메뉴 건너뛰기




Volumn 48, Issue 6, 2015, Pages 2096-2109

Scalable multi-output label prediction: From classifier chains to classifier trellises

Author keywords

Bayesian networks; Classifier chains; Multi label classification; Multi output prediction; Structured inference

Indexed keywords

BAYESIAN NETWORKS; FORECASTING;

EID: 84925368172     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.01.004     Document Type: Article
Times cited : (77)

References (27)
  • 3
    • 84888364765 scopus 로고    scopus 로고
    • Efficient Monte Carlo methods for multi-dimensional learning with classifier chains
    • J. Read, L. Martino, and D. Luengo Efficient Monte Carlo methods for multi-dimensional learning with classifier chains Pattern Recognit. 47 2014
    • (2014) Pattern Recognit. , vol.47
    • Read, J.1    Martino, L.2    Luengo, D.3
  • 4
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • ICML10, Omnipress, Haifa, Israel
    • W. Cheng, K. Dembczyński, E. Hüllermeier, Bayes optimal multilabel classification via probabilistic classifier chains, in: 27th International Conference on Machine Learning, ICML10, Omnipress, Haifa, Israel, 2010.
    • (2010) 27th International Conference on Machine Learning
    • Cheng, W.1
  • 5
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank Classifier chains for multi-label classification Mach. Learn. 85 2011 333 359
    • (2011) Mach. Learn. , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 8
    • 84865223006 scopus 로고    scopus 로고
    • On label dependence and loss minimization in multi-label classification
    • K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier On label dependence and loss minimization in multi-label classification Mach. Learn. 88 2012 5 45
    • (2012) Mach. Learn. , vol.88 , pp. 5-45
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 10
    • 0027621699 scopus 로고    scopus 로고
    • Mining association rules between sets in items in large databases
    • R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets in items in large databases, in: Proceedings of ACM SIGMOD, vol. 12, pp. 207-216.
    • Proceedings of ACM SIGMOD , vol.12 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 11
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the pc-algorithm
    • M. Kalisch, and P. Bühlmann Estimating high-dimensional directed acyclic graphs with the pc-algorithm J. Mach. Learn. Res. 8 2007 613 636
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 12
    • 68949163877 scopus 로고    scopus 로고
    • Bayesian network structure learning by recursive autonomy identification
    • R. Yehezkel, and B. Lerner Bayesian network structure learning by recursive autonomy identification J. Mach. Learn. Res. 10 2009 1527 1570
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1527-1570
    • Yehezkel, R.1    Lerner, B.2
  • 17
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • ECML07, Springer
    • G. Tsoumakas, I.P. Vlahavas, Random k-labelsets: an ensemble method for multilabel classification, in: 18th European Conference on Machine Learning, ECML07, Springer, 2007, pp. 406-417.
    • (2007) 18th European Conference on Machine Learning , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.P.2
  • 20
    • 84908472806 scopus 로고    scopus 로고
    • Multilabel classification through random graph ensembles
    • ACML
    • H. Su, J. Rousu, Multilabel classification through random graph ensembles, in: Asian Conference on Machine Learning, ACML, pp. 404-418.
    • Asian Conference on Machine Learning , pp. 404-418
    • Su, H.1    Rousu, J.2
  • 21
    • 84861443014 scopus 로고    scopus 로고
    • Multi-label classification using conditional dependency networks
    • IJCAI/AAAI, IJCAI11
    • Y. Guo, S. Gu, Multi-label classification using conditional dependency networks, in: 24th International Conference on Artificial Intelligence, IJCAI/AAAI, IJCAI11, 2011, pp. 1300-1305.
    • (2011) 24th International Conference on Artificial Intelligence , pp. 1300-1305
    • Guo, Y.1    Gu, S.2
  • 25
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Deroski An extensive experimental comparison of methods for multi-label learning Pattern Recognit. 45 2012 3084 3104
    • (2012) Pattern Recognit. , vol.45 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Deroski, S.4
  • 26
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsař Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsař, J.1
  • 27
    • 84890266581 scopus 로고    scopus 로고
    • A distributed particle filter for nonlinear tracking in wireless sensor networks
    • J. Read, K. Achutegui, and J. Miguez A distributed particle filter for nonlinear tracking in wireless sensor networks Signal Process. 98 2014 121 134
    • (2014) Signal Process. , vol.98 , pp. 121-134
    • Read, J.1    Achutegui, K.2    Miguez, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.