메뉴 건너뛰기




Volumn 89, Issue , 2015, Pages 385-397

MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation

Author keywords

Imbalanced learning; Multilabel classification; Oversampling; Synthetic instance generation

Indexed keywords

ARTIFICIAL INTELLIGENCE; KNOWLEDGE BASED SYSTEMS; SOFTWARE ENGINEERING;

EID: 84944354565     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.07.019     Document Type: Article
Times cited : (216)

References (66)
  • 2
    • 77956163078 scopus 로고    scopus 로고
    • Mining multi-label data
    • O. Maimon, L. Rokach, Springer US, Boston, MA (Chapter 34)
    • G. Tsoumakas, I. Katakis, and I. Vlahavas Mining multi-label data O. Maimon, L. Rokach, Data Mining and Knowledge Discovery Handbook 2010 Springer US, Boston, MA 667 685 10.1007/978-0-387-09823-4-34 (Chapter 34)
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 667-685
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 3
    • 27144474945 scopus 로고    scopus 로고
    • A novel field learning algorithm for dual imbalance text classification
    • LNCS
    • L. Zhuang, H. Dai, and X. Hang A novel field learning algorithm for dual imbalance text classification Fuzzy Systems and Knowledge Discovery LNCS vol. 3614 2005 39 48
    • (2005) Fuzzy Systems and Knowledge Discovery , vol.3614 , pp. 39-48
    • Zhuang, L.1    Dai, H.2    Hang, X.3
  • 5
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. Newsl. 6 1 2004 1 6 10.1145/1007730.1007733
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 6
    • 84862027781 scopus 로고    scopus 로고
    • Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
    • J. He, H. Gu, and W. Liu Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites PloS one 7 6 2012 7155 10.1371/journal.pone.0037155
    • (2012) PloS One , vol.7 , Issue.6 , pp. 7155
    • He, J.1    Gu, H.2    Liu, W.3
  • 7
    • 84878774850 scopus 로고    scopus 로고
    • Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples
    • C. Li, and G. Shi Improvement of learning algorithm for the multi-instance multi-label RBF neural networks trained with imbalanced samples J. Inf. Sci. Eng. 29 4 2013 765 776
    • (2013) J. Inf. Sci. Eng. , vol.29 , Issue.4 , pp. 765-776
    • Li, C.1    Shi, G.2
  • 8
    • 56349115038 scopus 로고    scopus 로고
    • Multi-label imbalanced data enrichment process in neural net classifier training
    • G. Tepvorachai, C. Papachristou, Multi-label imbalanced data enrichment process in neural net classifier training, in: IEEE Int. Joint Conf. on Neural Networks, 2008. IJCNN, 2008, pp. 1301-1307. http://dx.doi.org/10.1109/IJCNN.2008.4633966.
    • (2008) IEEE Int. Joint Conf. on Neural Networks, 2008. IJCNN , pp. 1301-1307
    • Tepvorachai, G.1    Papachristou, C.2
  • 9
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • M.A. Tahir, J. Kittler, and A. Bouridane Multilabel classification using heterogeneous ensemble of multi-label classifiers Pattern Recogn. Lett. 33 5 2012 513 523 10.1016/j.patrec.2011.10.019
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 10
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • M.A. Tahir, J. Kittler, and F. Yan Inverse random under sampling for class imbalance problem and its application to multi-label classification Pattern Recogn. 45 10 2012 3738 3750 10.1016/j.patcog.2012.03.014
    • (2012) Pattern Recogn. , vol.45 , Issue.10 , pp. 3738-3750
    • Tahir, M.A.1    Kittler, J.2    Yan, F.3
  • 11
    • 77957042586 scopus 로고    scopus 로고
    • Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
    • LNCS Springer
    • S. Dendamrongvit, and M. Kubat Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains New Frontiers in Applied Data Mining LNCS bol. 5669 2010 Springer 40 52 10.1007/978-3-642-14640-4-4
    • (2010) New Frontiers in Applied Data Mining , vol.5669 BOL. , pp. 40-52
    • Dendamrongvit, S.1    Kubat, M.2
  • 12
    • 84930273620 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • F. Charte, A.J. Rivera, M.J. del Jesus, and F. Herrera Addressing imbalance in multilabel classification: measures and random resampling algorithms Neurocomputing 163 9 2015 3 16 10.1016/j.neucom.2014.08.091
    • (2015) Neurocomputing , vol.163 , Issue.9 , pp. 3-16
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 14
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • V. García, J. Sánchez, and R. Mollineda On the effectiveness of preprocessing methods when dealing with different levels of class imbalance Knowl. Based Syst. 25 1 2012 13 21 10.1016/j.knosys.2011.06.013
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.2    Mollineda, R.3
  • 16
    • 84884913245 scopus 로고    scopus 로고
    • A first approach to deal with imbalance in multi-label datasets
    • Salamanca, Spain, HAIS'13, LNCS
    • F. Charte, A. Rivera, M.J. Jesus, F. Herrera, A first approach to deal with imbalance in multi-label datasets, in: Proc. 8th Int. Conf. Hybrid Artificial Intelligent Systems, Salamanca, Spain, HAIS'13, LNCS, 2013, vol. 8073, pp. 150-160. http://dx.doi.org/10.1007/978-3-642-40846-5-16.
