-
3
-
-
84888364765
-
Efficient Monte Carlo methods for multi-dimensional learning with classifier chains
-
J. Read, L. Martino, and D. Luengo Efficient Monte Carlo methods for multi-dimensional learning with classifier chains Pattern Recognit. 47 2014
-
(2014)
Pattern Recognit.
, vol.47
-
-
Read, J.1
Martino, L.2
Luengo, D.3
-
4
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
ICML10, Omnipress, Haifa, Israel
-
W. Cheng, K. Dembczyński, E. Hüllermeier, Bayes optimal multilabel classification via probabilistic classifier chains, in: 27th International Conference on Machine Learning, ICML10, Omnipress, Haifa, Israel, 2010.
-
(2010)
27th International Conference on Machine Learning
-
-
Cheng, W.1
-
6
-
-
84866843118
-
Learning and inference in probabilistic classifier chains with beam search
-
P.A. Flach, T. De Bie, N. Cristianini, Springer
-
A. Kumar, S. Vembu, A.K. Menon, and C. Elkan Learning and inference in probabilistic classifier chains with beam search P.A. Flach, T. De Bie, N. Cristianini, European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD) vol. 7523 2012 Springer 665 680
-
(2012)
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD)
, vol.7523
, pp. 665-680
-
-
Kumar, A.1
Vembu, S.2
Menon, A.K.3
Elkan, C.4
-
7
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
KDD10, ACM
-
M.-L. Zhang, K. Zhang, Multi-label learning by exploiting label dependency, in: 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD10, ACM, 2010, pp. 999-1008.
-
(2010)
16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 999-1008
-
-
Zhang, M.-L.1
Zhang, K.2
-
8
-
-
84865223006
-
On label dependence and loss minimization in multi-label classification
-
K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier On label dependence and loss minimization in multi-label classification Mach. Learn. 88 2012 5 45
-
(2012)
Mach. Learn.
, vol.88
, pp. 5-45
-
-
Dembczyński, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
9
-
-
33947525339
-
Tractable learning of large Bayes net structures from sparse data
-
ICML04, ACM, New York, NY, USA
-
A. Goldenberg, A. Moore, Tractable learning of large Bayes net structures from sparse data, in: Proceedings of the 21st International Conference on Machine learning, ICML04, ACM, New York, NY, USA, 2004, pp. 44.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 44
-
-
Goldenberg, A.1
Moore, A.2
-
10
-
-
0027621699
-
Mining association rules between sets in items in large databases
-
R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets in items in large databases, in: Proceedings of ACM SIGMOD, vol. 12, pp. 207-216.
-
Proceedings of ACM SIGMOD
, vol.12
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
11
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the pc-algorithm
-
M. Kalisch, and P. Bühlmann Estimating high-dimensional directed acyclic graphs with the pc-algorithm J. Mach. Learn. Res. 8 2007 613 636
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
12
-
-
68949163877
-
Bayesian network structure learning by recursive autonomy identification
-
R. Yehezkel, and B. Lerner Bayesian network structure learning by recursive autonomy identification J. Mach. Learn. Res. 10 2009 1527 1570
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1527-1570
-
-
Yehezkel, R.1
Lerner, B.2
-
13
-
-
84925375766
-
-
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, ACM International Conference Proceeding Series, vol. 382, ACM
-
A.P. Danyluk, L. Bottou, M.L. Littman (Eds.), Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, ACM International Conference Proceeding Series, vol. 382, ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
-
-
Danyluk, A.P.1
Bottou, L.2
Littman, M.L.3
-
14
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
L. Ladick, C. Russell, P. Kohli, P.H.S. Torr, Associative hierarchical crfs for object class image segmentation, in: IEEE 12th International Conference on Computer Vision, 2009, pp. 739-746.
