for delivery of HIV antigen to M cells. Eur. J. Immunol. 45:773-79
    • (2015) Eur. J. Immunol. , vol.45 , pp. 773-779
    • Rochereau, N.1    Pavot, V.2    Verrier, B.3    Ensinas, A.4    Genin, C.5
  • 142
    • 84911446682 scopus 로고    scopus 로고
    • A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses
    • Shima H, Watanabe T, Fukuda S, Fukuoka S, Ohara O, et al. 2014. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses. Int. Immunol. 26:619-25
    • (2014) Int. Immunol. , vol.26 , pp. 619-625
    • Shima, H.1    Watanabe, T.2    Fukuda, S.3    Fukuoka, S.4    Ohara, O.5
  • 144
    • 77950491661 scopus 로고    scopus 로고
    • RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium
    • Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, et al. 2009. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183:5738-47
    • (2009) J. Immunol. , vol.183 , pp. 5738-5747
    • Knoop, K.A.1    Kumar, N.2    Butler, B.R.3    Sakthivel, S.K.4    Taylor, R.T.5
  • 145
    • 84987677771 scopus 로고    scopus 로고
    • TNF-aaugments RANKL-dependent intestinal M cell differentiation in enteroid cultures
    • Wood MB, Rios D, Williams IR. 2016. TNF-aaugments RANKL-dependent intestinal M cell differentiation in enteroid cultures. Am. J. Physiol. Cell Physiol. 311:C498-507
    • (2016) Am. J. Physiol. Cell Physiol. , vol.311 , pp. C498-507
    • Wood, M.B.1    Rios, D.2    Williams, I.R.3
  • 146
    • 84864147310 scopus 로고    scopus 로고
    • The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells
    • Kanaya T, Hase K, Takahashi D, Fukuda S, Hoshino K, et al. 2012. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat. Immunol. 13:729-36
    • (2012) Nat. Immunol. , vol.13 , pp. 729-736
    • Kanaya, T.1    Hase, K.2    Takahashi, D.3    Fukuda, S.4    Hoshino, K.5
  • 147
    • 84866465328 scopus 로고    scopus 로고
    • Peyer's patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured "miniguts"
    • de LauW, Kujala P, Schneeberger K, Middendorp S, Li VS, et al. 2012. Peyer's patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured "miniguts". Mol. Cell Biol. 32:3639-47
    • (2012) Mol. Cell Biol. , vol.32 , pp. 3639-3647
    • De Lauw Kujala, P.1    Schneeberger, K.2    Middendorp, S.3    Li, V.S.4
  • 148
    • 84879398558 scopus 로고    scopus 로고
    • Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer's patch M cells
    • Sato S, Kaneto S, Shibata N, Takahashi Y, Okura H, et al. 2013. Transcription factor Spi-B-dependent and -independent pathways for the development of Peyer's patch M cells. Mucosal Immunol. 6:838-46
    • (2013) Mucosal Immunol. , vol.6 , pp. 838-846
    • Sato, S.1    Kaneto, S.2    Shibata, N.3    Takahashi, Y.4    Okura, H.5
  • 149
    • 77957285995 scopus 로고    scopus 로고
    • CD137 is required for M cell functional maturation but not lineage commitment
    • Hsieh EH, Fernandez X, Wang J, Hamer M, Calvillo S, et al. 2010. CD137 is required for M cell functional maturation but not lineage commitment. Am. J. Pathol. 177:666-76
    • (2010) Am. J. Pathol. , vol.177 , pp. 666-676
    • Hsieh, E.H.1    Fernandez, X.2    Wang, J.3    Hamer, M.4    Calvillo, S.5
  • 150
    • 84963611503 scopus 로고    scopus 로고
    • Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia
    • Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, et al. 2016. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 532:117-21
    • (2016) Nature , vol.532 , pp. 117-121
    • Okumura, R.1    Kurakawa, T.2    Nakano, T.3    Kayama, H.4    Kinoshita, M.5
  • 151
    • 84861989207 scopus 로고    scopus 로고
    • Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
    • Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, et al. 2012. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321-25
    • (2012) Science , vol.336 , pp. 1321-1325
    • Sonnenberg, G.F.1    Monticelli, L.A.2    Alenghat, T.3    Fung, T.C.4    Hutnick, N.A.5
  • 152
    • 84866547629 scopus 로고    scopus 로고
    • Lymphotoxin regulates commensal responses to enable diet-induced obesity
    • Upadhyay V, Poroyko V, Kim TJ, Devkota S, Fu S, et al. 2012. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat. Immunol. 13:947-53
    • (2012) Nat. Immunol. , vol.13 , pp. 947-953
    • Upadhyay, V.1    Poroyko, V.2    Kim, T.J.3    Devkota, S.4    Fu, S.5
  • 153
    • 84907208430 scopus 로고    scopus 로고
    • Innate lymphoid cells regulate intestinal epithelial cell glycosylation
    • Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, et al. 2014. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009
    • (2014) Science , vol.345 , pp. 1254009
    • Goto, Y.1    Obata, T.2    Kunisawa, J.3    Sato, S.4    Ivanov, I.I.5
  • 154
    • 84908403149 scopus 로고    scopus 로고
    • Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
    • Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638-41
    • (2014) Nature , vol.514 , pp. 638-641
    • Pickard, J.M.1    Maurice, C.F.2    Kinnebrew, M.A.3    Abt, M.C.4    Schenten, D.5
  • 155
    • 0035870140 scopus 로고    scopus 로고
    • Characterization of three members of murine a1,2-fucosyltransferases: Change in the expression of the Se gene in the intestine of mice after administration of microbes
    • Lin B, Saito M, Sakakibara Y, Hayashi Y, Yanagisawa M, et al. 2001. Characterization of three members of murine a1,2-fucosyltransferases: change in the expression of the Se gene in the intestine of mice after administration of microbes. Arch. Biochem. Biophys. 388:207-15
    • (2001) Arch. Biochem. Biophys. , vol.388 , pp. 207-215
    • Lin, B.1    Saito, M.2    Sakakibara, Y.3    Hayashi, Y.4    Yanagisawa, M.5
  • 156
    • 2642520426 scopus 로고    scopus 로고
    • Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of a(1, 2)fucosyltransferase genes
    • Iwamori M, Domino SE. 2004. Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of a(1,2)fucosyltransferase genes. Biochem. J. 380:75-81
    • (2004) Biochem. J. , vol.380 , pp. 75-81
    • Iwamori, M.1    Domino, S.E.2
  • 157
    • 0030668744 scopus 로고    scopus 로고
    • Molecular cloning, chromosomal assignment and tissue-specific expression of a murine a(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells
    • Domino SE, Hiraiwa N, Lowe JB. 1997. Molecular cloning, chromosomal assignment and tissue-specific expression of a murine a(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells. Biochem. J. 327(Part 1):105-15
    • (1997) Biochem. J. , vol.327 , pp. 105-115
    • Domino, S.E.1    Hiraiwa, N.2    Lowe, J.B.3
  • 158
    • 78751620999 scopus 로고    scopus 로고
    • Distinct fucosylation ofMcells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress
    • Terahara K, Nochi T, Yoshida M, Takahashi Y, Goto Y, et al. 2011. Distinct fucosylation ofMcells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem. Biophys. Res. Commun. 404:822-28
    • (2011) Biochem. Biophys. Res. Commun. , vol.404 , pp. 822-828
    • Terahara, K.1    Nochi, T.2    Yoshida, M.3    Takahashi, Y.4    Goto, Y.5
  • 159
    • 0033578387 scopus 로고    scopus 로고
    • Amolecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem
    • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. 1999.Amolecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. PNAS 96:9833-38
