메뉴 건너뛰기




Volumn 163, Issue , 2015, Pages 3-16

Addressing imbalance in multilabel classification: Measures and random resampling algorithms

Author keywords

Imbalanced classification; Multilabel classification; Oversampling; Resampling algorithms; Undersampling

Indexed keywords

COMPUTER APPLICATIONS; NEURAL NETWORKS;

EID: 84930273620     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.08.091     Document Type: Article
Times cited : (254)

References (43)
  • 1
    • 77956163078 scopus 로고    scopus 로고
    • Mining multi-label data
    • Springer, Boston, MA, USA, (Chapter 34), L. Rokach, O. Maimon (Eds.)
    • Tsoumakas G., Katakis I., Vlahavas I. Mining multi-label data. Data Mining and Knowledge Discovery Handbook 2010, 667-685. Springer, Boston, MA, USA, (Chapter 34). 10.1007/978-0-387-09823-4_34. L. Rokach, O. Maimon (Eds.).
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 667-685
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 2
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang M.-L. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 2006, 18(10):1338-1351. 10.1109/TKDE.2006.162.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1
  • 4
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem. a systematic study
    • Japkowicz N., Stephen S. The class imbalance problem. a systematic study. Intell. Data Anal. 2002, 6(5):429-449.
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 5
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes. binarization techniques and ad-hoc approaches
    • Fernández A., López V., Galar M., del Jesus M.J., Herrera F. Analysing the classification of imbalanced data-sets with multiple classes. binarization techniques and ad-hoc approaches. Knowl. Based Syst. 2013, 42:97-110. 10.1016/j.knosys.2013.01.018.
    • (2013) Knowl. Based Syst. , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    del Jesus, M.J.4    Herrera, F.5
  • 6
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics
    • López V., Fernández A., García S., Palade V., Herrera F. An insight into classification with imbalanced data. empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250:113-141. 10.1016/j.ins.2013.07.007.
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 7
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir M.A., Kittler J., Bouridane A. Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognit. Lett. 2012, 33(5):513-523. 10.1016/j.patrec.2011.10.019.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 8
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • Tahir M.A., Kittler J., Yan F. Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognit. 2012, 45(10):3738-3750. 10.1016/j.patcog.2012.03.014.
    • (2012) Pattern Recognit. , vol.45 , Issue.10 , pp. 3738-3750
    • Tahir, M.A.1    Kittler, J.2    Yan, F.3
  • 9
    • 84862027781 scopus 로고    scopus 로고
    • Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
    • He J., Gu H., Liu W. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS One 2012, 7(6):7155. 10.1371/journal.pone.0037155.
    • (2012) PloS One , vol.7 , Issue.6 , pp. 7155
    • He, J.1    Gu, H.2    Liu, W.3
  • 11
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in: Advances in Knowledge Discovery and Data Mining, vol. 3056, 2004, pp. 22-30. doi:10.1007/978-3-540-24775-3_5.
    • (2004) Advances in Knowledge Discovery and Data Mining , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 12
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • Hüllermeier E., Fürnkranz J., Cheng W., Brinker K. Label ranking by learning pairwise preferences. Artif. Intell. 2008, 172(16):1897-1916. 10.1016/j.artint.2008.08.002.
    • (2008) Artif. Intell. , vol.172 , Issue.16 , pp. 1897-1916
    • Hüllermeier, E.1    Fürnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 13
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell M., Luo J., Shen X., Brown C. Learning multi-label scene classification. Pattern Recognit. 2004, 37(9):1757-1771. 10.1016/j.patcog.2004.03.009.
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 15
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN. a lazy learning approach to multi-label learning
    • Zhang M., Zhou Z. ML-KNN. a lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40(7):2038-2048. 10.1016/j.patcog.2006.12.019.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 16
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf. RBF neural networks for multi-label learning
    • Zhang M.-L. Ml-rbf. RBF neural networks for multi-label learning. Neural Process. Lett. 2009, 29:61-74. 10.1007/s11063-009-9095-3.
    • (2009) Neural Process. Lett. , vol.29 , pp. 61-74
    • Zhang, M.-L.1
  • 17
    • 2542631648 scopus 로고    scopus 로고
    • Akernel method for multi-labelled classification
    • MIT Press, Cambridge, MA, USA
    • A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in: Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, USA, 2001, pp. 681-687.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 18
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang M.L., Zhou Z.H. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 2014, 8:1819-1837. 10.1109/TKDE.2013.39.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.8 , pp. 1819-1837
    • Zhang, M.L.1    Zhou, Z.H.2
  • 19
    • 27144549260 scopus 로고    scopus 로고
    • Editorial. special issue on learning from imbalanced data sets
