-
2
-
-
77956163078
-
Mining multi-label data
-
O. Maimon, L. Rokach, Springer US, Boston, MA (Chapter 34)
-
G. Tsoumakas, I. Katakis, and I. Vlahavas Mining multi-label data O. Maimon, L. Rokach, Data Mining and Knowledge Discovery Handbook 2010 Springer US, Boston, MA 667 685 10.1007/978-0-387-09823-4-34 (Chapter 34)
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
3
-
-
27144474945
-
A novel field learning algorithm for dual imbalance text classification
-
LNCS
-
L. Zhuang, H. Dai, and X. Hang A novel field learning algorithm for dual imbalance text classification Fuzzy Systems and Knowledge Discovery LNCS vol. 3614 2005 39 48
-
(2005)
Fuzzy Systems and Knowledge Discovery
, vol.3614
, pp. 39-48
-
-
Zhuang, L.1
Dai, H.2
Hang, X.3
-
5
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. Newsl. 6 1 2004 1 6 10.1145/1007730.1007733
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
6
-
-
84862027781
-
Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
-
J. He, H. Gu, and W. Liu Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites PloS one 7 6 2012 7155 10.1371/journal.pone.0037155
-
(2012)
PloS One
, vol.7
, Issue.6
, pp. 7155
-
-
He, J.1
Gu, H.2
Liu, W.3
-
7
-
-
84878774850
-
Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples
-
C. Li, and G. Shi Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples J. Inf. Sci. Eng. 29 4 2013 765 776
-
(2013)
J. Inf. Sci. Eng.
, vol.29
, Issue.4
, pp. 765-776
-
-
Li, C.1
Shi, G.2
-
8
-
-
56349115038
-
Multi-label imbalanced data enrichment process in neural net classifier training
-
G. Tepvorachai, C. Papachristou, Multi-label imbalanced data enrichment process in neural net classifier training, in: IEEE Int. Joint Conf. on Neural Networks, 2008. IJCNN, 2008, pp. 1301-1307. http://dx.doi.org/10.1109/IJCNN.2008.4633966.
-
(2008)
IEEE Int. Joint Conf. on Neural Networks, 2008. IJCNN
, pp. 1301-1307
-
-
Tepvorachai, G.1
Papachristou, C.2
-
9
-
-
84855780778
-
Multilabel classification using heterogeneous ensemble of multi-label classifiers
-
M.A. Tahir, J. Kittler, and A. Bouridane Multilabel classification using heterogeneous ensemble of multi-label classifiers Pattern Recogn. Lett. 33 5 2012 513 523 10.1016/j.patrec.2011.10.019
-
(2012)
Pattern Recogn. Lett.
, vol.33
, Issue.5
, pp. 513-523
-
-
Tahir, M.A.1
Kittler, J.2
Bouridane, A.3
-
10
-
-
84861810464
-
Inverse random under sampling for class imbalance problem and its application to multi-label classification
-
M.A. Tahir, J. Kittler, and F. Yan Inverse random under sampling for class imbalance problem and its application to multi-label classification Pattern Recogn. 45 10 2012 3738 3750 10.1016/j.patcog.2012.03.014
-
(2012)
Pattern Recogn.
, vol.45
, Issue.10
, pp. 3738-3750
-
-
Tahir, M.A.1
Kittler, J.2
Yan, F.3
-
11
-
-
77957042586
-
Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
-
LNCS Springer
-
S. Dendamrongvit, and M. Kubat Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains New Frontiers in Applied Data Mining LNCS bol. 5669 2010 Springer 40 52 10.1007/978-3-642-14640-4-4
-
(2010)
New Frontiers in Applied Data Mining
, vol.5669 BOL.
, pp. 40-52
-
-
Dendamrongvit, S.1
Kubat, M.2
-
12
-
-
84930273620
-
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
-
F. Charte, A.J. Rivera, M.J. del Jesus, and F. Herrera Addressing imbalance in multilabel classification: measures and random resampling algorithms Neurocomputing 163 9 2015 3 16 10.1016/j.neucom.2014.08.091
-
(2015)
Neurocomputing
, vol.163
, Issue.9
, pp. 3-16
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
13
-
-
84893190862
-
Managing imbalanced data sets in multi-label problems: A case study with the SMOTE algorithm
-
LNCS Springer
-
A.F. Giraldo-Forero, J.A. Jaramillo-Garzón, J.F. Ruiz-Muñoz, and C.G. Castellanos-Domínguez Managing imbalanced data sets in multi-label problems: a case study with the SMOTE algorithm Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications LNCS vol. 8258 2013 Springer 334 342 10.1007/978-3-642-41822-8-42
-
(2013)
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
, vol.8258
, pp. 334-342
-
-
Giraldo-Forero, A.F.1
Jaramillo-Garzón, J.A.2
Ruiz-Muñoz, J.F.3
Castellanos-Domínguez, C.G.4
-
14
-
-
80052394779
-
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
-
V. García, J. Sánchez, and R. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowl. Based Syst. 25 1 2012 13 21 10.1016/j.knosys.2011.06.013
-
(2012)
Knowl. Based Syst.
