-
1
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista GEAPA, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor 6(1):20–29
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
2
-
-
84885862739
-
Confidence limits for a ratio using Wilcoxon’s signed rank test
-
Bennett BM (1965) Confidence limits for a ratio using Wilcoxon’s signed rank test. Biometics 21(1):231–234
-
(1965)
Biometics
, vol.21
, Issue.1
, pp. 231-234
-
-
Bennett, B.M.1
-
3
-
-
84877652134
-
Significance tests or confidence intervals: which are preferable for the comparison of classifiers?
-
Berrar D, Lozano JA (2013) Significance tests or confidence intervals: which are preferable for the comparison of classifiers?. J Exp Theor Artif Intell 25(2):189–206. http://www.ingentaconnect.com/content/tandf/teta/2013/00000025/00000002/art00003
-
(2013)
J Exp Theor Artif Intell
, vol.25
, Issue.2
, pp. 189-206
-
-
Berrar, D.1
Lozano, J.A.2
-
7
-
-
44649133282
-
Analyzing pets on imbalanced datasets when training and testing class distributions differ. In: Pacific-Asia conference on advances in knowledge discovery and data mining
-
Cieslak D, Chawla N (2008) Analyzing pets on imbalanced datasets when training and testing class distributions differ. In: Pacific-Asia conference on advances in knowledge discovery and data mining, pp 519–526
-
(2008)
pp 519–526
-
-
Cieslak, D.1
Chawla, N.2
-
8
-
-
85015191605
-
Rule induction with CN2: some recent improvements. In: European working session on machine learning
-
Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: European working session on machine learning, pp 151–163
-
(1991)
pp 151–163
-
-
Clark, P.1
Boswell, R.2
-
9
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
Cohen G, Hilario M, Sax H, Hugonnet S, Geissbhler A (2006) Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 37(1):7–18
-
(2006)
Artif Intell Med
, vol.37
, Issue.1
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbhler, A.5
-
12
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
-
(2006)
Pattern Recognit Lett
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
13
-
-
67349093551
-
Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
-
Foody GM (2009) Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ 113(8):1658–1663. http://www.sciencedirect.com/science/article/pii/S0034425709000923
-
(2009)
Remote Sens Environ
, vol.113
, Issue.8
, pp. 1658-1663
-
-
Foody, G.M.1
-
14
-
-
84942281752
-
-
Frank A, Asuncion A (2010) UCI machine learning repository.
-
Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
-
-
-
-
15
-
-
84942281753
-
Confidence intervals for the ratio of locations and for the ratio of scales of two paired samples
-
Technical report, The Comprehensive R Archive Network
-
Froemke C, Hothorn L, Schneider M (2012) Confidence intervals for the ratio of locations and for the ratio of scales of two paired samples. Technical report, The Comprehensive R Archive Network. http://cran.r-project.org/web/packages/pairedCI/index.html
-
(2012)
-
-
Froemke, C.1
Hothorn, L.2
Schneider, M.3
-
16
-
-
84862515469
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
-
Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C 42(4):463–484
-
(2012)
IEEE Trans Syst Man Cybern Part C
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
17
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: the databoost-im approach
-
Guo H, Viktor HL (2004) Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explor 6(1):30–39
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
18
-
-
27144501672
-
Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on advances in intelligent computing. Lecture notes in computer science. Springer, Berlin, pp 878–887
-
Han H, Wang W-Y, Mao B-H (2005) Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on advances in intelligent computing. Lecture notes in computer science. Springer, Berlin, pp 878–887. doi:10.1007/11538059_91
-
(2005)
doi:10.1007/11538059_91
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
19
-
-
56349089205
-
Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks
-
He H, Bai Y, Garcia E, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks, pp 1322–1328
-
(2008)
pp 1322–1328
-
-
He, H.1
Bai, Y.2
Garcia, E.3
Li, S.4
-
20
-
-
68549133155
-
Learning from imbalanced data
-
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
-
(2009)
IEEE Trans Knowl Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
21
-
-
33845536164
-
The class imbalance problem: a systematic study
-
Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449
-
(2002)
Intell Data Anal
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
