메뉴 건너뛰기




Volumn 9648, Issue , 2016, Pages 500-511

On the impact of dataset complexity and sampling strategy in multilabel classifiers performance

Author keywords

Complexity; Metrics; Multilabel classification; Partitioning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; IMAGE CLASSIFICATION; INTELLIGENT SYSTEMS;

EID: 84964054564     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-32034-2_42     Document Type: Conference Paper
Times cited : (28)

References (23)
  • 2
    • 22944464423 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for email classification research
    • Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.), LNCS (LNAI), Springer, Heidelberg
    • Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217-226. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-8 22
    • (2004) ECML 2004 , vol.3201 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 3
    • 84937572644 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.), LNCS, Springer, Heidelberg
    • Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97-112. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1 7
    • (2002) ECCV 2002, Part IV , vol.2353 , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    de Freitas, J.F.G.3    Forsyth, D.4
  • 4
    • 84929484765 scopus 로고    scopus 로고
    • A tutorial on multilabel learning
    • Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. 47(3), 1-38 (2015). doi:10.1145/2716262
    • (2015) ACM Comput. Surv , vol.47 , Issue.3 , pp. 1-38
    • Gibaja, E.1    Ventura, S.2
  • 5
    • 84912136436 scopus 로고    scopus 로고
    • Multi-label learning: A review of the state of the art and ongoing research
    • Gibaja, E., Ventura, S.: Multi-label learning: a review of the state of the art and ongoing research. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 4(6), 411-444 (2014). doi:10.1002/widm.1139
    • (2014) Wiley Interdisc. Rev. Data Min. Knowl. Discovery , vol.4 , Issue.6 , pp. 411-444
    • Gibaja, E.1    Ventura, S.2
  • 6
    • 0036522441 scopus 로고    scopus 로고
    • Complexity measures of supervised classification problems
    • Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289-300 (2002)
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 289-300
    • Ho, T.K.1    Basu, M.2
  • 7
    • 79957915328 scopus 로고    scopus 로고
    • Addressing data complexity for imbalanced data sets: Analysis of smote-based oversampling and evolutionary undersampling
    • Luengo, J., Fernández, A., García, S., Herrera, F.: Addressing data complexity for imbalanced data sets: analysis of smote-based oversampling and evolutionary undersampling. Soft. Comput. 15(10), 1909-1936 (2011). doi:10.1007/ s00500-010-0625-8
    • (2011) Soft. Comput , vol.15 , Issue.10 , pp. 1909-1936
    • Luengo, J.1    Fernández, A.2    García, S.3    Herrera, F.4
  • 8
    • 84866043469 scopus 로고    scopus 로고
    • Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification
    • Sáez, J.A., Luengo, J., Herrera, F.: Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recogn. 46(1), 355-364 (2013). doi:10.1016/j.patcog.2012.07.009
    • (2013) Pattern Recogn , vol.46 , Issue.1 , pp. 355-364
    • Sáez, J.A.1    Luengo, J.2    Herrera, F.3
  • 9
    • 84930273620 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3-16 (2015). doi:10.1016/j.neucom.2014.08.091
    • (2015) Neurocomputing , vol.163 , pp. 3-16
    • Charte, F.1    Rivera, A.J.2    del Jesus, M.J.3    Herrera, F.4
  • 10
    • 84902509247 scopus 로고    scopus 로고
    • Concurrence among imbalanced labels and its influence on multilabel resampling algorithms
    • Polycarpou, M., Carvalho, A.C.P.L.F., Pan, J.-S., Wózniak, M., Quintian, H., Corchado, E. (eds.), LNCS, Springer, Heidelberg
    • Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Concurrence among imbalanced labels and its influence on multilabel resampling algorithms. In: Polycarpou, M., Carvalho, A.C.P.L.F., Pan, J.-S., Wózniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 110-121. Springer, Heidelberg (2014). doi:10. 1007/978-3-319-07617-1 10
    • (2014) HAIS 2014 , vol.8480 , pp. 110-121
    • Charte, F.1    Rivera, A.2    del Jesus, M.J.3    Herrera, F.4
  • 11
    • 47149096461 scopus 로고
    • Dynamic programming and lagrange multipliers
    • Bellman, R.: Dynamic programming and lagrange multipliers. Proc. Natl. Acad. Sci. U.S.A. 42(10), 767 (1956)
    • (1956) Proc. Natl. Acad. Sci. U.S.A , vol.42 , Issue.10 , pp. 767
    • Bellman, R.1
  • 12
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. Adv. Knowl. Discovery Data Min. 3056, 22-30 (2004). doi:10.1007/ 978-3-540-24775-3 5
    • (2004) Adv. Knowl. Discovery Data Min , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 13
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897-1916 (2008). doi:10.1016/j.artint. 2008.08.002
    • (2008) Artif. Intell , vol.172 , Issue.16 , pp. 1897-1916
    • Hüllermeier, E.1    Fürnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 14
    • 52949105710 scopus 로고    scopus 로고
    • Multilabel classification via calibrated label ranking
    • Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133-153 (2008). doi:10.1007/ s10994-008-5064-8
    • (2008) Mach. Learn , vol.73 , pp. 133-153
    • Fürnkranz, J.1    Hüllermeier, E.2    Loza Mencía, E.3    Brinker, K.4
  • 15
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011). doi:10.1007/s10994-011-5256-5
    • (2011) Mach. Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 16
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004). doi:10.1016/j.patcog.2004.03.009
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 19
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.), LNCS (LNAI), Springer, Heidelberg
    • Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406-417. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74958-5 38
    • (2007) ECML 2007 , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.P.2
  • 20
    • 80052397506 scopus 로고    scopus 로고
    • On the stratification of multi-label data
    • Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.), LNCS, Springer, Heidelberg
    • Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 145-158. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23808-6 10
    • (2011) ECML PKDD 2011, Part III , vol.6913 , pp. 145-158
    • Sechidis, K.1    Tsoumakas, G.2    Vlahavas, I.3
  • 21
    • 79954553074 scopus 로고    scopus 로고
    • Cross-validation
    • Liu, L., Özsu, M.T. (eds.), Springer, New York
    • Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532-538. Springer, New York (2009). doi:10.1007/978-0-387-39940-9 565
    • (2009) Encyclopedia of Database Systems , pp. 532-538
    • Refaeilzadeh, P.1    Tang, L.2    Liu, H.3
  • 22
    • 84964054493 scopus 로고    scopus 로고
    • R ultimate multilabel dataset repository
    • Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.), LNCS (LNAI), Springer, Switzerland
    • Charte, F., Charte, D., Rivera, A., del Jesus, M.J., Herrera, F.: R ultimate multilabel dataset repository. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 487-499 Springer, Switzerland (2016)
    • (2016) HAIS 2016 , vol.9648 , pp. 487-499
    • Charte, F.1    Charte, D.2    Rivera, A.3    del Jesus, M.J.4    Herrera, F.5
  • 23
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007). doi:10.1016/j.patcog.2006.12.019
    • (2007) Pattern Recogn , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.