메뉴 건너뛰기




Volumn 26, Issue 3, 2015, Pages 430-443

ML-TREE: A tree-structure-based approach to multilabel learning

Author keywords

Hierarchical tree model; multilabel classification; multilabel learning; tree based classification.

Indexed keywords

LEARNING ALGORITHMS;

EID: 85027921685     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2315296     Document Type: Article
Times cited : (33)

References (39)
  • 1
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. Schapire and Y. Singer, "BoosTexter: A boosting-based system for text categorization," Mach. Learn., vol. 39, no. 2, pp. 135-168, 2000.
    • (2000) Mach. Learn. , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 3
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for multi-topic text categorization
    • H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, "Maximal margin labeling for multi-topic text categorization," in Proc. Adv. NIPS, vol. 17. 2005, pp. 649-656.
    • (2005) Proc. Adv. NIPS , vol.17 , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 4
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito, "Parametric mixture models for multi-labeled text," in Proc. Adv. NIPS, vol. 15. 2003, pp. 721-728.
    • (2003) Proc. Adv. NIPS , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 5
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston, "A kernel method for multi-labelled classification," in Proc. Adv. NIPS, vol. 14. 2002, pp. 681-687.
    • (2002) Proc. Adv. NIPS , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 6
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Oct.
    • M. Zhang and Z. Zhou, "Multilabel neural networks with applications to functional genomics and text categorization," IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.1    Zhou, Z.2
  • 8
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning multi-label scene classification," Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, 2004.
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 9
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M. Zhang and Z. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 12
  • 17
    • 78149274348 scopus 로고    scopus 로고
    • Using information gain to build meaningful decision forests for multilabel classification
    • Jan.
    • K. Gold and A. Petrosino, "Using information gain to build meaningful decision forests for multilabel classification," in Proc. IEEE 9th Int. Conf. Develop. Learn., Jan. 2010, pp. 58-63.
    • (2010) Proc. IEEE 9th Int. Conf. Develop. Learn. , pp. 58-63
    • Gold, K.1    Petrosino, A.2
  • 18
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng and E. Hüllermeier, "Combining instance-based learning and logistic regression for multilabel classification," Mach. Learn., vol. 76, no. 2, pp. 211-225, 2009.
    • (2009) Mach. Learn. , vol.76 , Issue.2 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 20
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel, "Decision trees for hierarchical multi-label classification," Mach. Learn., vol. 73, no. 2, pp. 185-214, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2    Schietgat, L.3    Džeroski, S.4    Blockeel, H.5
  • 21
    • 38049132551 scopus 로고    scopus 로고
    • Ensembles of multi-objective decision trees
    • D. Kocev, C. Vens, J. Struyf, and S. Džeroski, "Ensembles of multi-objective decision trees," in Proc. ECML, 2007, pp. 624-631.
    • (2007) Proc. ECML , pp. 624-631
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Džeroski, S.4
  • 22
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large datasets
    • I. W. Tsang, J. T. Kwok, and P. M. Cheung, "Core vector machines: Fast SVM training on very large datasets," J. Mach. Learn. Res., vol. 6, no. 1, pp. 363-392, 2006.
    • (2006) J. Mach. Learn. Res. , vol.6 , Issue.1 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.M.3
  • 24
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier, "Label embedding trees for large multi-class tasks," Adv. Neural Inf. Process. Syst., vol. 23, no. 1, pp. 163-171, 2010.
    • (2010) Adv. Neural Inf. Process. Syst. , vol.23 , Issue.1 , pp. 163-171
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 26
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • Dec.
    • J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei, "Fast and balanced: Efficient label tree learning for large scale object recognition," Adv. Neural Inf. Process. Syst., vol. 2, pp. 567-575, Dec. 2011.
    • (2011) Adv. Neural Inf. Process. Syst. , vol.2 , pp. 567-575
    • Deng, J.1    Satheesh, S.2    Berg, A.3    Fei-Fei, L.4
  • 27
    • 84858821575 scopus 로고    scopus 로고
    • Hybrid decision tree architecture utilizing local SVMs for multi-label classification
    • G. Madjarov and D. Gjorgjevikj, "Hybrid decision tree architecture utilizing local SVMs for multi-label classification," in Proc. 7th Int. Conf. Hybrid Artif. Intell. Syst., 2012, pp. 1-12.
    • (2012) Proc. 7th Int. Conf. Hybrid Artif. Intell. Syst. , pp. 1-12
    • Madjarov, G.1    Gjorgjevikj, D.2
  • 31
    • 80053440655 scopus 로고    scopus 로고
    • Multi-label classification on tree- and DAG-structured hierarchies
    • W. Bi and J. T. Kwok, "Multi-label classification on tree- and DAG-structured hierarchies," in Proc. 28th ICML, 2011, pp. 17-24.
    • (2011) Proc. 28th ICML , pp. 17-24
    • Bi, W.1    Kwok, J.T.2
  • 33
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, "An extensive experimental comparison of methods for multi-label learning," Pattern Recognit., vol. 45, no. 9, pp. 3084-3104, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 34
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," Mach. Learn., vol. 85, no. 3, pp. 333-359, 2011.
    • (2011) Mach. Learn. , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 36
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C. Chang and C. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 27
    • Chang, C.1    Lin, C.2
  • 37
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan.
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 38
    • 78049326859 scopus 로고    scopus 로고
    • Regret analysis for performance metrics in multi-label classification: The case of Hamming and subset zero-one loss
    • K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, "Regret analysis for performance metrics in multi-label classification: The case of Hamming and subset zero-one loss," in Proc. Mach. Learn. Knowl. Discovery Databases, 2010, pp. 280-295.
    • (2010) Proc. Mach. Learn. Knowl. Discovery Databases , pp. 280-295
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.