-
1
-
-
56749107237
-
Acoel development indicates the independent evolution of the bilaterian mouth and anus
-
HejnolA,MartindaleMQ.2008. Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382-86
-
(2008)
Nature
, vol.456
, pp. 382-386
-
-
Hejnol, A.1
Martindale, M.Q.2
-
2
-
-
79951507363
-
Evolution: A can of worms
-
Maxmen A. 2011. Evolution: a can of worms. Nature 470:161-62
-
(2011)
Nature
, vol.470
, pp. 161-162
-
-
Maxmen, A.1
-
3
-
-
84859389254
-
The microbiome in infectious disease and inflammation
-
Honda K, Littman DR. 2012. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30:759-95
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 759-795
-
-
Honda, K.1
Littman, D.R.2
-
4
-
-
84897138296
-
Role of the microbiota in immunity and inflammation
-
Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157:121-41
-
(2014)
Cell
, vol.157
, pp. 121-141
-
-
Belkaid, Y.1
Hand, T.W.2
-
5
-
-
84862276328
-
Structure, function and diversity of the healthy human microbiome
-
Hum. Microbiome Proj. Consort. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207-14
-
(2012)
Nature
, vol.486
, pp. 207-214
-
-
Hum. Microbiome Proj. Consort1
-
6
-
-
20544444045
-
Diversity of the human intestinal microbial flora
-
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635-38
-
(2005)
Science
, vol.308
, pp. 1635-1638
-
-
Eckburg, P.B.1
Bik, E.M.2
Bernstein, C.N.3
Purdom, E.4
Dethlefsen, L.5
-
7
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174-80
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
Le Paslier, D.4
Yamada, T.5
-
8
-
-
84873510063
-
A guide to enterotypes across the human body: Meta-analysis of microbial community structures in human microbiome datasets
-
Koren O, Knights D, Gonzalez A,Waldron L, Segata N, et al. 2013. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLOS Comput. Biol. 9:e1002863
-
(2013)
PLOS Comput. Biol.
, vol.9
, pp. e1002863
-
-
Koren, O.1
Knights, D.2
Gonzalez, A.3
Waldron, L.4
Segata, N.5
-
9
-
-
84900535804
-
Dynamics and associations of microbial community types across the human body
-
Ding T, Schloss PD. 2014. Dynamics and associations of microbial community types across the human body. Nature 509:357-60
-
(2014)
Nature
, vol.509
, pp. 357-360
-
-
Ding, T.1
Schloss, P.D.2
-
10
-
-
84884411052
-
Bacterial colonization factors control specificity and stability of the gut microbiota
-
Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:426-29
-
(2013)
Nature
, vol.501
, pp. 426-429
-
-
Lee, S.M.1
Donaldson, G.P.2
Mikulski, Z.3
Boyajian, S.4
Ley, K.5
Mazmanian, S.K.6
-
11
-
-
84870501494
-
Fucose sensing regulates bacterial intestinal colonization
-
Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, et al. 2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492:113-17
-
(2012)
Nature
, vol.492
, pp. 113-117
-
-
Pacheco, A.R.1
Curtis, M.M.2
Ritchie, J.M.3
Munera, D.4
Waldor, M.K.5
-
12
-
-
84885573828
-
Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens
-
Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96-99
-
(2013)
Nature
, vol.502
, pp. 96-99
-
-
Ng, K.M.1
Ferreyra, J.A.2
Higginbottom, S.K.3
Lynch, J.B.4
Kashyap, P.C.5
-
13
-
-
84867903844
-
A composite bacteriophage alters colonization by an intestinal commensal bacterium
-
Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LV. 2012. A composite bacteriophage alters colonization by an intestinal commensal bacterium. PNAS 109:17621-26
-
(2012)
PNAS
, vol.109
, pp. 17621-17626
-
-
Duerkop, B.A.1
Clements, C.V.2
Rollins, D.3
Rodrigues, J.L.4
Hooper, L.V.5
-
14
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543-47
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
Toh, H.2
Hase, K.3
Oshima, K.4
Nakanishi, Y.5
-
15
-
-
79955025122
-
Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice
-
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, et al. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. PNAS 108:6252-57
-
(2011)
PNAS
, vol.108
, pp. 6252-6257
-
-
Goodman, A.L.1
Kallstrom, G.2
Faith, J.J.3
Reyes, A.4
Moore, A.5
-
16
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232-36
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
Tanoue, T.2
Oshima, K.3
Suda, W.4
Nagano, Y.5
-
17
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337-41
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
Tanoue, T.2
Shima, T.3
Imaoka, A.4
Kuwahara, T.5
-
18
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485-98
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
Brodie, E.L.4
Shima, T.5
-
19
-
-
84862637797
-
Gut immune maturation depends on colonization with a host-specific microbiota
-
Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578-93
-
(2012)
Cell
, vol.149
, pp. 1578-1593
-
-
Chung, H.1
Pamp, S.J.2
Hill, J.A.3
Surana, N.K.4
Edelman, S.M.5
-
20
-
-
72949107142
-
Introducing mothur: Opensource, platform-independent, community-supported software for describing and comparing microbial communities
-
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. 2009. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-41
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 7537-7541
-
-
Schloss, P.D.1
Westcott, S.L.2
Ryabin, T.3
Hall, J.R.4
Hartmann, M.5
-
21
-
-
77952243141
-
QIIME allows analysis of high-throughput community sequencing data
-
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-36
-
(2010)
Nat. Methods
, vol.7
, pp. 335-336
-
-
Caporaso, J.G.1
Kuczynski, J.2
Stombaugh, J.3
Bittinger, K.4
Bushman, F.D.5
-
22
-
-
29144464937
-
UniFrac: A new phylogenetic method for comparing microbial communities
-
Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228-35
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8228-8235
-
-
Lozupone, C.1
Knight, R.2
-
23
-
-
79959383523
-
Metagenomic biomarker discovery and explanation
-
Segata N, Izard J,Waldron L, Gevers D, Miropolsky L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60
-
(2011)
Genome Biol.
, vol.12
, pp. R60
-
-
Segata, N.1
Izard, J.2
Waldron, L.3
Gevers, D.4
Miropolsky, L.5
-
24
-
-
84864440400
-
Metagenomic microbial community profiling using unique clade-specific marker genes
-
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9:811-14
-
(2012)
Nat. Methods
, vol.9
, pp. 811-814
-
-
Segata, N.1
Waldron, L.2
Ballarini, A.3
Narasimhan, V.4
Jousson, O.5
Huttenhower, C.6
-
25
-
-
84884127512
-
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
-
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31:814-21
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 814-821
-
-
Langille, M.G.1
Zaneveld, J.2
Caporaso, J.G.3
McDonald, D.4
Knights, D.5
-
26
-
-
84892708007
-
Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota
-
Stein RR, Bucci V, ToussaintNC, BuffieCG, Ratsch G, et al. 2013. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput. Biol. 9:e1003388
-
(2013)
PLOS Comput. Biol.
, vol.9
, pp. e1003388
-
-
Stein, R.R.1
Bucci, V.2
Toussaint, N.C.3
Buffie, C.G.4
Ratsch, G.5
-
27
-
-
84891907251
-
Mathematical modeling of primary succession of murine intestinal microbiota
-
Marino S, Baxter NT,Huffnagle GB, Petrosino JF, Schloss PD. 2014. Mathematical modeling of primary succession of murine intestinal microbiota. PNAS 111:439-44
-
(2014)
PNAS
, vol.111
, pp. 439-444
-
-
Marino, S.1
Baxter, N.T.2
Huffnagle, G.B.3
Petrosino, J.F.4
Schloss, P.D.5
-
28
-
-
84901331442
-
The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota
-
Balmer ML, Slack E, de Gottardi A, Lawson MA, Hapfelmeier S, et al. 2014. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 6:237ra66
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 237ra66
-
-
Balmer, M.L.1
Slack, E.2
De Gottardi, A.3
Lawson, M.A.4
Hapfelmeier, S.5
-
29
-
-
0037033038
-
The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment
-
Godl K, Johansson ME, Lidell ME, Morgelin M, Karlsson H, et al. 2002. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277:47248-56
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 47248-47256
-
-
Godl, K.1
Johansson, M.E.2
Lidell, M.E.3
Morgelin, M.4
Karlsson, H.5
-
30
-
-
33745121509
-
Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel
-
Lidell ME,Moncada DM, Chadee K, Hansson GC. 2006. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. PNAS 103:9298-303
-
(2006)
PNAS
, vol.103
, pp. 9298-9303
-
-
Lidell, M.E.1
Moncada, D.M.2
Chadee, K.3
Hansson, G.C.4
-
31
-
-
84877892817
-
Sitespecific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB)
-
van der Post S, Subramani DB, BackstromM, JohanssonME, Vester-Christensen MB, et al. 2013. Sitespecific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288:14636-46
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 14636-14646
-
-
Van Der Post, S.1
Subramani, D.B.2
Backstrom, M.3
Johansson, M.E.4
Vester-Christensen, M.B.5
-
32
-
-
55249108031
-
Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont
-
Martens EC, Chiang HC, Gordon JI. 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447-57
-
(2008)
Cell Host Microbe
, vol.4
, pp. 447-457
-
-
Martens, E.C.1
Chiang, H.C.2
Gordon, J.I.3
-
33
-
-
67650538066
-
Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont
-
Martens EC, Roth R, Heuser JE, Gordon JI. 2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284:18445-57
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18445-18457
-
-
Martens, E.C.1
Roth, R.2
Heuser, J.E.3
Gordon, J.I.4
-
34
-
-
79952748335
-
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
-
Johansson ME, Larsson JM, Hansson GC. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. PNAS 108(Suppl. 1):4659-65
-
(2011)
PNAS
, vol.108