, vol.25
, Issue.1
, pp. 13-21
-
-
García, V.1
Sánchez, J.2
Mollineda, R.3
-
16
-
-
84884913245
-
A first approach to deal with imbalance in multi-label datasets
-
Salamanca, Spain, HAIS'13, LNCS
-
F. Charte, A. Rivera, M.J. Jesus, F. Herrera, A first approach to deal with imbalance in multi-label datasets, in: Proc. 8th Int. Conf. Hybrid Artificial Intelligent Systems, Salamanca, Spain, HAIS'13, LNCS, 2013, vol. 8073, pp. 150-160. http://dx.doi.org/10.1007/978-3-642-40846-5-16.
-
(2013)
Proc. 8th Int. Conf. Hybrid Artificial Intelligent Systems
, vol.8073
, pp. 150-160
-
-
Charte, F.1
Rivera, A.2
Jesus, M.J.3
Herrera, F.4
-
17
-
-
67949108237
-
A tutorial on multi-label classification techniques
-
Chapter 8
-
A. de Carvalho, A. Freitas, A tutorial on multi-label classification techniques, in: Found. Computational Intell, vol. 5, 2009, pp. 177-195 (Chapter 8). http://dx.doi.org/10.1007/978-3-642-01536-6-8.
-
(2009)
Found. Computational Intell
, vol.5
, pp. 177-195
-
-
De Carvalho, A.1
Freitas, A.2
-
18
-
-
7444230008
-
Discriminative methods for multi-labeled classification
-
S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in: Advances in Knowl. Discovery and Data Mining, vol. 3056, 2004, pp. 22-30. http://dx.doi.org/10.1007/978-3-540-24775-3-5.
-
(2004)
Advances in Knowl. Discovery and Data Mining
, vol.3056
, pp. 22-30
-
-
Godbole, S.1
Sarawagi, S.2
-
19
-
-
3042597440
-
Learning multi-label scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recogn. 37 9 2004 1757 1771 10.1016/j.patcog.2004.03.009
-
(2004)
Pattern Recogn.
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
21
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M. Zhang, and Z. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recogn. 40 7 2007 2038 2048 10.1016/j.patcog.2006.12.019
-
(2007)
Pattern Recogn.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
22
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
M.-L. Zhang Multilabel neural networks with applications to functional genomics and text categorization IEEE Trans. Knowl. Data Eng. 18 10 2006 1338 1351 10.1109/TKDE.2006.162
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.10
, pp. 1338-1351
-
-
Zhang, M.-L.1
-
23
-
-
62649132781
-
ML-RBF: RBF neural networks for multi-label learning
-
M.-L. Zhang ML-RBF: RBF neural networks for multi-label learning Neural Process. Lett. 29 2009 61 74 10.1007/s11063-009-9095-3
-
(2009)
Neural Process. Lett.
, vol.29
, pp. 61-74
-
-
Zhang, M.-L.1
-
25
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
G. Tsoumakas, I. Vlahavas, Random k-labelsets: an ensemble method for multilabel classification, in: Proc. 18th European Conf. on Machine Learning, Warsaw, Poland, ECML'07, vol. 4701, 2007, pp. 406-417. http://dx.doi.org/10.1007/978-3-540-74958-5-38.
-
(2007)
Proc. 18th European Conf. on Machine Learning, Warsaw, Poland, ECML'07
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
27
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
G. Tsoumakas, I. Katakis, I. Vlahavas, Effective and efficient multilabel classification in domains with large number of labels, in: Proc. ECML/PKDD Workshop on Mining Multidimensional Data, Antwerp, Belgium, MMD'08, 2008, pp. 30-44.
-
(2008)
Proc. ECML/PKDD Workshop on Mining Multidimensional Data, Antwerp, Belgium, MMD'08
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
28
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank Classifier chains for multi-label classification Mach. Learn. 85 2011 333 359 10.1007/s10994-011-5256-5
-
(2011)
Mach. Learn.
, vol.85
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
29
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
J. Read, B. Pfahringer, G. Holmes, Multi-label classification using ensembles of pruned sets, in: Proc. 8th IEEE Int. Conf. on Data Mining, Pisa, Italy, ICDM'08, 2008, pp. 995-1000.