-
(2009)
IEEE 12th International Conference on Computer Vision
, pp. 739-746
-
-
Ladick, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
15
-
-
33745767102
-
Collective multi-label classification
-
CIKM05, ACM Press, New York, NY, USA
-
N. Ghamrawi, A. McCallum, Collective multi-label classification, in: 14th ACM International Conference on Information and Knowledge Management, CIKM05, ACM Press, New York, NY, USA, 2005, pp. 195-200.
-
(2005)
14th ACM International Conference on Information and Knowledge Management
, pp. 195-200
-
-
Ghamrawi, N.1
McCallum, A.2
-
17
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
ECML07, Springer
-
G. Tsoumakas, I.P. Vlahavas, Random k-labelsets: an ensemble method for multilabel classification, in: 18th European Conference on Machine Learning, ECML07, Springer, 2007, pp. 406-417.
-
(2007)
18th European Conference on Machine Learning
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.P.2
-
18
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
ICDM08, IEEE
-
J. Read, B. Pfahringer, G. Holmes, Multi-label classification using ensembles of pruned sets, in: 8th IEEE International Conference on Data Mining, ICDM08, IEEE, 2008, pp. 995-1000.
-
(2008)
8th IEEE International Conference on Data Mining
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
19
-
-
84857143316
-
Random forest based feature induction
-
ICDM11, IEEE Computer Society, Washington, DC, USA
-
C. Vens, F. Costa, Random forest based feature induction, in: Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 744-753.
-
(2011)
Proceedings of the 2011 IEEE 11th International Conference on Data Mining
, pp. 744-753
-
-
Vens, C.1
Costa, F.2
-
20
-
-
84908472806
-
Multilabel classification through random graph ensembles
-
ACML
-
H. Su, J. Rousu, Multilabel classification through random graph ensembles, in: Asian Conference on Machine Learning, ACML, pp. 404-418.
-
Asian Conference on Machine Learning
, pp. 404-418
-
-
Su, H.1
Rousu, J.2
-
21
-
-
84861443014
-
Multi-label classification using conditional dependency networks
-
IJCAI/AAAI, IJCAI11
-
Y. Guo, S. Gu, Multi-label classification using conditional dependency networks, in: 24th International Conference on Artificial Intelligence, IJCAI/AAAI, IJCAI11, 2011, pp. 1300-1305.
-
(2011)
24th International Conference on Artificial Intelligence
, pp. 1300-1305
-
-
Guo, Y.1
Gu, S.2
-
22
-
-
84898942883
-
Classification by pairwise coupling
-
M.I. Jordan, M.J. Kearns, S.A. Solla, MIT Press
-
T. Hastie, and R. Tibshirani Classification by pairwise coupling M.I. Jordan, M.J. Kearns, S.A. Solla, Advances in Neural Information Processing Systems vol. 10 1998 MIT Press
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
-
-
Hastie, T.1
Tibshirani, R.2
-
23
-
-
76749092270
-
The weka data mining software an update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, R. Peter, and I.H. Witten The weka data mining software an update SIGKDD Explor. 11 2009
-
(2009)
SIGKDD Explor.
, vol.11
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Peter, R.5
Witten, I.H.6
-
24
-
-
70349968175
-
Classifier chains for multi-label classification
-
ECML09, Springer
-
J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label classification, in: 20th European Conference on Machine Learning, ECML09, Springer, 2009, pp. 254-269.
-
(2009)
20th European Conference on Machine Learning
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
25
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Deroski An extensive experimental comparison of methods for multi-label learning Pattern Recognit. 45 2012 3084 3104
-
(2012)
Pattern Recognit.
, vol.45
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Deroski, S.4
-
26
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsař Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsař, J.1
-
27
-
-
84890266581
-
A distributed particle filter for nonlinear tracking in wireless sensor networks
-
J. Read, K. Achutegui, and J. Miguez A distributed particle filter for nonlinear tracking in wireless sensor networks Signal Process. 98 2014 121 134
-
(2014)
Signal Process.
, vol.98
, pp. 121-134
-
-
Read, J.1
Achutegui, K.2
Miguez, J.3
|