메뉴 건너뛰기




Volumn 9121, Issue , 2015, Pages 489-501

Resampling multilabel datasets by decoupling highly imbalanced labels

Author keywords

Imbalanced learning; Label concurrence; Multilabel classification; Resampling

Indexed keywords


EID: 84958533469     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-319-19644-2_41     Document Type: Conference Paper
Times cited : (21)

References (33)
  • 1
    • 77956163078 scopus 로고    scopus 로고
    • Mining multi-label data
    • Maimon, O. Rokach, L. (eds.), Ch. 34, Springer, Boston
    • Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, Ch. 34, pp. 667-685. Springer, Boston (2010). doi:10.1007/978-0-387-09823-434.
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 667-685
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 2
    • 22944464423 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for email classification research
    • Boulicaut, J.-F. Esposito, F. Giannotti, F. Pedreschi, D. (eds.), LNCS (LNAI), vol. 3201, Springer, Heidelberg
    • Klimt, B., Yang, Y.: The enron corpus: A new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217-226. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-822.
    • (2004) ECML 2004 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 4
    • 84937572644 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • Heyden, A. Sparr, G. Nielsen, M. Johansen, P. (eds.), Part IV. LNCS, vol. 2353, Springer, Heidelberg
    • Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97-112. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1-7.
    • (2002) ECCV 2002 , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.F.G.3    Forsyth, D.4
  • 5
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1-6 (2004). doi:10.1145/1007730.1007733.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 6
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • García, V., Sánchez, J., Mollineda, R.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25(1), 13-21 (2012). http://dx.doi.org/10.1016/j.knosys.2011.06.013.
    • (2012) Knowl. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.2    Mollineda, R.3
  • 7
    • 84884913245 scopus 로고    scopus 로고
    • A first approach to deal with imbalance in multi-label datasets
    • Pan, J.-S. Polycarpou, M.M. Wózniak, M. de Carvalho, A.C.P.L.F. Quintián, H. Corchado, E. (eds.), LNCS, vol. 8073, Springer, Heidelberg
    • Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: A first approach to deal with imbalance in multi-label datasets. In: Pan, J.-S., Polycarpou, M.M., Wózniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 150-160. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40846-516.
    • (2013) HAIS 2013 , pp. 150-160
    • Charte, F.1    Rivera, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 8
    • 84893190862 scopus 로고    scopus 로고
    • Managing imbalanced data sets in multi-label problems: A case study with the SMOTE algorithm
    • Ruiz-Shulcloper, J. Sanniti di Baja, G. (eds.), LNCS, vol. 8258, Springer, Heidelberg
    • Giraldo-Forero, A.F., Jaramillo-Garzón, J.A., Ruiz-Muñoz, J.F., Castellanos-Domínguez, C.G.: Managing imbalanced data sets in multi-label problems: A case study with the SMOTE algorithm. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258, pp. 334-342. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41822-8-42.
    • (2013) CIARP 2013 , pp. 334-342
    • Giraldo-Forero, A.F.1    Jaramillo-Garzón, J.A.2    Ruiz-Muñoz, J.F.3    Castellanos-Domínguez, C.G.4
  • 9
    • 84932080538 scopus 로고    scopus 로고
    • Addressing imbalance in multilabel classification: Measures and random resampling algorithms
    • to be published
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: Measures and random resampling algorithms, Neurocomputing to be published.
    • Neurocomputing
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 10
    • 84958553194 scopus 로고    scopus 로고
    • MLeNN: A first approach to heuristic multilabel undersampling
    • Corchado, E. Lozano, J.A. Quintián, H. Yin, H. (eds.), LNCS, vol. 8669, Springer, Heidelberg
    • Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLeNN: A first approach to heuristic multilabel undersampling. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 1-9. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10840-7-1.
    • (2014) IDEAL 2014 , pp. 1-9
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 11
    • 84861810464 scopus 로고    scopus 로고
    • Inverse random under sampling for class imbalance problem and its application to multi-label classification
    • Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recogn. 45(10), 3738-3750 (2012). doi:10.1016/j.patcog.2012.03.014.
    • (2012) Pattern Recogn , vol.45 , Issue.10 , pp. 3738-3750
    • Tahir, M.A.1    Kittler, J.2    Yan, F.3