    • (1999) PNAS , vol.96 , pp. 9833-9838
    • Hooper, L.V.1    Xu, J.2    Falk, P.G.3    Midtvedt, T.4    Gordon, J.I.5
  • 160
    • 79551497091 scopus 로고    scopus 로고
    • Utilization of natural fucosylated oligosaccharides by three novel a-L-fucosidases from a probiotic Lactobacillus casei strain
    • Rodriguez-Diaz J, Monedero V, Yebra MJ. 2011. Utilization of natural fucosylated oligosaccharides by three novel a-L-fucosidases from a probiotic Lactobacillus casei strain. Appl. Environ. Microbiol. 77:703-5
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 703-705
    • Rodriguez-Diaz, J.1    Monedero, V.2    Yebra, M.J.3
  • 161
    • 84930015077 scopus 로고    scopus 로고
    • An L-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions
    • Becerra JE, Yebra MJ, Monedero V. 2015. An L-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Appl. Environ. Microbiol. 81:3880-88
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 3880-3888
    • Becerra, J.E.1    Yebra, M.J.2    Monedero, V.3
  • 162
    • 84878566892 scopus 로고    scopus 로고
    • Synthesis of fucosyl-Nacetylglucosamine disaccharides by transfucosylation using a-L-fucosidases from Lactobacillus casei
    • Rodriguez-Diaz J, Carbajo RJ, Pineda-Lucena A, Monedero V, Yebra MJ. 2013. Synthesis of fucosyl-Nacetylglucosamine disaccharides by transfucosylation using a-L-fucosidases from Lactobacillus casei. Appl. Environ. Microbiol. 79:3847-50
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 3847-3850
    • Rodriguez-Diaz, J.1    Carbajo, R.J.2    Pineda-Lucena, A.3    Monedero, V.4    Yebra, M.J.5
  • 163
    • 84908075358 scopus 로고    scopus 로고
    • Epithelial IL22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
    • Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD, et al. 2014. Epithelial IL22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16:504-16
    • (2014) Cell Host Microbe , vol.16 , pp. 504-516
    • Pham, T.A.1    Clare, S.2    Goulding, D.3    Arasteh, J.M.4    Stares, M.D.5
  • 164
    • 84943639694 scopus 로고    scopus 로고
    • Th17 cell induction by adhesion of microbes to intestinal epithelial cells
    • Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367-80
    • (2015) Cell , vol.163 , pp. 367-380
    • Atarashi, K.1    Tanoue, T.2    Ando, M.3    Kamada, N.4    Nagano, Y.5
  • 165
    • 84908234204 scopus 로고    scopus 로고
    • Reprograming of gutmicrobiome energy metabolism by the FUT2 Crohn's disease risk polymorphism
    • Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC, et al. 2014. Reprograming of gutmicrobiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8:2193-206
    • (2014) ISME J. , vol.8 , pp. 2193-2206
    • Tong, M.1    McHardy, I.2    Ruegger, P.3    Goudarzi, M.4    Kashyap, P.C.5
  • 166
    • 79956257405 scopus 로고    scopus 로고
    • Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine
    • Wacklin P, Makivuokko H, Alakulppi N, Nikkila J, Tenkanen H, et al. 2011. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLOS ONE 6:e20113
    • (2011) PLOS ONE , vol.6 , pp. e20113
    • Wacklin, P.1    Makivuokko, H.2    Alakulppi, N.3    Nikkila, J.4    Tenkanen, H.5
  • 167
    • 77955398591 scopus 로고    scopus 로고
    • Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease
    • McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, et al. 2010. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19:3468-76
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 3468-3476
    • McGovern, D.P.1    Jones, M.R.2    Taylor, K.D.3    Marciante, K.4    Yan, X.5