, pp. 4659-4665
-
-
Johansson, M.E.1
Larsson, J.M.2
Hansson, G.C.3
-
35
-
-
79953307656
-
Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice
-
Fu J, Wei B, Wen T, Johansson ME, Liu X, et al. 2011. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Investig. 121:1657-66
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 1657-1666
-
-
Fu, J.1
Wei, B.2
Wen, T.3
Johansson, M.E.4
Liu, X.5
-
36
-
-
84897398769
-
Alteredmucus glycosylation in core 1 O-glycan-deficient mice affectsmicrobiota composition and intestinal architecture
-
Sommer F, AdamN, JohanssonME, Xia L,HanssonGC, Backhed F. 2014. Alteredmucus glycosylation in core 1 O-glycan-deficient mice affectsmicrobiota composition and intestinal architecture. PLOS ONE 9:e85254
-
(2014)
PLOS ONE
, vol.9
, pp. e85254
-
-
Sommer, F.1
Adam, N.2
Johansson, M.E.3
Xia, L.4
Hansson, G.C.5
Backhed, F.6
-
37
-
-
77957906400
-
Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model
-
Johansson ME, Gustafsson JK, Sjoberg KE, Petersson J, Holm L, et al. 2010. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLOS ONE 5:e12238
-
(2010)
PLOS ONE
, vol.5
, pp. e12238
-
-
Johansson, M.E.1
Gustafsson, J.K.2
Sjoberg, K.E.3
Petersson, J.4
Holm, L.5
-
38
-
-
54449083567
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
JohanssonME, PhillipsonM, Petersson J, Velcich A, Holm L, Hansson GC. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:15064-9
-
(2008)
PNAS
, vol.105
, pp. 15064-15069
-
-
Johansson, M.E.1
Phillipson, M.2
Petersson, J.3
Velcich, A.4
Holm, L.5
Hansson, G.C.6
-
39
-
-
77954858707
-
The inner of the twoMuc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
Hansson GC, JohanssonME. 2010. The inner of the twoMuc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1:51-54
-
(2010)
Gut Microbes
, vol.1
, pp. 51-54
-
-
Hansson, G.C.1
Johansson, M.E.2
-
40
-
-
80054122238
-
The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255-58
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
Ruhn, K.A.4
Yu, X.5
-
41
-
-
84883319282
-
Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches
-
Ermund A, Schutte A, Johansson ME, Gustafsson JK, Hansson GC. 2013. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G341-47
-
(2013)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.305
, pp. G341-G347
-
-
Ermund, A.1
Schutte, A.2
Johansson, M.E.3
Gustafsson, J.K.4
Hansson, G.C.5
-
42
-
-
84883356097
-
Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution
-
Holmen Larsson JM, Thomsson KA, Rodriguez-Pineiro AM, Karlsson H, Hansson GC. 2013. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G357-63
-
(2013)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.305
, pp. G357-G363
-
-
Holmen Larsson, J.M.1
Thomsson, K.A.2
Rodriguez-Pineiro, A.M.3
Karlsson, H.4
Hansson, G.C.5
-
43
-
-
34547678389
-
MUC1 cell surface mucin is a critical element of the mucosal barrier to infection
-
McAuley JL, Linden SK, Png CW, King RM, Pennington HL, et al. 2007. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Investig. 117:2313-24
-
(2007)
J. Clin. Investig.
, vol.117
, pp. 2313-2324
-
-
McAuley, J.L.1
Linden, S.K.2
Png, C.W.3
King, R.M.4
Pennington, H.L.5
-
44
-
-
73949140777
-
MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy
-
Linden SK, Sheng YH, Every AL, Miles KM, Skoog EC, et al. 2009. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLOS Pathog. 5:e1000617
-
(2009)
PLOS Pathog.
, vol.5
, pp. e1000617
-
-
Linden, S.K.1
Sheng, Y.H.2
Every, A.L.3
Miles, K.M.4
Skoog, E.C.5
-
45
-
-
84884406820
-
The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis
-
Zarepour M, Bhullar K, Montero M, Ma C, Huang T, et al. 2013. The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect. Immun. 81:3672-83
-
(2013)
Infect. Immun.
, vol.81
, pp. 3672-3683
-
-
Zarepour, M.1
Bhullar, K.2
Montero, M.3
Ma, C.4
Huang, T.5
-
46
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
ShanM,Gentile M, Yeiser JR,Walland AC, Bornstein VU, et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447-53
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
Gentile, M.2
Yeiser, J.R.3
Walland, A.C.4
Bornstein, V.U.5
-
47
-
-
84863230541
-
Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
-
McDole JR,Wheeler LW,McDonald KG,Wang B,Konjufca V, et al. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483:345-49
-
(2012)
Nature
, vol.483
, pp. 345-349
-
-
McDole, J.R.1
Wheeler, L.W.2
McDonald, K.G.3
Wang, B.4
Konjufca, V.5
-
48
-
-
0035881675
-
Cutting edge: Bacterial flagellin activates basolaterally expressedTLR5 to induce epithelial proinflammatory gene expression
-
Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. 2001. Cutting edge: bacterial flagellin activates basolaterally expressedTLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:1882-85
-
(2001)
J. Immunol.
, vol.167
, pp. 1882-1885
-
-
Gewirtz, A.T.1
Navas, T.A.2
Lyons, S.3
Godowski, P.J.4
Madara, J.L.5
-
49
-
-
84864886608
-
Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides
-
Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, et al. 2012. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 5:501-12
-
(2012)
Mucosal Immunol.
, vol.5
, pp. 501-512
-
-
Frantz, A.L.1
Rogier, E.W.2
Weber, C.R.3
Shen, L.4
Cohen, D.A.5
-
50
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745-57
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
Henao-Mejia, J.4
Thaiss, C.A.5
-
51
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731-34
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
Henegariu, O.4
Inohara, N.5
-
52
-
-
33947573767
-
Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis
-
Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ, et al. 2007. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446:552-56
-
(2007)
Nature
, vol.446
, pp. 552-556
-
-
Zaph, C.1
Troy, A.E.2
Taylor, B.C.3
Berman-Booty, L.D.4
Guild, K.J.5
-
53
-
-
84901258872
-
Protective mucosal immunity mediated by epithelial CD1d and IL-10
-
Olszak T, Neves JF,DowdsCM,Baker K, Glickman J, et al. 2014. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497-502
-
(2014)
Nature
, vol.509
, pp. 497-502
-
-
Olszak, T.1
Neves, J.F.2
Dowds, C.M.3
Baker, K.4
Glickman, J.5
-
54
-
-
79957701773
-
γδIntraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface
-
Ismail AS, SeversonKM, Vaishnava S, Behrendt CL, YuX, et al. 2011. γδintraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. PNAS 108:8743-48
-
(2011)
PNAS
, vol.108
, pp. 8743-8748
-
-
Ismail, A.S.1
Severson, K.M.2
Vaishnava, S.3
Behrendt, C.L.4
Yu, X.5
-
55
-
-
33846017279
-
Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury
-
Brown SL, Riehl TE, Walker MR,Geske MJ,Doherty JM, et al. 2007. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Investig. 117:258-69
-
(2007)
J. Clin. Investig.
, vol.117
, pp. 258-269
-
-
Brown, S.L.1
Riehl, T.E.2
Walker, M.R.3
Geske, M.J.4
Doherty, J.M.5
-
56
-
-
77952794397
-
Securing the immune tightrope: Mononuclear phagocytes in the intestinal lamina propria
-
Varol C, Zigmond E, Jung S. 2010. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10:415-26
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 415-426
-
-
Varol, C.1
Zigmond, E.2
Jung, S.3
-
57
-
-
84867884822
-
Compensatory dendritic cell development mediated by BATF-IRF interactions
-
Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Kc W, et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502-7
-
(2012)
Nature
, vol.490
, pp. 502-507
-
-
Tussiwand, R.1
Lee, W.L.2
Murphy, T.L.3
Mashayekhi, M.4
Kc, W.5
-
58
-
-
0035321325
-
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
-
Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361-67
-
(2001)
Nat. Immunol.
, vol.2
, pp. 361-367
-
-
Rescigno, M.1
Urbano, M.2
Valzasina, B.3
Francolini, M.4
Rotta, G.5
-
59
-
-
12244297799
-
CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
-
Niess JH, Brand S, Gu X, Landsman L, Jung S, et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254-58
-
(2005)
Science
, vol.307
, pp. 254-258
-
-
Niess, J.H.1
Brand, S.2
Gu, X.3
Landsman, L.4
Jung, S.5
-
60
-
-
33845910419
-
Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
-
Chieppa M, Rescigno M, Huang AY, Germain RN. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:2841-52
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2841-2852
-
-
Chieppa, M.1
Rescigno, M.2
Huang, A.Y.3
Germain, R.N.4
-
61
-
-
34547788180
-
Afunctionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
-
Coombes JL, Siddiqui KR,Arancibia-CarcamoCV, Hall J, SunCM, et al. 2007.Afunctionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757-64
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1757-1764
-
-
Coombes, J.L.1
Siddiqui, K.R.2
Arancibia-Carcamo, C.V.3
Hall, J.4
Sun, C.M.5
-
62
-
-
84875489998
-
Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation
-
Farache J, Koren I, Milo I, Gurevich I, Kim KW, et al. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581-95
-
(2013)
Immunity
, vol.38
, pp. 581-595
-
-
Farache, J.1
Koren, I.2
Milo, I.3
Gurevich, I.4
Kim, K.W.5
-
63
-
-
84874688283
-
Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells
-
Diehl GE, Longman RS, Zhang JX, Breart B, Galan C, et al. 2013. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494:116-20
-
(2013)
Nature
, vol.494
, pp. 116-120
-
-
Diehl, G.E.1
Longman, R.S.2
Zhang, J.X.3
Breart, B.4
Galan, C.5
-
64
-
-
73949107838
-
Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
-
Schulz O, Jaensson E, Persson EK, Liu X,Worbs T, et al. 2009. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp.Med. 206:3101-14
-
(2009)
