메뉴 건너뛰기




Volumn 69, Issue , 2016, Pages 49-55

Weak supervision and other non-standard classification problems: A taxonomy

Author keywords

Degrees of supervision; Partially supervised classification; Weakly supervised classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; TAXONOMIES;

EID: 84946782393     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2015.10.008     Document Type: Article
Times cited : (90)

References (44)
  • 1
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • C. Bielza, G. Li, and P. Larrañaga Multi-dimensional classification with Bayesian networks Int. J. Approx. Reason. 52 2011 705 727
    • (2011) Int. J. Approx. Reason. , vol.52 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 4
    • 35148869552 scopus 로고    scopus 로고
    • Learning Bayesian classifiers from positive and unlabeled examples
    • B. Calvo, P. Larrañaga, and J.A. Lozano Learning Bayesian classifiers from positive and unlabeled examples Pattern Recogn. Lett. 28 2007 2375 2384
    • (2007) Pattern Recogn. Lett. , vol.28 , pp. 2375-2384
    • Calvo, B.1    Larrañaga, P.2    Lozano, J.A.3
  • 9
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez Solving the multiple instance problem with axis-parallel rectangles Artif. Intell. 89 1997 31 71
    • (1997) Artif. Intell. , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 15
    • 84881049252 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers from label proportions
    • J. Hernández-González, I. Inza, and J.A. Lozano Learning Bayesian network classifiers from label proportions Pattern Recogn. 46 2013 3425 3440
    • (2013) Pattern Recogn. , vol.46 , pp. 3425-3440
    • Hernández-González, J.1    Inza, I.2    Lozano, J.A.3
  • 16
    • 70450118721 scopus 로고    scopus 로고
    • Learning from ambiguously labeled examples
    • E. Hüllermeier, and J. Beringer Learning from ambiguously labeled examples Intell. Data Anal. 10 2006 419 439
    • (2006) Intell. Data Anal. , vol.10 , pp. 419-439
    • Hüllermeier, E.1    Beringer, J.2
  • 20
    • 79952314979 scopus 로고    scopus 로고
    • Full-class set classification using the Hungarian algorithm
    • L.I. Kuncheva Full-class set classification using the Hungarian algorithm Int. J. Mach. Learn. Cybern. 1 2010 53 61
    • (2010) Int. J. Mach. Learn. Cybern. , vol.1 , pp. 53-61
    • Kuncheva, L.I.1
  • 32
    • 84946712367 scopus 로고    scopus 로고
    • Nearest neighbor algorithm for positive and unlabeled learning with uncertainty
    • P. Shirui, Z. Yang, L. Xue, and W. Yong Nearest neighbor algorithm for positive and unlabeled learning with uncertainty J. Front. Comput. Sci. Technol. 4 2010 769 779
    • (2010) J. Front. Comput. Sci. Technol. , vol.4 , pp. 769-779
    • Shirui, P.1    Yang, Z.2    Xue, L.3    Yong, W.4
  • 36
    • 84890217212 scopus 로고    scopus 로고
    • Label ranking algorithms: A survey
    • SpringerûVerlag
    • S. Vembu, and T. Gärtner Label ranking algorithms: A survey, in: Preference learning 2010 SpringerûVerlag 45 64
    • (2010) Preference learning , pp. 45-64
    • Vembu, S.1    Gärtner, T.2
  • 38
    • 80052969019 scopus 로고    scopus 로고
    • Supervised learning algorithms for multi-class classification problems with partial class memberships
    • W. Waegeman, J. Verwaeren, B. Slabbinck, and B. De Baets Supervised learning algorithms for multi-class classification problems with partial class memberships Fuzzy Set Syst. 184 2011 106 125
    • (2011) Fuzzy Set Syst. , vol.184 , pp. 106-125
    • Waegeman, W.1    Verwaeren, J.2    Slabbinck, B.3    De Baets, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.