-
(2008)
Proc. 8th IEEE Int. Conf. on Data Mining, Pisa, Italy, ICDM'08
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
30
-
-
84886950324
-
Multilabel classification using error-correcting codes of hard or soft bits
-
C.-S. Ferng, and H.-T. Lin Multilabel classification using error-correcting codes of hard or soft bits IEEE Trans. Neural Netw. Learn. Syst 24 11 2013 1888 1900 10.1109/TNNLS.2013.2269615
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.24
, Issue.11
, pp. 1888-1900
-
-
Ferng, C.-S.1
Lin, H.-T.2
-
31
-
-
84897109377
-
A review on multi-label learning algorithms
-
M. Zhang, and Z. Zhou A review on multi-label learning algorithms IEEE Trans. Knowl. Data Eng. 26 8 2014 1819 1837 10.1109/TKDE.2013.39
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.8
, pp. 1819-1837
-
-
Zhang, M.1
Zhou, Z.2
-
32
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz, and S. Stephen The class imbalance problem: a systematic study Intell. Data Anal. 6 5 2002 429 449
-
(2002)
Intell. Data Anal.
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
33
-
-
77951926080
-
Supervised neural network modeling: An empirical investigation into learning from imbalanced data with labeling errors
-
T. Khoshgoftaar, J. Van Hulse, and A. Napolitano Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors IEEE Trans. Neural Netw. Learn. Syst 21 5 2010 813 830 10.1109/TNN.2010.2042730
-
(2010)
IEEE Trans. Neural Netw. Learn. Syst
, vol.21
, Issue.5
, pp. 813-830
-
-
Khoshgoftaar, T.1
Van Hulse, J.2
Napolitano, A.3
-
34
-
-
84883447718
-
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
-
V. López, A. Fernández, S. García, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 2013 113 141 10.1016/j.ins.2013.07.007
-
(2013)
Inf. Sci.
, vol.250
, pp. 113-141
-
-
López, V.1
Fernández, A.2
García, S.3
Palade, V.4
Herrera, F.5
-
36
-
-
84875898112
-
Dynamic sampling approach to training neural networks for multiclass imbalance classification
-
M. Lin, K. Tang, and X. Yao Dynamic sampling approach to training neural networks for multiclass imbalance classification IEEE Trans. Neural Netw. Learn. Syst 24 4 2013 647 660 10.1109/TNNLS.2012.2228231
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.24
, Issue.4
, pp. 647-660
-
-
Lin, M.1
Tang, K.2
Yao, X.3
-
37
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
-
A. Fernández, V. López, M. Galar, M.J. del Jesus, and F. Herrera Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches Knowl. Based Syst. 42 2013 97 110 10.1016/j.knosys.2013.01.018
-
(2013)
Knowl. Based Syst.
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
Del Jesus, M.J.4
Herrera, F.5
-
38
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost, and T. Fawcett Robust classification for imprecise environments Mach. Learn. 42 2001 203 231 10.1023/A:1007601015854
-
(2001)
Mach. Learn.
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
40
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recogn. 44 8 2011 1761 1776 10.1016/j.patcog.2011.01.017
-
(2011)
Pattern Recogn.
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
41
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches
-
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera A review on ensembles for the class imbalance problem: Bagging, boosting, and hybrid-based approaches IEEE Trans. Syst. Man Cybern., Part C: Appl. Rev. 42 4 2012 463 484 10.1109/TSMCC.2011.2161285
-
(2012)
IEEE Trans. Syst. Man Cybern., Part C: Appl. Rev.
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
42
-
-
84881072864
-
EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
M. Galar, A. Fernández, E. Barrenechea, and F. Herrera EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recogn. 46 12 2013 3460 3471 10.1016/j.patcog.2013.05.006
-
(2013)
Pattern Recogn.
, vol.46
, Issue.12
, pp. 3460-3471
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Herrera, F.4
-
44
-
-
84902509247
-
Concurrence among imbalanced labels and its influence on multilabel resampling algorithms
-
LNCS
-
F. Charte, A. Rivera, M.J. Jesus, F. Herrera, Concurrence among imbalanced labels and its influence on multilabel resampling algorithms, in: Proc. 9th Int. Conf. Hybrid Artificial Intelligent Systems, Salamanca, Spain, HAIS'14, vol. 8480, LNCS, 2014.