J. Exp.Med.
, vol.206
, pp. 3101-3114
-
-
Schulz, O.1
Jaensson, E.2
Persson, E.K.3
Liu, X.4
Worbs, T.5
-
65
-
-
84870900504
-
Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells andmigratory antigen-presenting cells
-
Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, et al. 2012. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells andmigratory antigen-presenting cells. Immunity 37:1076-90
-
(2012)
Immunity
, vol.37
, pp. 1076-1090
-
-
Zigmond, E.1
Varol, C.2
Farache, J.3
Elmaliah, E.4
Satpathy, A.T.5
-
66
-
-
84905107360
-
Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny
-
Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:571-78
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 571-578
-
-
Guilliams, M.1
Ginhoux, F.2
Jakubzick, C.3
Naik, S.H.4
Onai, N.5
-
67
-
-
84887786185
-
Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming
-
Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG. 2013. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086
-
(2013)
ELife
, vol.2
, pp. e01086
-
-
Samstein, M.1
Schreiber, H.A.2
Leiner, I.M.3
Susac, B.4
Glickman, M.S.5
Pamer, E.G.6
-
68
-
-
84894107663
-
Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells
-
Mazzini E, Massimiliano L, Penna G, Rescigno M. 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40:248-61
-
(2014)
Immunity
, vol.40
, pp. 248-261
-
-
Mazzini, E.1
Massimiliano, L.2
Penna, G.3
Rescigno, M.4
-
69
-
-
84874069797
-
Intestinal CD103- dendritic cells migrate in lymph and prime effector T cells
-
Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, et al. 2013. Intestinal CD103- dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6:104-13
-
(2013)
Mucosal Immunol.
, vol.6
, pp. 104-113
-
-
Cerovic, V.1
Houston, S.A.2
Scott, C.L.3
Aumeunier, A.4
Yrlid, U.5
-
70
-
-
84880285461
-
Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection
-
Grainger JR, Wohlfert EA, Fuss IJ, Bouladoux N, Askenase MH, et al. 2013. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat. Med. 19:713-21
-
(2013)
Nat. Med.
, vol.19
, pp. 713-721
-
-
Grainger, J.R.1
Wohlfert, E.A.2
Fuss, I.J.3
Bouladoux, N.4
Askenase, M.H.5
-
71
-
-
84897053496
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A, Chudnovskiy A, HashimotoD, Bogunovic M, Spencer SP, et al. 2014. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:1249288
-
(2014)
Science
, vol.343
, pp. 1249288
-
-
Mortha, A.1
Chudnovskiy, A.2
Hashimoto, D.3
Bogunovic, M.4
Spencer, S.P.5
-
72
-
-
84859911615
-
NLRC4-driven production of IL-1βdiscriminates between pathogenic and commensal bacteria and promotes host intestinal defense
-
Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, et al. 2012. NLRC4-driven production of IL-1βdiscriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13:449-56
-
(2012)
Nat. Immunol.
, vol.13
, pp. 449-456
-
-
Franchi, L.1
Kamada, N.2
Nakamura, Y.3
Burberry, A.4
Kuffa, P.5
-
73
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, et al. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:282-89
-
(2008)
Nat. Med.
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
Valdez, P.A.2
Danilenko, D.M.3
Hu, Y.4
Sa, S.M.5
-
74
-
-
84875528275
-
The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
-
Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563-604
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 563-604
-
-
Merad, M.1
Sathe, P.2
Helft, J.3
Miller, J.4
Mortha, A.5
-
75
-
-
84857444876
-
Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I, et al. 2012. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:276-87
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew, M.A.1
Buffie, C.G.2
Diehl, G.E.3
Zenewicz, L.A.4
Leiner, I.5
-
76
-
-
84883172356
-
Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens
-
Satpathy AT, Briseno CG, Lee JS, Ng D, Manieri NA, et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937-48
-
(2013)
Nat. Immunol.
, vol.14
, pp. 937-948
-
-
Satpathy, A.T.1
Briseno, C.G.2
Lee, J.S.3
Ng, D.4
Manieri, N.A.5
-
77
-
-
79958020625
-
A new subset of CD103+CD8α+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity
-
Fujimoto K, Karuppuchamy T, Takemura N, Shimohigoshi M, Machida T, et al. 2011. A new subset of CD103+CD8α+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186:6287-95
-
(2011)
J. Immunol.
, vol.186
, pp. 6287-6295
-
-
Fujimoto, K.1
Karuppuchamy, T.2
Takemura, N.3
Shimohigoshi, M.4
Machida, T.5
-
79
-
-
84902588402
-
Intestinal dendritic cells in the regulation of mucosal immunity
-
Bekiaris V, Persson EK, Agace WW. 2014. Intestinal dendritic cells in the regulation of mucosal immunity. Immunol. Rev. 260:86-101
-
(2014)
Immunol. Rev.
, vol.260
, pp. 86-101
-
-
Bekiaris, V.1
Persson, E.K.2
Agace, W.W.3
-
80
-
-
84895490117
-
Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment
-
Kaiser P, Regoes RR, Dolowschiak T, Wotzka SY, Lengefeld J, et al. 2014. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLOS Biol. 12:e1001793
-
(2014)
PLOS Biol.
, vol.12
, pp. e1001793
-
-
Kaiser, P.1
Regoes, R.R.2
Dolowschiak, T.3
Wotzka, S.Y.4
Lengefeld, J.5
-
81
-
-
33645962487
-
Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-alpha and type 1 IFNs after feeding a TLR7/8 ligand
-
Yrlid U, Milling SW, Miller JL, Cartland S, Jenkins CD,MacPherson GG. 2006. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-alpha and type 1 IFNs after feeding a TLR7/8 ligand. J. Immunol. 176:5205-12
-
(2006)
J. Immunol.
, vol.176
, pp. 5205-5212
-
-
Yrlid, U.1
Milling, S.W.2
Miller, J.L.3
Cartland, S.4
Jenkins, C.D.5
Macpherson, G.G.6
-
82
-
-
84879330799
-
Innate immune recognition of the microbiota promotes host-microbial symbiosis
-
Chu H, Mazmanian SK. 2013. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14:668-75
-
(2013)
Nat. Immunol.
, vol.14
, pp. 668-675
-
-
Chu, H.1
Mazmanian, S.K.2
-
83
-
-
22144490199
-
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
-
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107-18
-
(2005)
Cell
, vol.122
, pp. 107-118
-
-
Mazmanian, S.K.1
Liu, C.H.2
Tzianabos, A.O.3
Kasper, D.L.4
-
84
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round JL, Lee SM, Li J, Tran G, Jabri B, et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974-77
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
Lee, S.M.2
Li, J.3
Tran, G.4
Jabri, B.5
-
85
-
-
84867656021
-
Outer membrane vesicles of a human commensal mediate immune regulation and disease protection
-
Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. 2012. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509-20
-
(2012)
Cell Host Microbe
, vol.12
, pp. 509-520
-
-
Shen, Y.1
Giardino Torchia, M.L.2
Lawson, G.W.3
Karp, C.L.4
Ashwell, J.D.5
Mazmanian, S.K.6
-
86
-
-
84898647980
-
Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms
-
Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. 2014. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 15:413-23
-
(2014)
Cell Host Microbe
, vol.15
, pp. 413-423
-
-
Dasgupta, S.1
Erturk-Hasdemir, D.2
Ochoa-Reparaz, J.3
Reinecker, H.C.4
Kasper, D.L.5
-
87
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash HL, Whitham CV, Behrendt CL, Hooper LV. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126-30
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
Whitham, C.V.2
Behrendt, C.L.3
Hooper, L.V.4
-
88
-
-
34547762705
-
MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection
-
Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. 2007. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204:1891-900
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1891-1900
-
-
Brandl, K.1
Plitas, G.2
Schnabl, B.3
Dematteo, R.P.4
Pamer, E.G.5
-
89
-
-
58549111588
-
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
-
Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. PNAS 105:20858-63
-
(2008)
PNAS
, vol.105
, pp. 20858-20863
-
-
Vaishnava, S.1
Behrendt, C.L.2
Ismail, A.S.3
Eckmann, L.4
Hooper, L.V.5
-
90
-
-
84902590860
-
REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum
-
Loonen LM, Stolte EH, JaklofskyMT, MeijerinkM, Dekker J, et al. 2014. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol. 7:939-47
-
(2014)
Mucosal Immunol.
, vol.7
, pp. 939-947
-
-
Loonen, L.M.1
Stolte, E.H.2
Jaklofsky, M.T.3
Meijerink, M.4
Dekker, J.5
-
91
-
-
84892373963
-
Antibacterial membrane attack by a pore-forming intestinal C-type lectin
-
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, et al. 2014. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505:103-7
-
(2014)
Nature
, vol.505
, pp. 103-107
-
-
Mukherjee, S.1
Zheng, H.2
Derebe, M.G.3
Callenberg, K.M.4
Partch, C.L.5
-
92
-
-
84867240375
-
The bactericidal activity of the C-type lectin RegIIIβ against gram-negative bacteria involves binding to lipid A
-
Miki T, Holst O, Hardt WD. 2012. The bactericidal activity of the C-type lectin RegIIIβ against gram-negative bacteria involves binding to lipid A. J. Biol. Chem. 287:34844-55
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 34844-34855
-
-
Miki, T.1
Holst, O.2
Hardt, W.D.3
-
93
-
-
84880810991
-
Outer membrane permeabilization is an essential step in the killing of gramnegative bacteria by the lectin RegIIIβ
-
Miki T, HardtWD. 2013. Outer membrane permeabilization is an essential step in the killing of gramnegative bacteria by the lectin RegIIIβ. PLOS ONE 8:e69901
-
(2013)
PLOS ONE
, vol.8
, pp. e69901
-
-
Miki, T.1
Hardt, W.D.2
-
94
-
-
33746161021
-
Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells
-
Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, et al. 2006. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7:868-74
-
(2006)
Nat. Immunol.
