-
2
-
-
26944485923
-
Classification of text documents
-
Y. H. Li and A. K. Jain, "Classification of text documents," Comput. J., vol. 41, no. 8, pp. 537-546, 1998.
-
(1998)
Comput. J
, vol.41
, Issue.8
, pp. 537-546
-
-
Li, Y.H.1
Jain, A.K.2
-
3
-
-
0033894473
-
Large vocabulary speech recognition with multispan statistical language models
-
Jan
-
J. R. Bellegarda, "Large vocabulary speech recognition with multispan statistical language models," IEEE Trans. Speech Audio Process., vol. 8, no. 1, pp. 76-84, Jan. 2000.
-
(2000)
IEEE Trans. Speech Audio Process
, vol.8
, Issue.1
, pp. 76-84
-
-
Bellegarda, J.R.1
-
4
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
5
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
Mar
-
P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.24
, Issue.3
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
6
-
-
84875172457
-
A comparison of multi-label feature selection methods using the problem transformation approach
-
Mar
-
N. Spolaôr, E. A. Cherman, M. C. Monard, and H. D. Lee, "A comparison of multi-label feature selection methods using the problem transformation approach," Electron. Notes Theoretical Comput. Sci., vol. 292, pp. 135-151, Mar. 2013.
-
Electron. Notes Theoretical Comput. Sci
, vol.292
, Issue.2013
, pp. 135-151
-
-
Spolaôr, N.1
Cherman, E.A.2
Monard, M.C.3
Lee, H.D.4
-
7
-
-
84897109377
-
A review on multi-label learning algorithms
-
[Online]
-
M.-L. Zhang and Z.-H. Zhou, "A review on multi-label learning algorithms," IEEE Trans. Knowl. Data Eng. [Online]. Available: http://dx.doi.org/10.1109/TKDE.2013.39
-
IEEE Trans. Knowl. Data Eng
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
8
-
-
77956163078
-
Mining multi-label data
-
O. Maimon and L. Rokach, Eds. Boston, MA, USA: Springer-Verlag, ch. 34
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data," in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds. Boston, MA, USA: Springer-Verlag, 2010, ch. 34, pp. 667-685.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
9
-
-
67949108237
-
A tutorial on multi-label classification techniques
-
A. Abraham, A.-E. Hassanien, and V. Snášel, Eds. Berlin Heidelberg, Germany: Springer-Verlag, ch. 8
-
A. de Carvalho and A. Freitas, "A tutorial on multi-label classification techniques," in Foundations of Computational Intelligence, vol. 5, A. Abraham, A.-E. Hassanien, and V. Snášel, Eds. Berlin Heidelberg, Germany: Springer-Verlag, 2009, ch. 8, pp. 177-195.
-
(2009)
Foundations of Computational Intelligence
, vol.5
, pp. 177-195
-
-
De Carvalho, A.1
Freitas, A.2
-
11
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
J. Fürnkranz, E. Hüllermeier, E. Loza Mencía, and K. Brinker, "Multilabel classification via calibrated label ranking," Mach. Learn., vol. 73, no. 2, pp. 133-153, 2008.
-
(2008)
Mach. Learn
, vol.73
, Issue.2
, pp. 133-153
-
-
Fürnkranz, J.1
Hüllermeier, E.2
Loza Mencía, E.3
Brinker, K.4
-
12
-
-
3042597440
-
Learning multi-label scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown, "Learning multi-label scene classification," Pattern Recognit., vol. 37, no. 9, pp. 1757-1771, 2004.
-
(2004)
Pattern Recognit
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
13
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, "An extensive experimental comparison of methods for multi-label learning," Pattern Recognit., vol. 45, no. 9, pp. 3084-3104, 2012.
