메뉴 건너뛰기




Volumn 46, Issue 3, 2013, Pages 885-898

Fast multi-label core vector machine

Author keywords

Core vector machine; Frank Wolfe method; Linear programming; Multi label classification; Quadratic programming; Support vector machine

Indexed keywords

BENCHMARK DATA; COMPUTATIONAL COSTS; EXPERIMENTAL STUDIES; FRANK-WOLFE METHOD; GRADIENT VECTORS; MULTI-LABEL; OBJECTIVE FUNCTION VALUES; PERFORMANCE MEASURE; RECURSIVE FORMULAE; STEP SIZE; SUPPORT VECTOR; TRAINING PHASE; VECTOR MACHINES;

EID: 84870243552     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.09.003     Document Type: Article
Times cited : (56)

References (49)
  • 5
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R.E. Schapire, and Y. Singer Boostexter: a boosting-based system for text categorization Machine Learning 39 2/3 2000 135 168
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 6
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with application to function genomics and text categorization
    • M.L. Zhang, and Z.H. Zhou Multilabel neural networks with application to function genomics and text categorization IEEE Transactions on Knowledge and Data Engineering 18 10 2006 1338 1351
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 7
    • 78649318170 scopus 로고    scopus 로고
    • Multi-label classification and extracting predicted class hierarchies
    • F. Brucker, F. Benites, and E. Sapozhnikova Multi-label classification and extracting predicted class hierarchies Pattern Recognition 44 3 2011 724 738
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 724-738
    • Brucker, F.1    Benites, F.2    Sapozhnikova, E.3
  • 9
    • 33947681316 scopus 로고    scopus 로고
    • ML-kNN: A lazy learning approach to multi-label learning
    • M.L. Zhang, and Z.H. Zhou ML-kNN: a lazy learning approach to multi-label learning Pattern Recognition 40 5 2007 2038 2048
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 11
    • 79958844204 scopus 로고    scopus 로고
    • A transductive multi-label learning approach for video concept detection
    • J.D. Wang, Y.H. Zhao, X.Q. Wu, and X.S. Hua A transductive multi-label learning approach for video concept detection Pattern Recognition 44 10/11 2011 2274 2286
    • (2011) Pattern Recognition , vol.44 , Issue.10-11 , pp. 2274-2286
    • Wang, J.D.1    Zhao, Y.H.2    Wu, X.Q.3    Hua, X.S.4
  • 13
    • 78650746655 scopus 로고    scopus 로고
    • Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular location of proteins in various organisms
    • K.C. Chou, and H.B. Shen Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular location of proteins in various organisms Natural Science 2 10 2010 1090 1103
    • (2010) Natural Science , vol.2 , Issue.10 , pp. 1090-1103
    • Chou, K.C.1    Shen, H.B.2
  • 17
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multi-label classification
    • W. Cheng, and E. Hullermeier Combining instance-based learning and logistic regression for multi-label classification Machine Learning 76 2/3 2009 211 225
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hullermeier, E.2
  • 20
    • 0022717379 scopus 로고
    • Some comments on Wolfe's away step
    • J. Guelat, and P. Marcotte Some comments on Wolfe's away step Mathematical Programming 35 1 1986 110 119
    • (1986) Mathematical Programming , vol.35 , Issue.1 , pp. 110-119
    • Guelat, J.1    Marcotte, P.2
  • 26
    • 80052965571 scopus 로고    scopus 로고
    • Multi-label classification with a probabilistic thresholding strategy
    • J. Ramon, O. Luaces, and A. Bahamonde Multi-label classification with a probabilistic thresholding strategy Pattern Recognition 45 2 2012 876 883
    • (2012) Pattern Recognition , vol.45 , Issue.2 , pp. 876-883
    • Ramon, J.1    Luaces, O.2    Bahamonde, A.3
  • 29
    • 80055018047 scopus 로고    scopus 로고
    • Two Stage architecture for multi-label learning
    • G. Madjarov, D. Gjorgjevikj, and S. Dzeroski Two Stage architecture for multi-label learning Pattern Recognition 45 3 2012 1019 1034
    • (2012) Pattern Recognition , vol.45 , Issue.3 , pp. 1019-1034
    • Madjarov, G.1    Gjorgjevikj, D.2    Dzeroski, S.3
  • 33
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naïve Bayes classification
    • M.L. Zhang, J.M. Pena, and V. Robles Feature selection for multi-label naïve Bayes classification Information Science 179 19 2009 3218 3229
    • (2009) Information Science , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.L.1    Pena, J.M.2    Robles, V.3
  • 34
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chain for multi-label classification
    • J. Reed, B. Pfahringer, and G. Holmes Classifier chain for multi-label classification Machine Learning 85 3 2011 333 359
    • (2011) Machine Learning , vol.85 , Issue.3 , pp. 333-359
    • Reed, J.1    Pfahringer, B.2    Holmes, G.3
  • 35
    • 80052932219 scopus 로고    scopus 로고
    • An extended one-versus-rest support vector machine for multi-label classification
    • J.H. Xu An extended one-versus-rest support vector machine for multi-label classification Neurocomputing 74 17 2011 3114 3124
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3114-3124
    • Xu, J.H.1
  • 36
    • 62649132781 scopus 로고    scopus 로고
    • ML-RBF: RBF neural networks for multi-label learning
    • M.L. Zhang ML-RBF: RBF neural networks for multi-label learning Neural Processing Letters 29 2 2009 61 74
    • (2009) Neural Processing Letters , vol.29 , Issue.2 , pp. 61-74
    • Zhang, M.L.1
  • 37
    • 45149090105 scopus 로고    scopus 로고
    • Parallel and sequential support vector machines for multi-label classification
    • L. Wang, M. Chang, and J. Feng Parallel and sequential support vector machines for multi-label classification International Journal of Information Technology 11 9 2005 11 18
    • (2005) International Journal of Information Technology , vol.11 , Issue.9 , pp. 11-18
    • Wang, L.1    Chang, M.2    Feng, J.3
  • 40
    • 0000667930 scopus 로고    scopus 로고
    • Training nu-support vector classifiers: Theory and algorithm
    • C.C. Chang, and C.J. Lin Training nu-support vector classifiers: theory and algorithm Neural Computation 13 9 2001 2119 2147
    • (2001) Neural Computation , vol.13 , Issue.9 , pp. 2119-2147
    • Chang, C.C.1    Lin, C.J.2
  • 41
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.E. Fan, P.H. Chen, and C.J. Lin Working set selection using second order information for training support vector machines Journal of Machine Learning Research 6 2005 1889 1918
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 44
    • 84870999024 scopus 로고    scopus 로고
    • S. Stiena, LPSOL5.5, 2006 〈http://www.cs.sunysb.edu/algorithm/ implement/lpsolve/implement.shtml〉.
    • (2006) LPSOL5.5
    • Stiena, S.1
  • 46
    • 84870993543 scopus 로고    scopus 로고
    • Slashdot data set
    • J. Read, Slashdot data set, 2011 〈http://meka.sourceforge.net/ #datasets〉.
    • (2011)
    • Read, J.1
  • 48
    • 84871025772 scopus 로고    scopus 로고
    • P.F. Du, PseAAC-Builder, 2011 〈http://www.sourceforge.net/projects/ pseb/files〉.
    • (2011) PseAAC-Builder
    • Du, P.F.1
  • 49
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • J. Demsar Statistical comparison of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.