, vol.7
, pp. 868-874
-
-
Uematsu, S.1
Jang, M.H.2
Chevrier, N.3
Guo, Z.4
Kumagai, Y.5
-
95
-
-
45549099429
-
Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor
-
Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, et al. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor. Nat. Immunol. 9:769-76
-
(2008)
Nat. Immunol.
, vol.9
, pp. 769-776
-
-
Uematsu, S.1
Fujimoto, K.2
Jang, M.H.3
Yang, B.G.4
Jung, Y.J.5
-
96
-
-
75749133608
-
Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
-
Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. 2010. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 201:534-43
-
(2010)
J. Infect. Dis.
, vol.201
, pp. 534-543
-
-
Kinnebrew, M.A.1
Ubeda, C.2
Zenewicz, L.A.3
Smith, N.4
Flavell, R.A.5
Pamer, E.G.6
-
97
-
-
79953300500
-
Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis
-
Jarchum I, Liu M, Lipuma L, Pamer EG. 2011. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect. Immun. 79:1498-503
-
(2011)
Infect. Immun.
, vol.79
, pp. 1498-1503
-
-
Jarchum, I.1
Liu, M.2
Lipuma, L.3
Pamer, E.G.4
-
98
-
-
77950250064
-
Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor
-
Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, et al. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor. Science 328:228-31
-
(2010)
Science
, vol.328
, pp. 228-231
-
-
Vijay-Kumar, M.1
Aitken, J.D.2
Carvalho, F.A.3
Cullender, T.C.4
Mwangi, S.5
-
99
-
-
84865134857
-
Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice
-
Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, et al. 2012. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12:139-52
-
(2012)
Cell Host Microbe
, vol.12
, pp. 139-152
-
-
Carvalho, F.A.1
Koren, O.2
Goodrich, J.K.3
Johansson, M.E.4
Nalbantoglu, I.5
-
100
-
-
84887886701
-
Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut
-
Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, et al. 2013. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14:571-81
-
(2013)
Cell Host Microbe
, vol.14
, pp. 571-581
-
-
Cullender, T.C.1
Chassaing, B.2
Janzon, A.3
Kumar, K.4
Muller, C.E.5
-
101
-
-
79955527226
-
TLR5-deficient mice lack basal inflammatory andmetabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen
-
Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, et al. 2011. TLR5-deficient mice lack basal inflammatory andmetabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J. Immunol. 186:5406-12
-
(2011)
J. Immunol.
, vol.186
, pp. 5406-5412
-
-
Letran, S.E.1
Lee, S.J.2
Atif, S.M.3
Flores-Langarica, A.4
Uematsu, S.5
-
102
-
-
53349164200
-
CommensalDNAlimits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses
-
Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, et al. 2008. CommensalDNAlimits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29:637-49
-
(2008)
Immunity
, vol.29
, pp. 637-649
-
-
Hall, J.A.1
Bouladoux, N.2
Sun, C.M.3
Wohlfert, E.A.4
Blank, R.B.5
-
103
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
-
Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, et al. 2008. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804-7
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
Plitas, G.2
Mihu, C.N.3
Ubeda, C.4
Jia, T.5
-
104
-
-
84866461477
-
Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
-
Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, et al. 2012. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209:1445-56
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1445-1456
-
-
Ubeda, C.1
Lipuma, L.2
Gobourne, A.3
Viale, A.4
Leiner, I.5
-
105
-
-
84878812591
-
Innate immune receptors: Key regulators of metabolic disease progression
-
Jin C, Henao-Mejia J, Flavell RA. 2013. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17:873-82
-
(2013)
Cell Metab.
, vol.17
, pp. 873-882
-
-
Jin, C.1
Henao-Mejia, J.2
Flavell, R.A.3
-
106
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179-85
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
Elinav, E.2
Jin, C.3
Hao, L.4
Mehal, W.Z.5
-
107
-
-
84896691062
-
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
-
Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, et al. 2014. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045-59
-
(2014)
Cell
, vol.156
, pp. 1045-1059
-
-
Wlodarska, M.1
Thaiss, C.A.2
Nowarski, R.3
Henao-Mejia, J.4
Zhang, J.P.5
-
108
-
-
84860668802
-
Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota
-
Ayres JS, Trinidad NJ, Vance RE. 2012. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18:799-806
-
(2012)
Nat. Med.
, vol.18
, pp. 799-806
-
-
Ayres, J.S.1
Trinidad, N.J.2
Vance, R.E.3
-
109
-
-
76249120134
-
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
-
Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16:228-31
-
(2010)
Nat. Med.
, vol.16
, pp. 228-231
-
-
Clarke, T.B.1
Davis, K.M.2
Lysenko, E.S.3
Zhou, A.Y.4
Yu, Y.5
Weiser, J.N.6
-
110
-
-
79956319462
-
TheNod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
-
Kim YG, Kamada N, ShawMH, Warner N, Chen GY, et al. 2011. TheNod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34:769-80
-
(2011)
Immunity
, vol.34
, pp. 769-780
-
-
Kim, Y.G.1
Kamada, N.2
Shaw, M.H.3
Warner, N.4
Chen, G.Y.5
-
111
-
-
84864322646
-
Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota
-
Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, et al. 2012. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37:171-86
-
(2012)
Immunity
, vol.37
, pp. 171-186
-
-
Ganal, S.C.1
Sanos, S.L.2
Kallfass, C.3
Oberle, K.4
Johner, C.5
-
112
-
-
84867807929
-
Innate lymphoid cell interactions with microbiota: Implications for intestinal health and disease
-
Sonnenberg GF, Artis D. 2012. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37:601-10
-
(2012)
Immunity
, vol.37
, pp. 601-610
-
-
Sonnenberg, G.F.1
Artis, D.2
-
113
-
-
84889247024
-
Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis
-
Kruglov AA, Grivennikov SI, Kuprash DV, Winsauer C, Prepens S, et al. 2013. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342:1243-46
-
(2013)
Science
, vol.342
, pp. 1243-1246
-
-
Kruglov, A.A.1
Grivennikov, S.I.2
Kuprash, D.V.3
Winsauer, C.4
Prepens, S.5
-
114
-
-
84897480560
-
Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity
-
van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:123-27
-
(2014)
Nature
, vol.508
, pp. 123-127
-
-
Van De Pavert, S.A.1
Ferreira, M.2
Domingues, R.G.3
Ribeiro, H.4
Molenaar, R.5
-
115
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, et al. 2012. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321-25
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
Monticelli, L.A.2
Alenghat, T.3
Fung, T.C.4
Hutnick, N.A.5
-
116
-
-
84878737123
-
Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
-
Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, et al. 2013. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498:113-17
-
(2013)
Nature
, vol.498
, pp. 113-117
-
-
Hepworth, M.R.1
Monticelli, L.A.2
Fung, T.C.3
Ziegler, C.G.4
Grunberg, S.5
-
117
-
-
84882668842
-
Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
-
Qiu J, Guo X, Chen ZM, He L, Sonnenberg GF, et al. 2013. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39:386-99
-
(2013)
Immunity
, vol.39
, pp. 386-399
-
-
Qiu, J.1
Guo, X.2
Chen, Z.M.3
He, L.4
Sonnenberg, G.F.5
-
118
-
-
84889595600
-
Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection
-
Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, et al. 2013. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504:158-62
-
(2013)
Nature
, vol.504
, pp. 158-162
-
-
Elahi, S.1
Ertelt, J.M.2
Kinder, J.M.3
Jiang, T.T.4
Zhang, X.5
-
119
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336:1268-73
-
(2012)
Science
, vol.336
, pp. 1268-1273
-
-
Hooper, L.V.1
Littman, D.R.2
Macpherson, A.J.3
-
120
-
-
84887960425
-
Intestinal microbial diversity during early-life colonization shapes long-term IgE levels
-
Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD. 2013. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559-70
-
(2013)
Cell Host Microbe
, vol.14
, pp. 559-570
-
-
Cahenzli, J.1
Koller, Y.2
Wyss, M.3
Geuking, M.B.4
McCoy, K.D.5
-
121
-
-
1242296822
-
Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut
-
Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, et al. 2004. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. PNAS 101:1981-86
-
(2004)
PNAS
, vol.101
, pp. 1981-1986
-
-
Suzuki, K.1
Meek, B.2
Doi, Y.3
Muramatsu, M.4
Chiba, T.5
-
122
-
-
84900549422
-
Proteobacteria-specific IgA regulates maturation of the intestinal microbiota
-
Mirpuri J,Raetz M, Sturge CR,WilhelmCL, Benson A, et al. 2014. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5:28-39
-
(2014)
Gut Microbes
, vol.5
, pp. 28-39
-
-
Mirpuri, J.1
Raetz, M.2
Sturge, C.R.3
Wilhelm, C.L.4
Benson, A.5
-
123
-
-
0033006564
-
Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system
-
Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, ItohK. 1999. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67:3504-11
-
(1999)
Infect. Immun.