  • 168
    • 84863981813 scopus 로고    scopus 로고
    • Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci
    • Folseraas T, Melum E, Rausch P, Juran BD, Ellinghaus E, et al. 2012. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57:366-75
    • (2012) J. Hepatol. , vol.57 , pp. 366-375
    • Folseraas, T.1    Melum, E.2    Rausch, P.3    Juran, B.D.4    Ellinghaus, E.5
  • 169
    • 52949095721 scopus 로고    scopus 로고
    • Common variants of FUT2 are associated with plasma vitamin B12 levels
    • Hazra A, Kraft P, Selhub J, Giovannucci EL, Thomas G, et al. 2008. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40:1160-62
    • (2008) Nat. Genet. , vol.40 , pp. 1160-1162
    • Hazra, A.1    Kraft, P.2    Selhub, J.3    Giovannucci, E.L.4    Thomas, G.5
  • 170
    • 84946224148 scopus 로고    scopus 로고
    • IL10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut
    • Goto Y, Lamichhane A, Kamioka M, Sato S, Honda K, et al. 2015. IL10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Sci. Rep. 5:15918
    • (2015) Sci. Rep. , vol.5 , pp. 15918
    • Goto, Y.1    Lamichhane, A.2    Kamioka, M.3    Sato, S.4    Honda, K.5
  • 172
    • 84864557487 scopus 로고    scopus 로고
    • Mucosal healing and fibrosis after acute or chronic inflammation in wild type FVB-Nmice and C57BL6 procollagena1(I)-promoter-GFP reporter mice
    • Ding S, Walton KL, Blue RE, McNaughton K, Magness ST, et al. 2012. Mucosal healing and fibrosis after acute or chronic inflammation in wild type FVB-Nmice and C57BL6 procollagena1(I)-promoter-GFP reporter mice. PLOS ONE 7:e42568
    • (2012) PLOS ONE , vol.7 , pp. e42568
    • Ding, S.1    Walton, K.L.2    Blue, R.E.3    McNaughton, K.4    Magness, S.T.5
  • 173
    • 84975511698 scopus 로고    scopus 로고
    • Fibroblasts andmyofibroblasts of the intestinal lamina propria in physiology and disease
    • Roulis M, Flavell RA. 2016. Fibroblasts andmyofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92:116-31
    • (2016) Differentiation , vol.92 , pp. 116-131
    • Roulis, M.1    Flavell, R.A.2
  • 174
    • 40049097099 scopus 로고    scopus 로고
    • Epithelial restitution and wound healing in inflammatory bowel disease
    • Sturm A, Dignass AU. 2008. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroenterol. 14:348-53
    • (2008) World J. Gastroenterol. , vol.14 , pp. 348-353
    • Sturm, A.1    Dignass, A.U.2
  • 175
    • 84890916350 scopus 로고    scopus 로고
    • Newtargets formucosal healing and therapy in inflammatory bowel diseases
    • Neurath MF. 2014.Newtargets formucosal healing and therapy in inflammatory bowel diseases. Mucosal. Immunol. 7:6-19
    • (2014) Mucosal. Immunol. , vol.7 , pp. 6-19
    • Neurath, M.F.1
  • 177
    • 0027212686 scopus 로고
    • Transforming growth factor-β1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts
    • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. 1993. Transforming growth factor-β1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122:103-11
    • (1993) J. Cell Biol. , vol.122 , pp. 103-111
    • Desmouliere, A.1    Geinoz, A.2    Gabbiani, F.3    Gabbiani, G.4
  • 178
    • 84891276268 scopus 로고    scopus 로고
    • PDGF and TGF-β promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice
    • Islam MS, Kusakabe M, Horiguchi K, Iino S, Nakamura T, et al. 2014. PDGF and TGF-β promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Br. J. Pharmacol. 171:375-88
    • (2014) Br. J. Pharmacol. , vol.171 , pp. 375-388
    • Islam, M.S.1    Kusakabe, M.2    Horiguchi, K.3    Iino, S.4    Nakamura, T.5
  • 179