-
(2014)
Proc. 9th Int. Conf. Hybrid Artificial Intelligent Systems, Salamanca, Spain, HAIS'14
, vol.8480
-
-
Charte, F.1
Rivera, A.2
Jesus, M.J.3
Herrera, F.4
-
45
-
-
69249202332
-
Mimlrbf: {RBF} neural networks for multi-instance multi-label learning
-
M.-L. Zhang, and Z.-J. Wang Mimlrbf: {RBF} neural networks for multi-instance multi-label learning Neurocomputing 72 16-18 2009 3951 3956 10.1016/j.neucom.2009.07.008
-
(2009)
Neurocomputing
, vol.72
, Issue.16-18
, pp. 3951-3956
-
-
Zhang, M.-L.1
Wang, Z.-J.2
-
46
-
-
38349079707
-
Efficient classification of multi-label and imbalanced data using min-max modular classifiers
-
K. Chen, B.-L. Lu, J. Kwok, Efficient classification of multi-label and imbalanced data using min-max modular classifiers, in: Int. Joint Conf. Neural Networks, 2006, pp. 1770-1775. http://dx.doi.org/10.1109/IJCNN.2006.246893.
-
(2006)
Int. Joint Conf. Neural Networks
, pp. 1770-1775
-
-
Chen, K.1
Lu, B.-L.2
Kwok, J.3
-
47
-
-
0032594843
-
Task decomposition and module combination based on class relations: A modular neural network for pattern classification
-
B.-L. Lu, and M. Ito Task decomposition and module combination based on class relations: a modular neural network for pattern classification IEEE Trans. Neural Networks 10 5 1999 1244 1256 10.1109/72.788664
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1244-1256
-
-
Lu, B.-L.1
Ito, M.2
-
49
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
W. Cheng, and E. Hüllermeier Combining instance-based learning and logistic regression for multilabel classification Mach. Learn. 76 2-3 2009 211 225 10.1007/s10994-009-5127-5
-
(2009)
Mach. Learn.
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hüllermeier, E.2
-
50
-
-
0022909661
-
Toward memory-based reasoning
-
C. Stanfill, and D. Waltz Toward memory-based reasoning Commun. ACM 29 12 1986 1213 1228 10.1145/7902.7906
-
(1986)
Commun. ACM
, vol.29
, Issue.12
, pp. 1213-1228
-
-
Stanfill, C.1
Waltz, D.2
-
51
-
-
84907817318
-
LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
-
F. Charte, A. Rivera, M. del Jesus, and F. Herrera LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification IEEE Trans. Neural Networks Learn. Syst. 25 10 2014 1842 1854 10.1109/TNNLS.2013.2296501
-
(2014)
IEEE Trans. Neural Networks Learn. Syst.
, vol.25
, Issue.10
, pp. 1842-1854
-
-
Charte, F.1
Rivera, A.2
Del Jesus, M.3
Herrera, F.4
-
52
-
-
77956208484
-
Multilabel text classification for automated tag suggestion
-
I. Katakis, G. Tsoumakas, I. Vlahavas, Multilabel text classification for automated tag suggestion, in: Proc. ECML PKDD'08 Discovery Challenge, Antwerp, Belgium, 2008, pp. 75-83.
-
(2008)
Proc. ECML PKDD'08 Discovery Challenge, Antwerp, Belgium
, pp. 75-83
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
53
-
-
57049092565
-
Semantic annotation and retrieval of music and sound effects
-
D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet Semantic annotation and retrieval of music and sound effects IEEE Audio, Speech, Lang. Process. 16 2 2008 467 476 10.1109/TASL.2007.913750
-
(2008)
IEEE Audio, Speech, Lang. Process.
, vol.16
, Issue.2
, pp. 467-476
-
-
Turnbull, D.1
Barrington, L.2
Torres, D.3
Lanckriet, G.4
-
54
-
-
84937572644
-
Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
-
P. Duygulu, K. Barnard, J. de Freitas, D. Forsyth, Object recognition as machine translation: learning a lexicon for a fixed image vocabulary, in: Proc. 7th European Conf. on Computer Vision-Part IV, Copenhagen, Denmark, ECCV'02, 2002, pp. 97-112. http://dx.doi.org/10.1007/3-540-47979-1-7.
-
(2002)
Proc. 7th European Conf. on Computer Vision-Part IV, Copenhagen, Denmark, ECCV'02
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
De Freitas, J.3
Forsyth, D.4
-
55
-
-
0041876117
-
Matching words and pictures
-
K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D.M. Blei, and M.I. Jordan Matching words and pictures J. Mach. Learn. Res. 3 2003 1107 1135
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1107-1135
-
-
Barnard, K.1
Duygulu, P.2
Forsyth, D.3
De Freitas, N.4
Blei, D.M.5
Jordan, M.I.6
-
56
-
-
70249151061
-
Multi-label classification of emotions in music
-
AISC (Chapter 30)
-
A. Wieczorkowska, P. Synak, Z. Ras̈, Multi-label classification of emotions in music, in: Intelligent Information Processing and Web Mining, vol. 35, AISC, 2006, pp. 307-315 (Chapter 30). http://dx.doi.org/10.1007/3-540-33521-8-30.