, vol.67
, pp. 3504-3511
-
-
Umesaki, Y.1
Setoyama, H.2
Matsumoto, S.3
Imaoka, A.4
Itoh, K.5
-
124
-
-
84898685253
-
Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
-
Lecuyer E, Rakotobe S, Lengline-GarnierH, Lebreton C, PicardM, et al. 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40:608-20
-
(2014)
Immunity
, vol.40
, pp. 608-620
-
-
Lecuyer, E.1
Rakotobe, S.2
Lengline-Garnier, H.3
Lebreton, C.4
Picard, M.5
-
125
-
-
84860123211
-
The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut
-
Kawamoto S, Tran TH,MaruyaM, SuzukiK,Doi Y, et al. 2012. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336:485-89
-
(2012)
Science
, vol.336
, pp. 485-489
-
-
Kawamoto, S.1
Tran, T.H.2
Maruya, M.3
Suzuki, K.4
Doi, Y.5
-
126
-
-
77954051526
-
Reversiblemicrobial colonization of germ-free mice reveals the dynamics of IgA immune responses
-
Hapfelmeier S, LawsonMA, Slack E, Kirundi JK, StoelM, et al. 2010. Reversiblemicrobial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:1705-9
-
(2010)
Science
, vol.328
, pp. 1705-1709
-
-
Hapfelmeier, S.1
Lawson, M.A.2
Slack, E.3
Kirundi, J.K.4
Stoel, M.5
-
127
-
-
84856872027
-
Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine
-
Lindner C, Wahl B, Fohse L, Suerbaum S, Macpherson AJ, et al. 2012. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J. Exp. Med. 209:365-77
-
(2012)
J. Exp. Med.
, vol.209
, pp. 365-377
-
-
Lindner, C.1
Wahl, B.2
Fohse, L.3
Suerbaum, S.4
Macpherson, A.J.5
-
128
-
-
84855796468
-
Acquisition of amultifunctional IgA+ plasma cell phenotype in the gut
-
Fritz JH, RojasOL, Simard N, McCarthyDD,Hapfelmeier S, et al. 2012. Acquisition of amultifunctional IgA+ plasma cell phenotype in the gut. Nature 481:199-203
-
(2012)
Nature
, vol.481
, pp. 199-203
-
-
Fritz, J.H.1
Rojas, O.L.2
Simard, N.3
McCarthy, D.D.4
Hapfelmeier, S.5
-
129
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V, Rakotobe S, Lecuyer E,Mulder I, Lan A, et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677-89
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
Rakotobe, S.2
Lecuyer, E.3
Mulder, I.4
Lan, A.5
-
130
-
-
80053025965
-
The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment
-
Sczesnak A, Segata N, Qin X, Gevers D, Petrosino JF, et al. 2011. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:260-72
-
(2011)
Cell Host Microbe
, vol.10
, pp. 260-272
-
-
Sczesnak, A.1
Segata, N.2
Qin, X.3
Gevers, D.4
Petrosino, J.F.5
-
131
-
-
84901979873
-
Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
-
Yang Y, Torchinsky MB, Gobert M, Xiong H, XuM, et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510:152-56
-
(2014)
Nature
, vol.510
, pp. 152-156
-
-
Yang, Y.1
Torchinsky, M.B.2
Gobert, M.3
Xiong, H.4
Xu, M.5
-
132
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y, Panea C, Nakato G, Cebula A, Lee C, et al. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:594-607
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
Panea, C.2
Nakato, G.3
Cebula, A.4
Lee, C.5
-
133
-
-
84866436436
-
Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses
-
Hand TW, Dos Santos LM, Bouladoux N, Molloy MJ, Pagan AJ, et al. 2012. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337:1553-56
-
(2012)
Science
, vol.337
, pp. 1553-1556
-
-
Hand, T.W.1
Dos Santos, L.M.2
Bouladoux, N.3
Molloy, M.J.4
Pagan, A.J.5
-
134
-
-
84863151799
-
Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
-
Shaw MH, Kamada N, Kim YG, Nunez G. 2012. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209:251-58
-
(2012)
J. Exp. Med.
, vol.209
, pp. 251-258
-
-
Shaw, M.H.1
Kamada, N.2
Kim, Y.G.3
Nunez, G.4
-
135
-
-
84887275003
-
TH17 cell differentiation is regulated by the circadian clock
-
Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, et al. 2013. TH17 cell differentiation is regulated by the circadian clock. Science 342:727-30
-
(2013)
Science
, vol.342
, pp. 727-730
-
-
Yu, X.1
Rollins, D.2
Ruhn, K.A.3
Stubblefield, J.J.4
Green, C.B.5
-
136
-
-
79956315886
-
Intestinal bacterial colonization induces mutualistic regulatory T cell responses
-
Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794-806
-
(2011)
Immunity
, vol.34
, pp. 794-806
-
-
Geuking, M.B.1
Cahenzli, J.2
Lawson, M.A.3
Ng, D.C.4
Slack, E.5
-
137
-
-
80054020840
-
Peripheral education of the immune system by colonic commensal microbiota
-
Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, et al. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250-54
-
(2011)
Nature
, vol.478
, pp. 250-254
-
-
Lathrop, S.K.1
Bloom, S.M.2
Rao, S.M.3
Nutsch, K.4
Lio, C.W.5
-
138
-
-
77954738601
-
Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
-
Round JL, Mazmanian SK. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. PNAS 107:12204-9
-
(2010)
PNAS
, vol.107
, pp. 12204-12209
-
-
Round, J.L.1
Mazmanian, S.K.2
-
139
-
-
84893370250
-
Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice
-
Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6:220ra11
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 220ra11
-
-
Faith, J.J.1
Ahern, P.P.2
Ridaura, V.K.3
Cheng, J.4
Gordon, J.I.5
-
140
-
-
84964313180
-
Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia
-
Narushima S, Sugiura Y, Oshima K, Atarashi K,Hattori M, et al. 2014. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5:333-39
-
(2014)
Gut Microbes
, vol.5
, pp. 333-339
-
-
Narushima, S.1
Sugiura, Y.2
Oshima, K.3
Atarashi, K.4
Hattori, M.5
-
141
-
-
84879254845
-
GPR15-mediated homing controls immune homeostasis in the large intestine mucosa
-
Kim SV, XiangWV, Kwak C, Yang Y, Lin XW, et al. 2013. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456-59
-
(2013)
Science
, vol.340
, pp. 1456-1459
-
-
Kim, S.V.1
Xiang, W.V.2
Kwak, C.3
Yang, Y.4
Lin, X.W.5
-
142
-
-
84901065053
-
The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells
-
Obata Y, Furusawa Y, Endo TA, Sharif J, Takahashi D, et al. 2014. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 15:571-79
-
(2014)
Nat. Immunol.
, vol.15
, pp. 571-579
-
-
Obata, Y.1
Furusawa, Y.2
Endo, T.A.3
Sharif, J.4
Takahashi, D.5
-
143
-
-
84860216630
-
Microbial exposure during early life has persistent effects on natural killer T cell function
-
Olszak T, An D, Zeissig S, Vera MP, Richter J, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489-93
-
(2012)
Science
, vol.336
, pp. 489-493
-
-
Olszak, T.1
An, D.2
Zeissig, S.3
Vera, M.P.4
Richter, J.5
-
144
-
-
84864283284
-
Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice
-
WingenderG, Stepniak D, Krebs P, Lin L, McBride S, et al. 2012. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143:418-28
-
(2012)
Gastroenterology
, vol.143
, pp. 418-428
-
-
Wingender, G.1
Stepniak, D.2
Krebs, P.3
Lin, L.4
McBride, S.5
-
145
-
-
84880941717
-
Production of alphagalactosylceramide by a prominent member of the human gut microbiota
-
Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, et al. 2013. Production of alphagalactosylceramide by a prominent member of the human gut microbiota. PLOS Biol. 11:e1001610
-
(2013)
PLOS Biol.
, vol.11
, pp. e1001610
-
-
Wieland Brown, L.C.1
Penaranda, C.2
Kashyap, P.C.3
Williams, B.B.4
Clardy, J.5
-
146
-
-
84892774558
-
Sphingolipids from a symbioticmicrobe regulate homeostasis of host intestinal natural killer T cells
-
An D, Oh SF,Olszak T, Neves JF, Avci FY, et al. 2014. Sphingolipids from a symbioticmicrobe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123-33
-
(2014)
Cell
, vol.156
, pp. 123-133
-
-
An, D.1
Oh, S.F.2
Olszak, T.3
Neves, J.F.4
Avci, F.Y.5
-
147
-
-
84887281193
-
MAIT cells detect and efficiently lyse bacterially-infected epithelial cells
-
Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, et al. 2013. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLOS Pathog. 9:e1003681
-
(2013)
PLOS Pathog.
, vol.9
, pp. e1003681
-
-
Le Bourhis, L.1
Dusseaux, M.2
Bohineust, A.3
Bessoles, S.4
Martin, E.5
-
148
-
-
84879369738
-
Commensal bacteria at the interface of host metabolism and the immune system
-
Brestoff JR, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14:676-84
-
(2013)
Nat. Immunol.
, vol.14
, pp. 676-684
-
-
Brestoff, J.R.1
Artis, D.2
-
149
-
-
33845508443
-
Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host
-
Sonnenburg JL, Chen CT, Gordon JI. 2006. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol. 4:e413
-
(2006)
PLOS Biol.
, vol.4
, pp. e413
-
-
Sonnenburg, J.L.1
Chen, C.T.2
Gordon, J.I.3
-
150
-
-
77953901767
-
Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations
-
Sonnenburg ED, ZhengH, Joglekar P, Higginbottom SK, Firbank SJ, et al. 2010. Specificity of polysaccharide use in intestinal Bacteroides species determines diet-induced microbiota alterations. Cell 141:1241-52
-
(2010)
Cell
, vol.141
, pp. 1241-1252
-
-
Sonnenburg, E.D.1
Zheng, H.2
Joglekar, P.3
Higginbottom, S.K.4
Firbank, S.J.5
-
151
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
Cheng, J.4
Duncan, A.E.5
-
152
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559-63
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
Gootenberg, D.B.4
Button, J.E.5
-
153
-
-
84864614787
-
Host remodeling of the gut microbiome and metabolic changes during pregnancy
-
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, et al. 2012. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470-80
-
(2012)
Cell
, vol.150
, pp. 470-480
-
-
Koren, O.1
Goodrich, J.K.2
Cullender, T.C.3
Spor, A.4
Laitinen, K.5
-
155
-
-
79952740974
-
Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha
-
Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW, et al. 2011. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:435-47
-
(2011)
Immunity
, vol.34
, pp. 435-447
-
-
Hall, J.A.1
Cannons, J.L.2
Grainger, J.R.3
Dos Santos, L.M.4
Hand, T.W.5
-
156
-
-
84892928571
-
Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity
-
Spencer SP, Wilhelm C, YangQ,Hall JA, Bouladoux N, et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432-37
-
(2014)
Science
, vol.343
, pp. 432-437
-
-
Spencer, S.P.1
Wilhelm, C.2
Yang, Q.3
Hall, J.A.4
Bouladoux, N.5
-
157
-
-
84892601205
-
Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut
-
Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. 2014. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15:47-57
-
(2014)
Cell Host Microbe
, vol.15
, pp. 47-57
-
-
Degnan, P.H.1
Barry, N.A.2
Mok, K.C.3
Taga, M.E.4
Goodman, A.L.5
-
158
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128-39
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
Brady, E.4
Padia, R.5
-
159
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372-85
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
Iannitti, R.G.2
Cunha, C.3
De Luca, A.4
Giovannini, G.5
-
160
-
-
84877331372
-
Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
-
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576-85
-
(2013)
Nat. Med.