-
(2012)
Pattern Recognit
, vol.45
, Issue.9
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Džeroski, S.4
-
14
-
-
84943242305
-
Knowledge discovery in multi-label phenotype data
-
Freiburg, Germany
-
A. Clare and R. D. King, "Knowledge discovery in multi-label phenotype data," in Proc. 5th Eur. Conf. Principles Data Mining Knowl. Discovery, LNCS 2168. Freiburg, Germany, 2001, pp. 42-53.
-
(2001)
Proc. 5th Eur. Conf. Principles Data Mining Knowl. Discovery, LNCS 2168
, pp. 42-53
-
-
Clare, A.1
King, R.D.2
-
15
-
-
8344282787
-
Learning multi-label alternating decision trees from texts and data
-
LNCS 2734. Leipzig, Germany
-
F. De Comité, R. Gilleron, and M. Tommasi, "Learning multi-label alternating decision trees from texts and data," in Proc. 3rd Int. Conf. Mach. Learn. Data Mining Pattern Recognit., LNCS 2734. Leipzig, Germany, 2003, pp. 35-49.
-
(2003)
Proc. 3rd Int. Conf. Mach. Learn. Data Mining Pattern Recognit
, pp. 35-49
-
-
De Comité, F.1
Gilleron, R.2
Tommasi, M.3
-
16
-
-
33947681316
-
ML-knn: A lazy learning approach to multilabel learning
-
M. Zhang and Z. Zhou, "ML-KNN: A lazy learning approach to multilabel learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
-
(2007)
Pattern Recognit
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
17
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
W. Cheng and E. Hüllermeier, "Combining instance-based learning and logistic regression for multilabel classification," Mach. Learn., vol. 76, nos. 2-3, pp. 211-225, 2009.
-
(2009)
Mach. Learn
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hüllermeier, E.2
-
18
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
Oct
-
M.-L. Zhang, "Multilabel neural networks with applications to functional genomics and text categorization," IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.
-
(2006)
IEEE Trans. Knowl. Data Eng
, vol.18
, Issue.10
, pp. 1338-1351
-
-
Zhang, M.-L.1
-
19
-
-
62649132781
-
ML-rbf: Rbf neural networks for multi-label learning
-
M.-L. Zhang, "ML-RBF: RBF neural networks for multi-label learning," Neural Process. Lett., vol. 29, no. 2, pp. 61-74, 2009.
-
(2009)
Neural Process. Lett
, vol.29
, Issue.2
, pp. 61-74
-
-
Zhang, M.-L.1
-
20
-
-
2542631648
-
A kernel method for multi-labelled classification
-
Cambridge, MA, USA: MIT Press
-
A. Elisseeff and J. Weston, "A kernel method for multi-labelled classification," in Advances in Neural Information Processing Systems, vol. 14. Cambridge, MA, USA: MIT Press, 2001, pp. 681-687.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 681-687
-
-
Elisseeff, A.1
Weston, J.2
-
21
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," Mach. Learn., vol. 85, no. 3, pp. 333-359, 2011.
-
(2011)
Mach. Learn
, vol.85
, Issue.3
, pp. 333-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
22
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
LNCS 4701. Warsaw, Poland
-
G. Tsoumakas and I. Vlahavas, "Random k-labelsets: An ensemble method for multilabel classification," in Proc. 18th ECML, LNCS 4701. Warsaw, Poland, 2007, pp. 406-417.
-
(2007)
Proc. 18th ECML
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
23
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Antwerp, Belgium
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Effective and efficient multilabel classification in domains with large number of labels," in Proc. ECML/PKDD Workshop MMD, Antwerp, Belgium, 2008, pp. 30-44.
-
(2008)
Proc. ECML/PKDD Workshop MMD
, pp. 30-44
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
24
-
-
33750270501
-
A new ant colony algorithm for multi-label classification with applications in bioinfomatics
-
A. Chan and A. A. Freitas, "A new ant colony algorithm for multi-label classification with applications in bioinfomatics," in Proc. 8th Annu. Conf. Genetic Evol. Comput., 2006, pp. 27-34.