    • (2013) Proc. 8th Int. Conf. Hybrid Artificial Intelligent Systems , vol.8073 , pp. 150-160
    • Charte, F.1    Rivera, A.2    Jesus, M.J.3    Herrera, F.4
  • 17
    • 67949108237 scopus 로고    scopus 로고
    • A tutorial on multi-label classification techniques
    • Chapter 8
    • A. de Carvalho, A. Freitas, A tutorial on multi-label classification techniques, in: Found. Computational Intell, vol. 5, 2009, pp. 177-195 (Chapter 8). http://dx.doi.org/10.1007/978-3-642-01536-6-8.
    • (2009) Found. Computational Intell , vol.5 , pp. 177-195
    • De Carvalho, A.1    Freitas, A.2
  • 18
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in: Advances in Knowl. Discovery and Data Mining, vol. 3056, 2004, pp. 22-30. http://dx.doi.org/10.1007/978-3-540-24775-3-5.
    • (2004) Advances in Knowl. Discovery and Data Mining , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 19
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recogn. 37 9 2004 1757 1771 10.1016/j.patcog.2004.03.009
    • (2004) Pattern Recogn. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 21
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M. Zhang, and Z. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recogn. 40 7 2007 2038 2048 10.1016/j.patcog.2006.12.019
    • (2007) Pattern Recogn. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 22
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • M.-L. Zhang Multilabel neural networks with applications to functional genomics and text categorization IEEE Trans. Knowl. Data Eng. 18 10 2006 1338 1351 10.1109/TKDE.2006.162
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1
  • 23
    • 62649132781 scopus 로고    scopus 로고
    • ML-RBF: RBF neural networks for multi-label learning
    • M.-L. Zhang ML-RBF: RBF neural networks for multi-label learning Neural Process. Lett. 29 2009 61 74 10.1007/s11063-009-9095-3
    • (2009) Neural Process. Lett. , vol.29 , pp. 61-74
    • Zhang, M.-L.1
  • 28
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank Classifier chains for multi-label classification Mach. Learn. 85 2011 333 359 10.1007/s10994-011-5256-5
    • (2011) Mach. Learn. , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 30
    • 84886950324 scopus 로고    scopus 로고
    • Multilabel classification using error-correcting codes of hard or soft bits
    • C.-S. Ferng, and H.-T. Lin Multilabel classification using error-correcting codes of hard or soft bits IEEE Trans. Neural Netw. Learn. Syst 24 11 2013 1888 1900 10.1109/TNNLS.2013.2269615
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.11 , pp. 1888-1900
    • Ferng, C.-S.1    Lin, H.-T.2
  • 31
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • M. Zhang, and Z. Zhou A review on multi-label learning algorithms IEEE Trans. Knowl. Data Eng. 26 8 2014 1819 1837 10.1109/TKDE.2013.39
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.1    Zhou, Z.2
  • 32
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz, and S. Stephen The class imbalance problem: a systematic study Intell. Data Anal. 6 5 2002 429 449
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 33
    • 77951926080 scopus 로고    scopus 로고
    • Supervised neural network modeling: An empirical investigation into learning from imbalanced data with labeling errors
    • T. Khoshgoftaar, J. Van Hulse, and A. Napolitano Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors IEEE Trans. Neural Netw. Learn. Syst 21 5 2010 813 830 10.1109/TNN.2010.2042730
    • (2010) IEEE Trans. Neural Netw. Learn. Syst , vol.21 , Issue.5 , pp. 813-830
    • Khoshgoftaar, T.1    Van Hulse, J.2    Napolitano, A.3
  • 34
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. López, A. Fernández, S. García, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 2013 113 141 10.1016/j.ins.2013.07.007
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 36
    • 84875898112 scopus 로고    scopus 로고
    • Dynamic sampling approach to training neural networks for multiclass imbalance classification
    • M. Lin, K. Tang, and X. Yao Dynamic sampling approach to training neural networks for multiclass imbalance classification IEEE Trans. Neural Netw. Learn. Syst 24 4 2013 647 660 10.1109/TNNLS.2012.2228231
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.4 , pp. 647-660
    • Lin, M.1    Tang, K.2    Yao, X.3
  • 37
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • A. Fernández, V. López, M. Galar, M.J. del Jesus, and F. Herrera Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches Knowl. Based Syst. 42 2013 97 110 10.1016/j.knosys.2013.01.018
    • (2013) Knowl. Based Syst. , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 38
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost, and T. Fawcett Robust classification for imprecise environments Mach. Learn. 42 2001 203 231 10.1023/A:1007601015854
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 40