    • 84941743444 scopus 로고    scopus 로고
    • Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage
    • Song X, Dai D, He X, Zhu S, Yao Y, et al. 2015. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43:488-501
    • (2015) Immunity , vol.43 , pp. 488-501
    • Song, X.1    Dai, D.2    He, X.3    Zhu, S.4    Yao, Y.5
  • 180
    • 84867198093 scopus 로고    scopus 로고
    • Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury
    • Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. 2012. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338:108-13
    • (2012) Science , vol.338 , pp. 108-113
    • Miyoshi, H.1    Ajima, R.2    Luo, C.T.3    Yamaguchi, T.P.4    Stappenbeck, T.S.5
  • 181
    • 84963955072 scopus 로고    scopus 로고
    • Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis
    • Valenta T, Degirmenci B, Moor AE, Herr P, Zimmerli D, et al. 2016. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15:911-18
    • (2016) Cell Rep. , vol.15 , pp. 911-918
    • Valenta, T.1    Degirmenci, B.2    Moor, A.E.3    Herr, P.4    Zimmerli, D.5
  • 182
    • 84966659702 scopus 로고    scopus 로고
    • Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection
    • Mahapatro M, Foersch S, Hefele M, He G-W, Giner-Ventura E, et al. 2016. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep. 15:1743-56
    • (2016) Cell Rep. , vol.15 , pp. 1743-1756
    • Mahapatro, M.1    Foersch, S.2    Hefele, M.3    He, G.-W.4    Giner-Ventura, E.5
  • 184
    • 84940527399 scopus 로고    scopus 로고
    • IL33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions
    • Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, et al. 2015. IL33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. PNAS 112:10762-67
    • (2015) PNAS , vol.112 , pp. 10762-10767
    • Monticelli, L.A.1    Osborne, L.C.2    Noti, M.3    Tran, S.V.4    Zaiss, D.M.5
  • 185
    • 79957907960 scopus 로고    scopus 로고
    • Colon-specific delivery of a probioticderived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism
    • Yan F, Cao H, Cover TL, Washington MK, Shi Y, et al. 2011. Colon-specific delivery of a probioticderived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J. Clin. Investig. 121:2242-53
    • (2011) J. Clin. Investig. , vol.121 , pp. 2242-2253
    • Yan, F.1    Cao, H.2    Cover, T.L.3    Washington, M.K.4    Shi, Y.5
  • 186
    • 84956693215 scopus 로고    scopus 로고
    • IL36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo
    • In press
    • Scheibe K, Backert I, Wirtz S, Hueber A, Schett G, et al. 2016. IL36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut. In press. doi: 10.1136/gutjnl-2015-310374
    • (2016) Gut
    • Scheibe, K.1    Backert, I.2    Wirtz, S.3    Hueber, A.4    Schett, G.5
  • 187
    • 84955474368 scopus 로고    scopus 로고
    • IL-1beta is a strong inducer of IL36γexpression in human colonic myofibroblasts
    • Takahashi K, Nishida A, Shioya M, Imaeda H, Bamba S, et al. 2015. IL-1beta is a strong inducer of IL36γexpression in human colonic myofibroblasts. PLOS ONE 10:e0138423
    • (2015) PLOS ONE , vol.10 , pp. e0138423
    • Takahashi, K.1    Nishida, A.2    Shioya, M.3    Imaeda, H.4    Bamba, S.5
  • 188
    • 84873542232 scopus 로고    scopus 로고
    • GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa
    • Egea L, McAllister CS, Lakhdari O, Minev I, Shenouda S, et al. 2013. GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa. J. Immunol. 190:1702-13
    • (2013) J. Immunol. , vol.190 , pp. 1702-1713
    • Egea, L.1    McAllister, C.S.2    Lakhdari, O.3    Minev, I.4    Shenouda, S.5
  • 189