-
(2006)
Proc. 8th Annu. Conf. Genetic Evol. Comput
, pp. 27-34
-
-
Chan, A.1
Freitas, A.A.2
-
25
-
-
85156188079
-
Kernel dependency estimation
-
New York, NY, USA: Springer-Verlag
-
J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik, "Kernel dependency estimation," in Advances in Neural Information Processing Systems, vol. 15. New York, NY, USA: Springer-Verlag, 2002, pp. 873-880.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schölkopf, B.4
Vapnik, V.5
-
26
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
New York, NY, USA: Springer-Verlag
-
D. Hsu, S. Kakade, J. Langford, and T. Zhang, "Multi-label prediction via compressed sensing," in Advances in Neural Information Processing Systems, vol. 22. New York, NY, USA: Springer-Verlag, 2009, pp. 772-780.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.2
Langford, J.3
Zhang, T.4
-
27
-
-
84865275504
-
Compressed labeling on distilled labelsets for multi-label learning
-
T. Zhou, D. Tao, and X. Wu, "Compressed labeling on distilled labelsets for multi-label learning," Mach. Learn., vol. 88, nos. 1-2, pp. 69-126, 2012.
-
(2012)
Mach. Learn
, vol.88
, Issue.1-2
, pp. 69-126
-
-
Zhou, T.1
Tao, D.2
Wu, X.3
-
28
-
-
77955908068
-
Correlation based pruning of stacked binary relevance models for multi-label learning
-
Bled, Slovenia
-
G. Tsoumakas, A. Dimou, E. Spyromitros, V. Mezaris, I. Kompatsiaris, and I. Vlahavas, "Correlation based pruning of stacked binary relevance models for multi-label learning," in Proc. 1st Int. Workshop Learn. Multi- Label Data, Bled, Slovenia, 2009, pp. 101-116.
-
(2009)
Proc. 1st Int. Workshop Learn. Multi- Label Data
, pp. 101-116
-
-
Tsoumakas, G.1
Dimou, A.2
Spyromitros, E.3
Mezaris, V.4
Kompatsiaris, I.5
Vlahavas, I.6
-
29
-
-
78650009501
-
A simple approach to incorporate label dependency in multi-label classification
-
LNCS 6438. Pachuca, Mexico
-
E. A. Cherman, J. Metz, and M. Monard, "A simple approach to incorporate label dependency in multi-label classification," in Proc. 9th MICAI, LNCS 6438. Pachuca, Mexico, 2010, pp. 33-43.
-
(2010)
Proc. 9th MICAI
, pp. 33-43
-
-
Cherman, E.A.1
Metz, J.2
Monard, M.3
-
30
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
Washington, DC, USA
-
M.-L. Zhang and K. Zhang, "Multi-label learning by exploiting label dependency," in Proc. 16th Int. Conf. Knowl. Discovery Data Mining, Washington, DC, USA, 2010, pp. 999-1008.
-
(2010)
Proc. 16th Int. Conf. Knowl. Discovery Data Mining
, pp. 999-1008
-
-
Zhang, M.-L.1
Zhang, K.2
-
31
-
-
84861443014
-
Multi-label classification using conditional dependency networks
-
Y. Guo and S. Gu, "Multi-label classification using conditional dependency networks," in Proc. 22th Int. Joint Conf. Artif. Intell., vol. 2. 2011, pp. 1300-1305.
-
(2011)
Proc. 22th Int. Joint Conf. Artif. Intell
, vol.2
, pp. 1300-1305
-
-
Guo, Y.1
Gu, S.2
-
32
-
-
79955562745
-
Identification of label dependences for multi-label classification
-
Haifa, Israel
-
L. Tenenboim-Chekina, L. Rokach, and B. Shapira, "Identification of label dependences for multi-label classification," in Proc. 2nd Int. Workshop Learn. Multi-Label Data, Haifa, Israel, 2010, pp. 53-60.