    • Chawla N.V., Japkowicz N., Kotcz A. Editorial. special issue on learning from imbalanced data sets. SIGKDD Explor. Newslett. 2004, 6(1):1-6. 10.1145/1007730.1007733.
    • (2004) SIGKDD Explor. Newslett. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 20
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • Krawczyk B., Woźniak M., Schaefer G. Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 2014, 14:554-562. 10.1016/j.asoc.2013.08.014.
    • (2014) Appl. Soft Comput. , vol.14 , pp. 554-562
    • Krawczyk, B.1    Woźniak, M.2    Schaefer, G.3
  • 24
  • 27
    • 84937572644 scopus 로고    scopus 로고
    • Object recognition as machine translation: learning a Lexicon for a fixed image vocabulary
    • in: Proceedings of the Seventh European Conference on Computer Vision-Part IV, Copenhagen, Denmark, ECCV'02
    • P. Duygulu, K. Barnard, J. de Freitas, D. Forsyth, Object recognition as machine translation: learning a Lexicon for a fixed image vocabulary, in: Proceedings of the Seventh European Conference on Computer Vision-Part IV, Copenhagen, Denmark, ECCV'02, 2002, pp. 97-112. doi:10.1007/3-540-47979-1_7.
    • (2002) , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    de Freitas, J.3    Forsyth, D.4
  • 29
    • 22944464423 scopus 로고    scopus 로고
    • The Enron Corpus: a new dataset for email classification research
    • Pisa, Italy
    • B. Klimt, Y. Yang, The Enron Corpus: a new dataset for email classification research, in: Proceedings of ECML'04, Pisa, Italy, 2004, pp. 217-226. doi:10.1007/978-3-540-30115-8_22.
    • (2004) Proceedings of ECML'04 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 30
    • 84930274390 scopus 로고    scopus 로고
    • MEKA Multi-Label Dataset Repository
    • J. Read, P. Reutemann, MEKA Multi-Label Dataset Repository. URL . http://meka.sourceforge.net/#datasets.
    • Read, J.1    Reutemann, P.2
  • 31
    • 34547172608 scopus 로고    scopus 로고
    • The challenge problem for automated detection of 101 semantic concepts in multimedia
    • in: Proceeding of the 14th Annual ACM International Conference on Multimedia, Santa Barbara, CA, USA, MULTIMEDIA'06
    • C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, A.W.M. Smeulders, The challenge problem for automated detection of 101 semantic concepts in multimedia, in: Proceeding of the 14th Annual ACM International Conference on Multimedia, Santa Barbara, CA, USA, MULTIMEDIA'06, 2006, pp. 421-430. doi:10.1145/1180639.1180727.
    • (2006) , pp. 421-430
    • Snoek, C.G.M.1    Worring, M.2    van Gemert, J.C.3    Geusebroek, J.M.4    Smeulders, A.W.M.5
  • 32
    • 33751524073 scopus 로고    scopus 로고
    • Discovering recurring anomalies in text reports regarding complex space systems
    • IEEE, Big Sky, MT, USA
    • A.N. Srivastava, B. Zane-Ulman, Discovering recurring anomalies in text reports regarding complex space systems, in: Aerospace Conference, IEEE, Big Sky, MT, USA, 2005, pp. 3853-3862. doi:10.1109/AERO.2005.1559692.
    • (2005) Aerospace Conference , pp. 3853-3862
    • Srivastava, A.N.1    Zane-Ulman, B.2
  • 34
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: an ensemble method for multilabel classification
    • Warsaw, Poland, ECML'07
    • G. Tsoumakas, I. Vlahavas, Random k-labelsets: an ensemble method for multilabel classification, in: Proceedings of the 18th European Conference on Machine Learning, Warsaw, Poland, ECML'07, vol. 4701, 2007, pp. 406-417. doi:10.1007/978-3-540-74958-5_38.
    • (2007) Proceedings of the 18th European Conference on Machine Learning , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 38
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng W., Hüllermeier E. Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 2009, 76(2-3):211-225. 10.1007/s10994-009-5127-5.
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 39
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov G., Kocev D., Gjorgjevikj D., Džeroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recognit. 2012, 45(9):3084-3104. 10.1016/j.patcog.2012.03.004.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 40
    • 79951752250 scopus 로고    scopus 로고
    • Large scale multi-label classification via metalabeler
    • in: Proceedings of the 18th International Conference on World Wide Web, WWW '09
    • L. Tang, S. Rajan, V.K. Narayanan, Large scale multi-label classification via metalabeler, in: Proceedings of the 18th International Conference on World Wide Web, WWW '09, 2009, pp. 211-220. doi:10.1145/1526709.1526738.
    • (2009) , pp. 211-220
    • Tang, L.1    Rajan, S.2    Narayanan, V.K.3
  • 41
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • 2677-2694
    • Garci{dotless}a S., Herrera F. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9(2677-2694):66.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 66
    • Garcidotless, S.1    Herrera, F.2
  • 42
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining. experimental analysis of power. Inf. Sci. 2010, 180(10):2044-2064. 10.1016/j.ins.2009.12.010.
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 43
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • García V., Sánchez J., Mollineda R. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 2012, 25(1):13-21. 10.1016/j.knosys.2011.06.013.
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.2    Mollineda, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.