    • 84935888526 scopus 로고    scopus 로고
    • The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL6
    • Choi JS, Kim KH, Lau LF. 2015. The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL6. Mucosal Immunol. 8:1285-96
    • (2015) Mucosal Immunol. , vol.8 , pp. 1285-1296
    • Choi, J.S.1    Kim, K.H.2    Lau, L.F.3
  • 190
    • 84921657609 scopus 로고    scopus 로고
    • Understanding fibroblast heterogeneity in the skin
    • Driskell RR, Watt FM. 2015. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25:92-99
    • (2015) Trends Cell Biol. , vol.25 , pp. 92-99
    • Driskell, R.R.1    Watt, F.M.2
  • 191
    • 84899071187 scopus 로고    scopus 로고
    • The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis
    • Kurashima Y, Amiya T, Fujisawa K, Shibata N, Suzuki Y, et al. 2014. The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis. Immunity 40:530-41
    • (2014) Immunity , vol.40 , pp. 530-541
    • Kurashima, Y.1    Amiya, T.2    Fujisawa, K.3    Shibata, N.4    Suzuki, Y.5
  • 193
    • 84964394166 scopus 로고    scopus 로고
    • The microbiome, timing, and barrier function in the context of allergic disease
    • Wesemann DR, Nagler CR. 2016. The microbiome, timing, and barrier function in the context of allergic disease. Immunity 44:728-38
    • (2016) Immunity , vol.44 , pp. 728-738
    • Wesemann, D.R.1    Nagler, C.R.2
  • 194
    • 84855796468 scopus 로고    scopus 로고
    • Acquisition of amultifunctional IgA+ plasma cell phenotype in the gut
    • Fritz JH, Rojas OL, Simard N, McCarthy DD, Hapfelmeier S, et al. 2012. Acquisition of amultifunctional IgA+ plasma cell phenotype in the gut. Nature 481:199-203
    • (2012) Nature , vol.481 , pp. 199-203
    • Fritz, J.H.1    Rojas, O.L.2    Simard, N.3    McCarthy, D.D.4    Hapfelmeier, S.5
  • 195
    • 84923633780 scopus 로고    scopus 로고
    • Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells
    • Vicente-Suarez I, Larange A, Reardon C, Matho M, Feau S, et al. 2015. Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells. Mucosal Immunol. 8:141-51
    • (2015) Mucosal Immunol. , vol.8 , pp. 141-151
    • Vicente-Suarez, I.1    Larange, A.2    Reardon, C.3    Matho, M.4    Feau, S.5
  • 197
    • 84857375987 scopus 로고    scopus 로고
    • Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon
    • Sipos F, Galamb O. 2012. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J. Gastroenterol. 18:601-8
    • (2012) World J. Gastroenterol. , vol.18 , pp. 601-608
    • Sipos, F.1    Galamb, O.2
  • 198
    • 70349772034 scopus 로고    scopus 로고
    • Quorum sensing and social networking in the microbial world
    • Atkinson S, Williams P. 2009. Quorum sensing and social networking in the microbial world. J. R. Soc. Interface 6:959-78
    • (2009) J. R. Soc. Interface , vol.6 , pp. 959-978
    • Atkinson, S.1    Williams, P.2
  • 199
    • 78650843522 scopus 로고    scopus 로고
    • To be or not to be a pathogen: That is the mucosally relevant question
    • Sansonetti PJ. 2011. To be or not to be a pathogen: That is the mucosally relevant question. Mucosal. Immunol. 4:8-14
    • (2011) Mucosal. Immunol. , vol.4 , pp. 8-14
    • Sansonetti, P.J.1
  • 200
    • 34249893108 scopus 로고    scopus 로고
    • The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter
    • Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, et al. 2007. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1:299-308
    • (2007) Cell Host Microbe , vol.1 , pp. 299-308
    • Fujiya, M.1    Musch, M.W.2    Nakagawa, Y.3    Hu, S.4    Alverdy, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.