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
Wang, Z.2
Levison, B.S.3
Buffa, J.A.4
Org, E.5
-
161
-
-
84880439384
-
Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
-
Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295-98
-
(2013)
Science
, vol.341
, pp. 295-298
-
-
Haiser, H.J.1
Gootenberg, D.B.2
Chatman, K.3
Sirasani, G.4
Balskus, E.P.5
Turnbaugh, P.J.6
-
162
-
-
84901847186
-
Relating the metatranscriptome and metagenome of the human gut
-
Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, et al. 2014. Relating the metatranscriptome and metagenome of the human gut. PNAS 111:E2329-38
-
(2014)
PNAS
, vol.111
, pp. E2329-E2338
-
-
Franzosa, E.A.1
Morgan, X.C.2
Segata, N.3
Waldron, L.4
Reyes, J.5
-
163
-
-
84872535919
-
Xenobiotics shape the physiology and gene expression of the active human gut microbiome
-
Maurice CF, Haiser HJ, Turnbaugh PJ. 2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39-50
-
(2013)
Cell
, vol.152
, pp. 39-50
-
-
Maurice, C.F.1
Haiser, H.J.2
Turnbaugh, P.J.3
-
164
-
-
84898807099
-
The intestinal metabolome: An intersection between microbiota and host
-
Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, et al. 2014. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470-76
-
(2014)
Gastroenterology
, vol.146
, pp. 1470-1476
-
-
Ursell, L.K.1
Haiser, H.J.2
Van Treuren, W.3
Garg, N.4
Reddivari, L.5
-
165
-
-
79953170241
-
Effect of antibiotic treatment on the intestinal metabolome
-
Antunes LC, Han J, Ferreira RB, Lolic P, Borchers CH, Finlay BB. 2011. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother. 55:1494-503
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 1494-1503
-
-
Antunes, L.C.1
Han, J.2
Ferreira, R.B.3
Lolic, P.4
Borchers, C.H.5
Finlay, B.B.6
-
166
-
-
84865477413
-
Antibiotics in early life alter the murine colonic microbiome and adiposity
-
Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, et al. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621-26
-
(2012)
Nature
, vol.488
, pp. 621-626
-
-
Cho, I.1
Yamanishi, S.2
Cox, L.3
Methe, B.A.4
Zavadil, J.5
-
167
-
-
84884671077
-
A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice
-
Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, et al. 2013. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 7:1933-43
-
(2013)
ISME J.
, vol.7
, pp. 1933-1943
-
-
Marcobal, A.1
Kashyap, P.C.2
Nelson, T.A.3
Aronov, P.A.4
Donia, M.S.5
-
168
-
-
63849241608
-
Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine
-
Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294:1-8
-
(2009)
FEMS Microbiol. Lett.
, vol.294
, pp. 1-8
-
-
Louis, P.1
Flint, H.J.2
-
169
-
-
85046982559
-
Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters
-
Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M. 2012. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes 3:449-54
-
(2012)
Gut Microbes
, vol.3
, pp. 449-454
-
-
Fukuda, S.1
Toh, H.2
Taylor, T.D.3
Ohno, H.4
Hattori, M.5
-
170
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282-86
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
Kranich, J.4
Sierro, F.5
-
171
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569-73
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
-
172
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, Endo TA,NakatoG, et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446-50
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
-
173
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N, Campbell C, FanX,Dikiy S, van der Veeken J, et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451-55
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
Dikiy, S.4
Van Der Veeken, J.5
-
174
-
-
84863436944
-
Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice
-
Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487:104-8
-
(2012)
Nature
, vol.487
, pp. 104-108
-
-
Devkota, S.1
Wang, Y.2
Musch, M.W.3
Leone, V.4
Fehlner-Peach, H.5
-
175
-
-
84896401262
-
Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity
-
Vrieze A, OutC, Fuentes S, Jonker L, Reuling I, et al. 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60:824-31
-
(2014)
J. Hepatol.
, vol.60
, pp. 824-831
-
-
Vrieze, A.1
Out, C.2
Fuentes, S.3
Jonker, L.4
Reuling, I.5
-
176
-
-
77953610970
-
Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa
-
Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, et al. 2010. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLOS Pathog. 6:e1000902
-
(2010)
PLOS Pathog.
, vol.6
, pp. e1000902
-
-
Bergstrom, K.S.1
Kissoon-Singh, V.2
Gibson, D.L.3
Ma, C.4
Montero, M.5
-
177
-
-
84900838380
-
Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis
-
Perez-Munoz ME, Bergstrom K, Peng V, Schmaltz R, Jimenez-Cardona R, et al. 2014. Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes 5:286-95
-
(2014)
Gut Microbes
, vol.5
, pp. 286-295
-
-
Perez-Munoz, M.E.1
Bergstrom, K.2
Peng, V.3
Schmaltz, R.4
Jimenez-Cardona, R.5
-
178
-
-
84891736162
-
Bacteria penetrate the normally impenetrable inner colon mucus layer in bothmurine colitis models and patients with ulcerative colitis
-
Johansson ME, Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia L, et al. 2014. Bacteria penetrate the normally impenetrable inner colon mucus layer in bothmurine colitis models and patients with ulcerative colitis. Gut 63:281-91
-
(2014)
Gut
, vol.63
, pp. 281-291
-
-
Johansson, M.E.1
Gustafsson, J.K.2
Holmen-Larsson, J.3
Jabbar, K.S.4
Xia, L.5
-
179
-
-
44449106055
-
A microbial symbiosis factor prevents intestinal inflammatory disease
-
Mazmanian SK, Round JL, Kasper DL. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620-25
-
(2008)
Nature
, vol.453
, pp. 620-625
-
-
Mazmanian, S.K.1
Round, J.L.2
Kasper, D.L.3
-
180
-
-
34547684651
-
Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae
-
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, et al. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:119-29
-
(2007)
Cell Host Microbe
, vol.2
, pp. 119-129
-
-
Lupp, C.1
Robertson, M.L.2
Wickham, M.E.3
Sekirov, I.4
Champion, O.L.5
-
181
-
-
77957157893
-
Gut inflammation provides a respiratory electron acceptor for Salmonella
-
Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426-29
-
(2010)
Nature
, vol.467
, pp. 426-429
-
-
Winter, S.E.1
Thiennimitr, P.2
Winter, M.G.3
Butler, B.P.4
Huseby, D.L.5
-
182
-
-
84873513423
-
Host-derived nitrate boosts growth of e
-
Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, et al. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708-11
-
(2013)
Coli in the Inflamed Gut. Science
, vol.339
, pp. 708-711
-
-
Winter, S.E.1
Winter, M.G.2
Xavier, M.N.3
Thiennimitr, P.4
Poon, V.5
-
183
-
-
84903376660
-
Gutmicrobiome composition and function in experimental colitis during active disease and treatment-induced remission
-
RooksMG, Veiga P,Wardwell-Scott LH, Tickle T, Segata N, et al. 2014. Gutmicrobiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 8:1403-17
-
(2014)
ISME J.
, vol.8
, pp. 1403-1417
-
-
Rooks, M.G.1
Veiga, P.2
Wardwell-Scott, L.H.3
Tickle, T.4
Segata, N.5
-
184
-
-
84896092821
-
The treatmentnaive microbiome in new-onset Crohn's disease
-
Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, et al. 2014. The treatmentnaive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:382-92
-
(2014)
Cell Host Microbe
, vol.15
, pp. 382-392
-
-
Gevers, D.1
Kugathasan, S.2
Denson, L.A.3
Vazquez-Baeza, Y.4
Van Treuren, W.5
-
185
-
-
84877839153
-
IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic
-
Zenewicz LA, Yin X, Wang G, Elinav E, Hao L, et al. 2013. IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. J. Immunol. 190:5306-12
-
(2013)
J. Immunol.
, vol.190
, pp. 5306-5312
-
-
Zenewicz, L.A.1
Yin, X.2
Wang, G.3
Elinav, E.4
Hao, L.5
-
186
-
-
84881530486
-
Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation
-
Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A, et al. 2013. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210:1117-24
-
(2013)
J. Exp. Med.
, vol.210
, pp. 1117-1124
-
-
Mielke, L.A.1
Jones, S.A.2
Raverdeau, M.3
Higgs, R.4
Stefanska, A.5
-
187
-
-
34848889673
-
Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system
-
GarrettWS,LordGM, Punit S, Lugo-VillarinoG,Mazmanian SK, et al. 2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131:33-45
-
(2007)
Cell
, vol.131
, pp. 33-45
-
-
Garrett, W.S.1
Lord, G.M.2
Punit, S.3
Lugo-Villarino, G.4
Mazmanian, S.K.5
-
188
-
-
77956569409
-
Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis
-
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, et al. 2010. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8:292-300
-
(2010)
Cell Host Microbe
, vol.8
, pp. 292-300
-
-
Garrett, W.S.1
Gallini, C.A.2
Yatsunenko, T.3
Michaud, M.4
Dubois, A.5
-
189
-
-
84867856710
-
The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells
-
Powell N, Walker AW, Stolarczyk E, Canavan JB, Gokmen MR, et al. 2012. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37:674-84
-
(2012)
Immunity
, vol.37
, pp. 674-684
-
-
Powell, N.1
Walker, A.W.2
Stolarczyk, E.3
Canavan, J.B.4
Gokmen, M.R.5
-
190
-
-
84873372079
-
NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
-
Couturier-Maillard A, Secher T, Rehman A,Normand S, De Arcangelis A, et al. 2013. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Investig. 123:700-11
-
(2013)