22
-
-
47349098911
-
Learning with limited minority class data. In: International conference on machine learning and applications
-
Khoshgoftaar TM, Seiffert C, Hulse JV, Napolitano A, Folleco A (2007) Learning with limited minority class data. In: International conference on machine learning and applications, pp 348–353
-
(2007)
pp 348–353
-
-
Khoshgoftaar, T.M.1
Seiffert, C.2
Hulse, J.V.3
Napolitano, A.4
Folleco, A.5
-
23
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite radar images. Mach Learn 30(2–3):195–215
-
(1998)
Mach Learn
, vol.30
, Issue.2-3
, pp. 195-215
-
-
Kubat, M.1
Holte, R.C.2
Matwin, S.3
-
24
-
-
84878083672
-
Exploratory under-sampling for class-imbalance learning. In: IEEE international conference on data mining
-
Liu X-Y, Wu J, Zhou Z-H (2006) Exploratory under-sampling for class-imbalance learning. In: IEEE international conference on data mining, pp 965–969
-
(2006)
pp 965–969
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
25
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: an empirical study. In: ‘ICDM’, IEEE Computer Society
-
Liu X-Y, Zhou Z-H (2006) The influence of class imbalance on cost-sensitive learning: an empirical study. In: ‘ICDM’, IEEE Computer Society, pp 970–974
-
(2006)
pp 970–974
-
-
Liu, X.-Y.1
Zhou, Z.-H.2
-
27
-
-
29144443664
-
Minority report in fraud detection: classification of skewed data
-
Phua C, Alahakoon D, Lee V (2004) Minority report in fraud detection: classification of skewed data. SIGKDD Explor 6(1):50–59
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 50-59
-
-
Phua, C.1
Alahakoon, D.2
Lee, V.3
-
28
-
-
80053222008
-
A survey on graphical methods for classification predictive performance evaluation
-
Prati RC, Batista GEAPA, Monard MC (2011) A survey on graphical methods for classification predictive performance evaluation. IEEE Trans Knowl Data Eng 23(11):1601–1618
-
(2011)
IEEE Trans Knowl Data Eng
, vol.23
, Issue.11
, pp. 1601-1618
-
-
Prati, R.C.1
Batista, G.E.A.P.A.2
Monard, M.C.3
-
29
-
-
84942281760
-
-
Silva DF, Paper website
-
Prati RC, Batista GEAPA, Silva DF (2013) Paper website. http://sites.labic.icmc.usp.br/ClassImbalanceRevisited/
-
(2013)
Batista GEAPA
-
-
Prati, R.C.1
-
30
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Shavlik JW, (ed), Morgan Kaufmann, Los Altos, CA
-
Provost FJ, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction algorithms. In: Shavlik JW (ed) International conference on machine learning. Morgan Kaufmann, Los Altos, CA, pp 445–453
-
(1998)
International conference on machine learning
, pp. 445-453
-
-
Provost, F.J.1
Fawcett, T.2
Kohavi, R.3
-
31
-
-
0003500248
-
C4.5: programs for machine learning
-
Morgan Kaufmann Publishers Inc, Los Altos, CA
-
Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc, Los Altos, CA
-
(1993)
-
-
Quinlan, J.R.1
-
32
-
-
84857180411
-
Class imbalance, redux. In: IEEE international conference on data mining
-
Wallace B, Small K, Brodley C, Trikalinos T (2011) Class imbalance, redux. In: IEEE international conference on data mining, pp 754–763
-
(2011)
pp 754–763
-
-
Wallace, B.1
Small, K.2
Brodley, C.3
Trikalinos, T.4
-
33
-
-
84884493455
-
Cost-sensitive boosting algorithms for imbalanced multi-instance datasets
-
Springer, Berlin
-
Wang X, Matwin S, Japkowicz N, Liu X (2013) Cost-sensitive boosting algorithms for imbalanced multi-instance datasets. In: Zaïane OR, Zilles S (eds) Canadian conference on artificial intelligence, vol 7884 of lecture notes in computer science. Springer, Berlin, pp 174–186
-
(2013)
of lecture notes in computer science
, vol.7884
, pp. 174-186
-
-
Wang, X.1
Matwin, S.2
Japkowicz, N.3
Liu, X.4
Zaïane, O.R.5
Zilles, S.6
-
34
-
-
20844458491
-
Mining with rarity: a unifying framework
-
Weiss GM (2004) Mining with rarity: a unifying framework. SIGKDD Explor 6(1):7–19
-
(2004)
SIGKDD Explor
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
35
-
-
84942281762
-
-
Weiss GM, McCarthy K, Zabar B (2007) Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs? In: IEEE international conference on data mining, pp 35–41
-
Weiss GM, McCarthy K, Zabar B (2007) Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs? In: IEEE international conference on data mining, pp 35–41
-
-
-
-
36
-
-
1442275185
-
Learning when training data are costly: the effect of class distribution on tree induction
-
Weiss GM, Provost F (2003) Learning when training data are costly: the effect of class distribution on tree induction. J Artif Intell Res 19:315–354
-
(2003)
J Artif Intell Res
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
|