메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 377-403

Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining

Author keywords

Contrast set mining; Descriptive rules; Emerging patterns; Rule learning; Subgroup discovery

Indexed keywords

DIFFUSERS (OPTICAL); EDUCATION; HEURISTIC METHODS; INFORMATION MANAGEMENT; MINING; SURVEYS; TERMINOLOGY;

EID: 61749084093     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (324)

References (64)
  • 8
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • Stephen D. Bay and Michael J. Pazzani. Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery, 5(3):213-246, 2001.
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 213-246
    • Bay, S.D.1    Pazzani, M.J.2
  • 10
    • 0346252356 scopus 로고    scopus 로고
    • A CART-based approach to discover emerging patterns in microarray data
    • Anne-Laure Boulesteix, Gerhard Tutz, and Korbinian Strimmer. A CART-based approach to discover emerging patterns in microarray data. Bioinformatics, 19(18):2465-2472, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.18 , pp. 2465-2472
    • Boulesteix, A.-L.1    Tutz, G.2    Strimmer, K.3
  • 11
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261-283, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 14
    • 34548285425 scopus 로고    scopus 로고
    • Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing
    • María José del Jesus, Pedro González, Francisco Herrera, and Mikel Mesonero. Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems, 15(4):578-592, 2007.
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.4 , pp. 578-592
    • José del Jesus, M.1    González, P.2    Herrera, F.3    Mesonero, M.4
  • 20
    • 0007425929 scopus 로고    scopus 로고
    • Bump hunting in high-dimensional data
    • Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-dimensional data. Statistics and Computing, 9(2):123-143, 1999.
    • (1999) Statistics and Computing , vol.9 , Issue.2 , pp. 123-143
    • Friedman, J.H.1    Fisher, N.I.2
  • 27
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • Branko Kavšek and Nada Lavrač. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20(7):543-583, 2006.
    • (2006) Applied Artificial Intelligence , vol.20 , Issue.7 , pp. 543-583
    • Kavšek, B.1    Lavrač, N.2
  • 28
    • 0002192370 scopus 로고    scopus 로고
    • Explora: A multipattern and multistrategy discovery assistant
    • Willi Klösgen. Explora: A multipattern and multistrategy discovery assistant. Advances in Knowledge Discovery and Data Mining, pages 249-271, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 249-271
    • Klösgen, W.1
  • 30
    • 61749095466 scopus 로고    scopus 로고
    • Mining census data for spatial effects on mortality
    • Willi Klösgen, Michael May, and Jim Petch. Mining census data for spatial effects on mortality. Intelligent Data Analysis, 7(6):521-540, 2003.
    • (2003) Intelligent Data Analysis , vol.7 , Issue.6 , pp. 521-540
    • Klösgen, W.1    May, M.2    Petch, J.3
  • 39
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
    • Jinyan Li and Limsoon Wong. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics, 18(10):1406-1407, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1406-1407
    • Li, J.1    Wong, L.2
  • 41
    • 85053374465 scopus 로고    scopus 로고
    • Making use of the most expressive jumping emerging patterns for classification
    • Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Making use of the most expressive jumping emerging patterns for classification. Knowledge and Information Systems, 3(2):1-29, 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.2 , pp. 1-29
    • Li, J.1    Dong, G.2    Ramamohanarao, K.3
  • 42
    • 0037245821 scopus 로고    scopus 로고
    • Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients
    • Jinyan Li, Huiqing Liu, James R. Downing, Allen Eng-Juh Yeoh, and Limsoon Wong. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics, 19(1):71-78, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 71-78
    • Li, J.1    Liu, H.2    Downing, J.R.3    Eng-Juh Yeoh, A.4    Wong, L.5
  • 47
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Foster J. Provost and Tom Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-231, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 48
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Ross Quinlan, J.1
  • 52
    • 0035476841 scopus 로고    scopus 로고
    • Mining the change of customer behavior in an internet shopping mall
    • Hee S. Song, Jae K. Kimb, and Soung H. Kima. Mining the change of customer behavior in an internet shopping mall. Expert Systems with Applications, 21(3):157-168, 2001.
    • (2001) Expert Systems with Applications , vol.21 , Issue.3 , pp. 157-168
    • Song, H.S.1    Kimb, J.K.2    Kima, S.H.3
  • 54
    • 33746820611 scopus 로고    scopus 로고
    • Data mining methods for discovering interesting exceptions from an unsupervised table
    • Einoshin Suzuki. Data mining methods for discovering interesting exceptions from an unsupervised table. Journal of Universal Computer Science, 12(6):627-653, 2006.
    • (2006) Journal of Universal Computer Science , vol.12 , Issue.6 , pp. 627-653
    • Suzuki, E.1
  • 56
    • 61749104401 scopus 로고    scopus 로고
    • Geoffrey I. Webb. OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 3:431-465, 1995.
    • Geoffrey I. Webb. OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 3:431-465, 1995.
  • 58
    • 34249653461 scopus 로고    scopus 로고
    • Discovering significant patterns
    • Geoffrey I. Webb. Discovering significant patterns. Machine Learning, 68(1):1-33, 2007.
    • (2007) Machine Learning , vol.68 , Issue.1 , pp. 1-33
    • Webb, G.I.1
  • 61
    • 22144470180 scopus 로고    scopus 로고
    • Mining negative contrast sets from data with discrete attributes
    • Tzu-Tsung Wong and Kuo-Lung Tseng. Mining negative contrast sets from data with discrete attributes. Expert Systems with Applications, 29(2):401-407, 2005.
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 401-407
    • Wong, T.-T.1    Tseng, K.-L.2
  • 63
    • 0038434018 scopus 로고    scopus 로고
    • Inductive logic programming for knowledge discovery in databases
    • Sašo Džeroski and Nada Lavrač, editors, chapter 4
    • Stefan Wrobel. Inductive logic programming for knowledge discovery in databases. In Sašo Džeroski and Nada Lavrač, editors, Relational Data Mining, chapter 4, pages 74-101. 2001.
    • (2001) Relational Data Mining , pp. 74-101
    • Wrobel, S.1
  • 64
    • 32144454875 scopus 로고    scopus 로고
    • Propositionalization- based relational subgroup discovery with RSD
    • Filip Železný and Nada Lavrač. Propositionalization- based relational subgroup discovery with RSD. Machine Learning, 62:33-63, 2006.
    • (2006) Machine Learning , vol.62 , pp. 33-63
    • Železný, F.1    Lavrač, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.