메뉴 건너뛰기




Volumn 8258 LNCS, Issue PART 1, 2013, Pages 334-342

Managing imbalanced data sets in multi-label problems: A case study with the SMOTE algorithm

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION PERFORMANCE; IMBALANCED DATA SETS; MACHINE LEARNING COMMUNITIES; MULTI-LABEL LEARNING; MULTI-LABEL PROBLEMS; NUMBER OF SAMPLES; OVERSAMPLING TECHNIQUE; REAL-WORLD PROBLEM;

EID: 84893190862     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-41822-8_42     Document Type: Conference Paper
Times cited : (25)

References (15)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757-1771 (2004)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 2
    • 2542631648 scopus 로고    scopus 로고
    • Kernel methods for multi-labelled classification and categorical regression problems
    • Elisseeff, A.: Kernel methods for multi-labelled classification and categorical regression problems. In: Advances in Neural Information Processing (2002)
    • (2002) Advances in Neural Information Processing
    • Elisseeff, A.1
  • 4
    • 78650823962 scopus 로고    scopus 로고
    • Predictability of protein subcellular locations by pattern recognition techniques
    • Jaramillo-Garzón, J.A., et al.: Predictability of protein subcellular locations by pattern recognition techniques. In: EMBC-IEEE (2010)
    • (2010) EMBC-IEEE
    • Jaramillo-Garzón, J.A.1
  • 5
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038-2048 (2007)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 6
    • 85167466122 scopus 로고    scopus 로고
    • Multi-Label Learning by Exploiting Label Correlations Locally
    • Huang, S.J., Zhou, Z.H.: Multi-Label Learning by Exploiting Label Correlations Locally. In: IAAA (2012)
    • (2012) IAAA
    • Huang, S.J.1    Zhou, Z.H.2
  • 10
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • Tahir, M.A., Kittler, et al.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognition (2012)
    • (2012) Pattern Recognition
    • Tahir, M.A.1    Kittler2
  • 11
    • 77957042586 scopus 로고    scopus 로고
    • Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains
    • Theeramunkong, T., Nattee, C., Adeodato, P.J.L., Chawla, N., Christen, P., Lenca, P., Poon, J.,Williams, G. (eds.) PAKDDWorkshops 2009. Springer, Heidelberg
    • Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: Theeramunkong, T., Nattee, C., Adeodato, P.J.L., Chawla, N., Christen, P., Lenca, P., Poon, J.,Williams, G. (eds.) PAKDDWorkshops 2009. LNCS, vol. 5669, pp. 40-52. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.5669 , pp. 40-52
    • Dendamrongvit, S.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.