J. Clin. Investig.
, vol.123
, pp. 700-711
-
-
Couturier-Maillard, A.1
Secher, T.2
Rehman, A.3
Normand, S.4
De Arcangelis, A.5
-
191
-
-
80054810643
-
Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis
-
Li XD, Chiu YH, Ismail AS, Behrendt CL, Wight-Carter M, et al. 2011. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. PNAS 108:17390-95
-
(2011)
PNAS
, vol.108
, pp. 17390-17395
-
-
Li, X.D.1
Chiu, Y.H.2
Ismail, A.S.3
Behrendt, C.L.4
Wight-Carter, M.5
-
192
-
-
84882610339
-
Gender bias in autoimmunity is influenced by microbiota
-
Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, et al. 2013. Gender bias in autoimmunity is influenced by microbiota. Immunity 39:400-12
-
(2013)
Immunity
, vol.39
, pp. 400-412
-
-
Yurkovetskiy, L.1
Burrows, M.2
Khan, A.A.3
Graham, L.4
Volchkov, P.5
-
193
-
-
84874357602
-
Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity
-
Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084-88
-
(2013)
Science
, vol.339
, pp. 1084-1088
-
-
Markle, J.G.1
Frank, D.N.2
Mortin-Toth, S.3
Robertson, C.E.4
Feazel, L.M.5
-
194
-
-
54549122338
-
Innate immunity and intestinal microbiota in the development of Type 1 diabetes
-
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, et al. 2008. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109-13
-
(2008)
Nature
, vol.455
, pp. 1109-1113
-
-
Wen, L.1
Ley, R.E.2
Volchkov, P.Y.3
Stranges, P.B.4
Avanesyan, L.5
-
195
-
-
84878465280
-
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
-
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066-71
-
(2013)
PNAS
, vol.110
, pp. 9066-9071
-
-
Everard, A.1
Belzer, C.2
Geurts, L.3
Ouwerkerk, J.P.4
Druart, C.5
-
196
-
-
84887323708
-
Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis
-
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, et al. 2013. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202
-
(2013)
ELife
, vol.2
, pp. e01202
-
-
Scher, J.U.1
Sczesnak, A.2
Longman, R.S.3
Segata, N.4
Ubeda, C.5
-
197
-
-
84871814687
-
Symptomatic atherosclerosis is associated with an altered gut metagenome
-
Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, et al. 2012. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3:1245
-
(2012)
Nat. Commun.
, vol.3
, pp. 1245
-
-
Karlsson, F.H.1
Fak, F.2
Nookaew, I.3
Tremaroli, V.4
Fagerberg, B.5
-
198
-
-
84861539347
-
Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation
-
Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, et al. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209:903-11
-
(2012)
J. Exp. Med.
, vol.209
, pp. 903-911
-
-
Jenq, R.R.1
Ubeda, C.2
Taur, Y.3
Menezes, C.C.4
Khanin, R.5
-
199
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
WuHJ, Ivanov II, Darce J,Hattori K, Shima T, et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815-27
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
Ivanov, I.I.2
Darce, J.3
Hattori, K.4
Shima, T.5
-
200
-
-
79952748674
-
Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
-
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. PNAS 108(Suppl. 1):4615-22
-
(2011)
PNAS
, vol.108
, pp. 4615-4622
-
-
Lee, Y.K.1
Menezes, J.S.2
Umesaki, Y.3
Mazmanian, S.K.4
-
201
-
-
84894118144
-
Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders
-
Hsiao EY,McBride SW,Hsien S, Sharon G,Hyde ER, et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451-63
-
(2013)
Cell
, vol.155
, pp. 1451-1463
-
-
Hsiao, E.Y.1
McBride, S.W.2
Hsien, S.3
Sharon, G.4
Hyde, E.R.5
-
203
-
-
84896078883
-
Microbes, microbiota, and colon cancer
-
Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317-28
-
(2014)
Cell Host Microbe
, vol.15
, pp. 317-328
-
-
Sears, C.L.1
Garrett, W.S.2
-
204
-
-
84900308871
-
The fire within: Microbes inflame tumors
-
Gagliani N, Hu B, Huber S, Elinav E, Flavell RA. 2014. The fire within: Microbes inflame tumors. Cell 157:776-83
-
(2014)
Cell
, vol.157
, pp. 776-783
-
-
Gagliani, N.1
Hu, B.2
Huber, S.3
Elinav, E.4
Flavell, R.A.5
-
205
-
-
84882354326
-
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment
-
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207-15
-
(2013)
Cell Host Microbe
, vol.14
, pp. 207-215
-
-
Kostic, A.D.1
Chun, E.2
Robertson, L.3
Glickman, J.N.4
Gallini, C.A.5
-
206
-
-
84882334105
-
Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin
-
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195-206
-
(2013)
Cell Host Microbe
, vol.14
, pp. 195-206
-
-
Rubinstein, M.R.1
Wang, X.2
Liu, W.3
Hao, Y.4
Cai, G.5
Han, Y.W.6
-
207
-
-
69949120571
-
A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses
-
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15:1016-22
-
(2009)
Nat. Med.
, vol.15
, pp. 1016-1022
-
-
Wu, S.1
Rhee, K.J.2
Albesiano, E.3
Rabizadeh, S.4
Wu, X.5
-
208
-
-
78650735879
-
Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4
-
Hu B, Elinav E, Huber S, Booth CJ, Strowig T, et al. 2010. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. PNAS 107:21635-40
-
(2010)
PNAS
, vol.107
, pp. 21635-21640
-
-
Hu, B.1
Elinav, E.2
Huber, S.3
Booth, C.J.4
Strowig, T.5
-
209
-
-
77952303410
-
The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer
-
Allen IC, TeKippe EM,Woodford RM, Uronis JM, Holl EK, et al. 2010. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp.Med. 207:1045-56
-
(2010)
J. Exp.Med.
, vol.207
, pp. 1045-1056
-
-
Allen, I.C.1
Tekippe, E.M.2
Woodford, R.M.3
Uronis, J.M.4
Holl, E.K.5
-
210
-
-
84899631135
-
Neutrophil infiltration favors colitisassociated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis
-
Wang Y, Wang K, Han GC, Wang RX, Xiao H, et al. 2014. Neutrophil infiltration favors colitisassociated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 7:1106-15
-
(2014)
Mucosal Immunol.
, vol.7
, pp. 1106-1115
-
-
Wang, Y.1
Wang, K.2
Han, G.C.3
Wang, R.X.4
Xiao, H.5
-
211
-
-
84867192879
-
Intestinal inflammation targets cancer-inducing activity of the microbiota
-
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120-23
-
(2012)
Science
, vol.338
, pp. 120-123
-
-
Arthur, J.C.1
Perez-Chanona, E.2
Muhlbauer, M.3
Tomkovich, S.4
Uronis, J.M.5
-
212
-
-
79959540809
-
Afunctional role for Nlrp6 in intestinal inflammation and tumorigenesis
-
Chen GY, LiuM,WangF,Bertin J,Nunez G. 2011.Afunctional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186:7187-94
-
(2011)
J. Immunol.
, vol.186
, pp. 7187-7194
-
-
Chen, G.Y.1
Liu, M.2
Wang, F.3
Bertin, J.4
Nunez, G.5
-
213
-
-
79959369355
-
Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury
-
Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, et al. 2011. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. PNAS 108:9601-6
-
(2011)
PNAS
, vol.108
, pp. 9601-9606
-
-
Normand, S.1
Delanoye-Crespin, A.2
Bressenot, A.3
Huot, L.4
Grandjean, T.5
-
214
-
-
84878971321
-
Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
-
Hu B, Elinav E, Huber S, Strowig T, Hao L, et al. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. PNAS 110:9862-67
-
(2013)
PNAS
, vol.110
, pp. 9862-9867
-
-
Hu, B.1
Elinav, E.2
Huber, S.3
Strowig, T.4
Hao, L.5
-
215
-
-
84868613705
-
Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth
-
Grivennikov SI, Wang K, MucidaD, Stewart CA, Schnabl B, et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254-58
-
(2012)
Nature
, vol.491
, pp. 254-258
-
-
Grivennikov, S.I.1
Wang, K.2
Mucida, D.3
Stewart, C.A.4
Schnabl, B.5
-
216
-
-
84868615556
-
IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine
-
Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, et al. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259-63
-
(2012)
Nature
, vol.491
, pp. 259-263
-
-
Huber, S.1
Gagliani, N.2
Zenewicz, L.A.3
Huber, F.J.4
Bosurgi, L.5
-
217
-
-
84879571464
-
Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
-
Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, et al. 2013. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210:917-31
-
(2013)
J. Exp. Med.
, vol.210
, pp. 917-931
-
-
Kirchberger, S.1
Royston, D.J.2
Boulard, O.3
Thornton, E.4
Franchini, F.5
-
218
-
-
84879888338
-
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
-
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97-101
-
(2013)
Nature
, vol.499
, pp. 97-101
-
-
Yoshimoto, S.1
Loo, T.M.2
Atarashi, K.3
Kanda, H.4
Sato, S.5
-
219
-
-
84888049920
-
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
-
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967-70
-
(2013)
Science
, vol.342
, pp. 967-970
-
-
Iida, N.1
Dzutsev, A.2
Stewart, C.A.3
Smith, L.4
Bouladoux, N.5
-
220
-
-
84888059687
-
The intestinalmicrobiotamodulates the anticancer immune effects of cyclophosphamide
-
Viaud S, Saccheri F,MignotG, Yamazaki T,Daillere R, et al. 2013. The intestinalmicrobiotamodulates the anticancer immune effects of cyclophosphamide. Science 342:971-76
-
(2013)
Science
, vol.342
, pp. 971-976
-
-
Viaud, S.1
Saccheri, F.2
Mignot, G.3
Yamazaki, T.4
Daillere, R.5
-
221
-
-
0001136641
-
Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection
-
Bohnhoff M, Drake BL, Miller CP. 1954. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med. 86:132-37
-
(1954)
Proc. Soc. Exp. Biol. Med.