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recogn. 44 8 2011 1761 1776 10.1016/j.patcog.2011.01.017
    • (2011) Pattern Recogn. , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 42
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, and F. Herrera EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recogn. 46 12 2013 3460 3471 10.1016/j.patcog.2013.05.006
    • (2013) Pattern Recogn. , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 45
    • 69249202332 scopus 로고    scopus 로고
    • Mimlrbf: {RBF} neural networks for multi-instance multi-label learning
    • M.-L. Zhang, and Z.-J. Wang Mimlrbf: {RBF} neural networks for multi-instance multi-label learning Neurocomputing 72 16-18 2009 3951 3956 10.1016/j.neucom.2009.07.008
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3951-3956
    • Zhang, M.-L.1    Wang, Z.-J.2
  • 46
    • 38349079707 scopus 로고    scopus 로고
    • Efficient classification of multi-label and imbalanced data using min-max modular classifiers
    • K. Chen, B.-L. Lu, J. Kwok, Efficient classification of multi-label and imbalanced data using min-max modular classifiers, in: Int. Joint Conf. Neural Networks, 2006, pp. 1770-1775. http://dx.doi.org/10.1109/IJCNN.2006.246893.
    • (2006) Int. Joint Conf. Neural Networks , pp. 1770-1775
    • Chen, K.1    Lu, B.-L.2    Kwok, J.3
  • 47
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • B.-L. Lu, and M. Ito Task decomposition and module combination based on class relations: a modular neural network for pattern classification IEEE Trans. Neural Networks 10 5 1999 1244 1256 10.1109/72.788664
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.-L.1    Ito, M.2
  • 49
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng, and E. Hüllermeier Combining instance-based learning and logistic regression for multilabel classification Mach. Learn. 76 2-3 2009 211 225 10.1007/s10994-009-5127-5
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 50
    • 0022909661 scopus 로고
    • Toward memory-based reasoning
    • C. Stanfill, and D. Waltz Toward memory-based reasoning Commun. ACM 29 12 1986 1213 1228 10.1145/7902.7906
    • (1986) Commun. ACM , vol.29 , Issue.12 , pp. 1213-1228
    • Stanfill, C.1    Waltz, D.2
  • 51
    • 84907817318 scopus 로고    scopus 로고
    • LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
    • F. Charte, A. Rivera, M. del Jesus, and F. Herrera LI-MLC: a label inference methodology for addressing high dimensionality in the label space for multilabel classification IEEE Trans. Neural Networks Learn. Syst. 25 10 2014 1842 1854 10.1109/TNNLS.2013.2296501
    • (2014) IEEE Trans. Neural Networks Learn. Syst. , vol.25 , Issue.10 , pp. 1842-1854
    • Charte, F.1    Rivera, A.2    Del Jesus, M.3    Herrera, F.4
  • 56
    • 70249151061 scopus 로고    scopus 로고
    • Multi-label classification of emotions in music
    • AISC (Chapter 30)
    • A. Wieczorkowska, P. Synak, Z. Ras̈, Multi-label classification of emotions in music, in: Intelligent Information Processing and Web Mining, vol. 35, AISC, 2006, pp. 307-315 (Chapter 30). http://dx.doi.org/10.1007/3-540-33521-8-30.
    • (2006) Intelligent Information Processing and Web Mining , vol.35 , pp. 307-315
    • Wieczorkowska, A.1
  • 57
    • 22944464423 scopus 로고    scopus 로고
    • The Enron Corpus: A new dataset for email classification research
    • B. Klimt, Y. Yang, The Enron Corpus: A new dataset for email classification research, in: Proc. ECML'04, Pisa, Italy, 2004, pp. 217-226. http://dx.doi.org/10.1007/978-3-540-30115-8-22.
    • (2004) Proc. ECML'04, Pisa, Italy , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 59
    • 34547172608 scopus 로고    scopus 로고
    • The challenge problem for automated detection of 101 semantic concepts in multimedia
    • Santa Barbara, CA, USA, MULTIMEDIA'06
    • C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, A.W.M. Smeulders, The challenge problem for automated detection of 101 semantic concepts in multimedia, in: Proc. 14th Annu. ACM Int. Conf. on Multimedia, Santa Barbara, CA, USA, MULTIMEDIA'06, 2006, pp. 421-430. http://dx.doi.org/10.1145/1180639.1180727.
    • (2006) Proc. 14th Annu. ACM Int. Conf. on Multimedia , pp. 421-430
    • Snoek, C.G.M.1    Worring, M.2    Van Gemert, J.C.3    Geusebroek, J.M.4    Smeulders, A.W.M.5
  • 62
    • 33751524073 scopus 로고    scopus 로고
    • Discovering recurring anomalies in text reports regarding complex space systems
    • IEEE
    • A.N. Srivastava, and B. Zane-Ulman Discovering recurring anomalies in text reports regarding complex space systems Aerospace Conference 2005 IEEE 3853 3862 10.1109/AERO.2005.1559692
    • (2005) Aerospace Conference , pp. 3853-3862
    • Srivastava, A.N.1    Zane-Ulman, B.2
  • 65
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Y. Benjamini, and D. Yekutieli The control of the false discovery rate in multiple testing under dependency Ann. Stat. 2001 1165 1188
    • (2001) Ann. Stat. , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.