  • 12
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513-523 (2012). doi:10.1016/j.patrec.2011.10.019.
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittler, J.2    Bouridane, A.3
  • 13
    • 84902509247 scopus 로고    scopus 로고
    • Concurrence among imbalanced labels and its influence on multilabel resampling algorithms
    • Polycarpou, M. de Carvalho, A.C.P.L.F. Pan, J.-S. Wózniak, M. Quintian, H. Corchado, E. (eds.), LNCS, vol. 8480, Springer, Heidelberg
    • Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Concurrence among imbalanced labels and its influence on multilabel resampling algorithms. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Wózniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 110-121. Springer, Heidelberg (2014).
    • (2014) HAIS 2014 , pp. 110-121
    • Charte, F.1    Rivera, A.2    Del Jesus, M.J.3    Herrera, F.4
  • 14
    • 33646536577 scopus 로고    scopus 로고
    • Protein classification with multiple algorithms
    • Bozanis, P. Houstis, E.N. (eds.), LNCS, vol. 3746, Springer, Heidelberg
    • Diplaris, S., Tsoumakas, G., Mitkas, P.A., Vlahavas, I.P.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448-456. Springer, Heidelberg (2005). doi:10.1007/1157303642.
    • (2005) PCI 2005 , pp. 448-456
    • Diplaris, S.1    Tsoumakas, G.2    Mitkas, P.A.3    Vlahavas, I.P.4
  • 15
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Dietterich, G. Becker, S. Ghahramani, Z. (eds.), MIT Press, Cambridge
    • Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Dietterich, G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, vol. 14, pp. 681-687. MIT Press, Cambridge (2001).
    • (2001) Advances in Neural Information Processing Systems 14 , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 17
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Dai, H. Srikant, R. Zhang, C. (eds.), LNCS (LNAI), vol. 3056, Springer, Heidelberg
    • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22-30. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3-5.
    • (2004) PAKDD 2004 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 18
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757-1771 (2004). doi:10.1016/j.patcog.2004.03.009.
    • (2004) Pattern Recogn , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 19
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333-359 (2011). doi:10.1007/s10994-011-5256-5.
    • (2011) Mach. Learn. , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 21
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038-2048 (2007). doi:10.1016/j.patcog.2006.12.019.
    • (2007) Pattern Recogn , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 22
    • 84943242305 scopus 로고    scopus 로고
    • Knowledge discovery in multi-label phenotype data
    • Siebes, A. De Raedt, L. (eds.), LNCS (LNAI), vol. 2168, Springer, Heidelberg
    • Clare, A.J., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 42. Springer, Heidelberg (2001). doi:10.1007/3-540-44794-6-4.
    • (2001) PKDD 2001 , pp. 42
    • Clare, A.J.1    King, R.D.2
  • 23
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang, M.-L.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338-1351 (2006). doi:10.1109/TKDE.2006.162.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1
  • 24
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819-1837 (2014). doi:10.1109/TKDE.2013.39.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.1    Zhou, Z.2
  • 27
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113-141 (2013). doi:10.1016/j.ins.2013.07.007.
    • (2013) Inf. Sci. , vol.250 , pp. 113-141
    • López, V.1    Fernández, A.2    García, S.3    Palade, V.4    Herrera, F.5
  • 28
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42, 203-231 (2001). doi:10.1023/A:1007601015854.
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 29
    • 84862027781 scopus 로고    scopus 로고
    • Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites
    • He, J., Gu, H., Liu, W.: Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites. PloS one 7(6), 7155 (2012). doi:10.1371/journal.pone.0037155.
    • (2012) PloS One , vol.7 , Issue.6 , pp. 7155
    • He, J.1    Gu, H.2    Liu, W.3
  • 30
    • 84878774850 scopus 로고    scopus 로고
    • Improvement of learning algorithm for the multi-instance multilabel rbf neural networks trained with imbalanced samples
    • Li, C., Shi, G.: Improvement of learning algorithm for the multi-instance multilabel rbf neural networks trained with imbalanced samples. J. Inf. Sci. Eng. 29(4), 765-776 (2013).
    • (2013) J. Inf. Sci. Eng. , vol.29 , Issue.4 , pp. 765-776
    • Li, C.1    Shi, G.2
  • 33
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2-3), 211-225 (2009). doi:10.1007/s10994-009-5127-5.
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.