, vol.86
, pp. 132-137
-
-
Bohnhoff, M.1
Drake, B.L.2
Miller, C.P.3
-
222
-
-
0001354030
-
Enhanced susceptibility to Salmonella infection in streptomycin-treated mice
-
Bohnhoff M, Miller CP. 1962. Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J. Infect. Dis. 111:117-27
-
(1962)
J. Infect. Dis.
, vol.111
, pp. 117-127
-
-
Bohnhoff, M.1
Miller, C.P.2
-
223
-
-
0001785410
-
The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora
-
Freter R. 1955. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97:57-65
-
(1955)
J. Infect. Dis.
, vol.97
, pp. 57-65
-
-
Freter, R.1
-
224
-
-
0001794426
-
In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism
-
Freter R. 1962. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. II. The inhibitory mechanism. J. Infect. Dis. 110:38-46
-
(1962)
J. Infect. Dis.
, vol.110
, pp. 38-46
-
-
Freter, R.1
-
225
-
-
79551687271
-
Mechanisms controlling pathogen colonization of the gut
-
Stecher B, Hardt WD. 2011. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14:82-91
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, pp. 82-91
-
-
Stecher, B.1
Hardt, W.D.2
-
226
-
-
84879343905
-
Control of pathogens and pathobionts by the gut microbiota
-
Kamada N, Chen GY, Inohara N, Nunez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14:685-90
-
(2013)
Nat. Immunol.
, vol.14
, pp. 685-690
-
-
Kamada, N.1
Chen, G.Y.2
Inohara, N.3
Nunez, G.4
-
227
-
-
84886795788
-
Microbiota-mediated colonization resistance against intestinal pathogens
-
Buffie CG, Pamer EG. 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13:790-801
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 790-801
-
-
Buffie, C.G.1
Pamer, E.G.2
-
228
-
-
56849106496
-
The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing
-
Dethlefsen L, Huse S, SoginML, Relman DA. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLOS Biol. 6:e280
-
(2008)
PLOS Biol.
, vol.6
, pp. e280
-
-
Dethlefsen, L.1
Huse, S.2
Sogin, M.L.3
Relman, D.A.4
-
229
-
-
85046979639
-
A comparative analysis of the effect of antibiotic treatment and enteric infection on intestinal homeostasis
-
Antunes LC, Finlay BB. 2011. A comparative analysis of the effect of antibiotic treatment and enteric infection on intestinal homeostasis. Gut Microbes 2:105-8
-
(2011)
Gut Microbes
, vol.2
, pp. 105-108
-
-
Antunes, L.C.1
Finlay, B.B.2
-
230
-
-
78649895980
-
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
-
Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, et al. 2010. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Investig. 120:4332-41
-
(2010)
J. Clin. Investig.
, vol.120
, pp. 4332-4341
-
-
Ubeda, C.1
Taur, Y.2
Jenq, R.R.3
Equinda, M.J.4
Son, T.5
-
231
-
-
84857067037
-
Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis
-
Buffie CG, Jarchum I, EquindaM, Lipuma L,Gobourne A, et al. 2012. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80:62-73
-
(2012)
Infect. Immun.
, vol.80
, pp. 62-73
-
-
Buffie, C.G.1
Jarchum, I.2
Equinda, M.3
Lipuma, L.4
Gobourne, A.5
-
232
-
-
84883841228
-
Resistance of the mouse's intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation
-
Bohnhoff M, Miller CP, Martin WR. 1964. Resistance of the mouse's intestinal tract to experimental Salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J. Exp. Med. 120:805-16
-
(1964)
J. Exp. Med.
, vol.120
, pp. 805-816
-
-
Bohnhoff, M.1
Miller, C.P.2
Martin, W.R.3
-
233
-
-
79957514958
-
The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization
-
Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL, et al. 2011. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLOS ONE 6:e20338
-
(2011)
PLOS ONE
, vol.6
, pp. e20338
-
-
Ferreira, R.B.1
Gill, N.2
Willing, B.P.3
Antunes, L.C.4
Russell, S.L.5
-
234
-
-
79952763437
-
Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis
-
Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, et al. 2011. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79:1536-45
-
(2011)
Infect. Immun.
, vol.79
, pp. 1536-1545
-
-
Wlodarska, M.1
Willing, B.2
Keeney, K.M.3
Menendez, A.4
Bergstrom, K.S.5
-
235
-
-
78149317654
-
The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea
-
Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLOS Pathog. 6:e1001097
-
(2010)
PLOS Pathog.
, vol.6
, pp. e1001097
-
-
Endt, K.1
Stecher, B.2
Chaffron, S.3
Slack, E.4
Tchitchek, N.5
-
236
-
-
84874672692
-
Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization
-
Ubeda C, Bucci V, Caballero S, Djukovic A, ToussaintNC, et al. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81:965-73
-
(2013)
Infect. Immun.
, vol.81
, pp. 965-973
-
-
Ubeda, C.1
Bucci, V.2
Caballero, S.3
Djukovic, A.4
Toussaint, N.C.5
-
237
-
-
84865175815
-
Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
-
Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, et al. 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55:905-14
-
(2012)
Clin. Infect. Dis.
, vol.55
, pp. 905-914
-
-
Taur, Y.1
Xavier, J.B.2
Lipuma, L.3
Ubeda, C.4
Goldberg, J.5
-
238
-
-
67649391053
-
Clostridium difficile infection: New developments in epidemiology and pathogenesis
-
Rupnik M, Wilcox MH, Gerding DN. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7:526-36
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 526-536
-
-
Rupnik, M.1
Wilcox, M.H.2
Gerding, D.N.3
-
239
-
-
69049108796
-
Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts
-
LawleyTD,Clare S,WalkerAW,Goulding D, StablerRA, et al. 2009. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77:3661-69
-
(2009)
Infect. Immun.
, vol.77
, pp. 3661-3669
-
-
Lawley, T.D.1
Clare, S.2
Walker, A.W.3
Goulding, D.4
Stabler, R.A.5
-
240
-
-
84867605854
-
Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis
-
Jarchum I, Liu M, Shi C, Equinda M, Pamer EG. 2012. Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect. Immun. 80:2989-96
-
(2012)
Infect. Immun.
, vol.80
, pp. 2989-2996
-
-
Jarchum, I.1
Liu, M.2
Shi, C.3
Equinda, M.4
Pamer, E.G.5
-
241
-
-
84892894991
-
Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection
-
TheriotCM, KoenigsknechtMJ, Carlson PE Jr, HattonGE, Nelson AM, et al. 2014. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5:3114
-
(2014)
Nat. Commun.
, vol.5
, pp. 3114
-
-
Theriot, C.M.1
Koenigsknecht, M.J.2
Carlson, P.E.3
Hatton, G.E.4
Nelson, A.M.5
-
242
-
-
84892384903
-
Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection
-
Theriot CM, Young VB. 2014. Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes 5:86-95
-
(2014)
Gut Microbes
, vol.5
, pp. 86-95
-
-
Theriot, C.M.1
Young, V.B.2
-
243
-
-
84904012195
-
Microbiome data distinguish patients with Clostridium difficile infection and non-C. Difficile-associated diarrhea from healthy controls
-
Schubert AM, Rogers MA, Ring C, Mogle J, Petrosino JP, et al. 2014. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio 5:e01021-14
-
(2014)
MBio
, vol.5
, pp. e01021-e01114
-
-
Schubert, A.M.1
Rogers, M.A.2
Ring, C.3
Mogle, J.4
Petrosino, J.P.5
-
244
-
-
84878357601
-
Duodenal infusion of feces for recurrent Clostridium difficile
-
vanNood E, Dijkgraaf MG, Keller JJ. 2013. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368:2145
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 2145
-
-
Vannood, E.1
Dijkgraaf, M.G.2
Keller, J.J.3
-
245
-
-
84895166217
-
Fecal microbiota transplantation: Effectiveness, complexities, and lingering concerns
-
Pamer EG. 2014. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol. 7:210-14
-
(2014)
Mucosal Immunol.
, vol.7
, pp. 210-214
-
-
Pamer, E.G.1
-
246
-
-
0024312284
-
Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients
-
Tvede M, Rask-Madsen J. 1989. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1:1156-60
-
(1989)
Lancet
, vol.1
, pp. 1156-1160
-
-
Tvede, M.1
Rask-Madsen, J.2
-
247
-
-
84892629673
-
Faecal microbiota transplantation and bacteriotherapy for recurrent Clostridium difficile infection: A retrospective evaluation of 31 patients
-
Emanuelsson F,ClaessonBE, Ljungstrom L, TvedeM,Ung KA. 2013. Faecal microbiota transplantation and bacteriotherapy for recurrent Clostridium difficile infection: a retrospective evaluation of 31 patients. Scand. J. Infect. Dis. 46:89-97
-
(2013)
Scand. J. Infect. Dis.
, vol.46
, pp. 89-97
-
-
Emanuelsson, F.1
Claesson, B.E.2
Ljungstrom, L.3
Tvede, M.4
Ung, K.A.5
-
248
-
-
84868158515
-
Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice
-
Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, et al. 2012. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLOS Pathog. 8:e1002995
-
(2012)
PLOS Pathog.
, vol.8
, pp. e1002995
-
-
Lawley, T.D.1
Clare, S.2
Walker, A.W.3
Stares, M.D.4
Connor, T.R.5
|