-
(2006)
Intelligent Information Processing and Web Mining
, vol.35
, pp. 307-315
-
-
Wieczorkowska, A.1
-
57
-
-
22944464423
-
The Enron Corpus: A new dataset for email classification research
-
B. Klimt, Y. Yang, The Enron Corpus: A new dataset for email classification research, in: Proc. ECML'04, Pisa, Italy, 2004, pp. 217-226. http://dx.doi.org/10.1007/978-3-540-30115-8-22.
-
(2004)
Proc. ECML'04, Pisa, Italy
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
58
-
-
33646536577
-
Protein Classification with Multiple Algorithms
-
S. Diplaris, G. Tsoumakas, P. Mitkas, I. Vlahavas, Protein Classification with Multiple Algorithms, in: Proc. 10th Panhellenic Conference on Informatics, Volos, Greece, PCI'05, 2005, pp. 448-456. http://dx.doi.org/10.1007/11573036-42.
-
(2005)
Proc. 10th Panhellenic Conference on Informatics, Volos, Greece, PCI'05
, pp. 448-456
-
-
Diplaris, S.1
Tsoumakas, G.2
Mitkas, P.3
Vlahavas, I.4
-
59
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
Santa Barbara, CA, USA, MULTIMEDIA'06
-
C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, A.W.M. Smeulders, The challenge problem for automated detection of 101 semantic concepts in multimedia, in: Proc. 14th Annu. ACM Int. Conf. on Multimedia, Santa Barbara, CA, USA, MULTIMEDIA'06, 2006, pp. 421-430. http://dx.doi.org/10.1145/1180639.1180727.
-
(2006)
Proc. 14th Annu. ACM Int. Conf. on Multimedia
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
Van Gemert, J.C.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
60
-
-
46949103773
-
Automatic Code Assignment to Medical Text
-
Prague, Czech Republic, BioNLP'07
-
K. Crammer, M. Dredze, K. Ganchev, P.P. Talukdar, S. Carroll, Automatic Code Assignment to Medical Text, in: Proc. Workshop on Biological, Translational, and Clinical Language Processing, Prague, Czech Republic, BioNLP'07, 2007, pp. 129-136.
-
(2007)
Proc. Workshop on Biological, Translational, and Clinical Language Processing
, pp. 129-136
-
-
Crammer, K.1
Dredze, M.2
Ganchev, K.3
Talukdar, P.P.4
Carroll, S.5
-
62
-
-
33751524073
-
Discovering recurring anomalies in text reports regarding complex space systems
-
IEEE
-
A.N. Srivastava, and B. Zane-Ulman Discovering recurring anomalies in text reports regarding complex space systems Aerospace Conference 2005 IEEE 3853 3862 10.1109/AERO.2005.1559692
-
(2005)
Aerospace Conference
, pp. 3853-3862
-
-
Srivastava, A.N.1
Zane-Ulman, B.2
-
63
-
-
79951752250
-
Large scale multi-label classification via metalabeler
-
L. Tang, S. Rajan, V.K. Narayanan, Large scale multi-label classification via metalabeler, in: Proc. 18th Int. Conf. on World Wide Web, WWW '09, 2009, pp. 211-220. http://dx.doi.org/10.1145/1526709.1526738.
-
(2009)
Proc. 18th Int. Conf. on World Wide Web, WWW '09
, pp. 211-220
-
-
Tang, L.1
Rajan, S.2
Narayanan, V.K.3
-
65
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Y. Benjamini, and D. Yekutieli The control of the false discovery rate in multiple testing under dependency Ann. Stat. 2001 1165 1188
-
(2001)
Ann. Stat.
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
66
-
-
84879300072
-
Binary relevance efficacy for multilabel classification
-
O. Luaces, J. Díez, J. Barranquero, J.J. del Coz, and A. Bahamonde Binary relevance efficacy for multilabel classification Prog. Artif. Intell. 1 4 2012 303 313
-
(2012)
Prog. Artif. Intell.
, vol.1
, Issue.4
, pp. 303-313
-
-
Luaces, O.1
Díez, J.2
Barranquero, J.3
Del Coz, J.J.4
Bahamonde, A.5
|