-
(2010)
Proc. 2nd Int. Workshop Learn. Multi-Label Data
, pp. 53-60
-
-
Tenenboim-Chekina, L.1
Rokach, L.2
Shapira, B.3
-
33
-
-
84861452189
-
Multi-label classification with principle label space transformation
-
Haifa, Israel
-
F. Tai and H. Lin, "Multi-label classification with principle label space transformation," in Proc. 2nd Int. Workshop Learn. Multi-Label Data, Haifa, Israel, 2010, pp. 45-52.
-
(2010)
Proc. 2nd Int. Workshop Learn. Multi-Label Data
, pp. 45-52
-
-
Tai, F.1
Lin, H.2
-
34
-
-
84862825073
-
Multi-label classification with label constraints
-
Antwerp, Belgium
-
S.-H. Park and J. Fürnkranz, "Multi-label classification with label constraints," in Proc. ECML PKDD Workshop Preference Learn., Antwerp, Belgium, 2008, pp. 157-171.
-
(2008)
Proc. ECML PKDD Workshop Preference Learn
, pp. 157-171
-
-
Park, S.-H.1
Fürnkranz, J.2
-
35
-
-
0002784345
-
Algorithms for association rule mining - A general survey and comparison
-
J. Hipp, U. Güntzer, and G. Nakhaeizadeh, "Algorithms for association rule mining-A general survey and comparison," ACM SIGKDD Explorat. Newslett., vol. 2, no. 1, pp. 58-64, 2000.
-
(2000)
ACM SIGKDD Explorat. Newslett
, vol.2
, Issue.1
, pp. 58-64
-
-
Hipp, J.1
Güntzer, U.2
Nakhaeizadeh, G.3
-
36
-
-
11344285341
-
Beyond market baskets: Generalizing association rules to dependence rules
-
C. Silverstein, S. Brin, and R. Motwani, "Beyond market baskets: Generalizing association rules to dependence rules," Data Mining Knowl. Discovery, vol. 2, no. 1, pp. 39-68, 1998.
-
(1998)
Data Mining Knowl. Discovery
, vol.2
, Issue.1
, pp. 39-68
-
-
Silverstein, C.1
Brin, S.2
Motwani, R.3
-
37
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Tucson, AZ, USA
-
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic itemset counting and implication rules for market basket data," in Proc. Int. Conf. Manag. Data, Tucson, AZ, USA, 1997, pp. 255-264.
-
(1997)
Proc. Int. Conf. Manag. Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
38
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
J. Han, J. Pei, Y. Yin, and R. Mao, "Mining frequent patterns without candidate generation: A frequent-pattern tree approach," Data Mining Knowl. Discovery, vol. 8, no. 1, pp. 53-87, 2004.
-
(2004)
Data Mining Knowl. Discovery
, vol.8
, Issue.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
39
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
Pisa, Italy, Dec
-
J. Read, B. Pfahringer, and G. Holmes, "Multi-label classification using ensembles of pruned sets," in Proc. 8th IEEE ICDM, Pisa, Italy, Dec. 2008, pp. 995-1000.
-
(2008)
Proc. 8th IEEE ICDM
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
40
-
-
67049119859
-
Start globally, optimize locally, predict globally: Improving performance on imbalanced data
-
Pisa, Italy, Dec
-
D. A. Cieslak and N. V. Chawla, "Start globally, optimize locally, predict globally: Improving performance on imbalanced data," in Proc. 8th IEEE ICDM, Pisa, Italy, Dec. 2008, pp. 143-152.
-
(2008)
Proc. 8th IEEE ICDM
, pp. 143-152
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
41
-
-
0000718216
-
Measuring skewness and kurtosis
-
R. A. Groeneveld and G. Meeden, "Measuring skewness and kurtosis," Statistician, vol. 33, no. 4, pp. 391-399, 1984.
-
(1984)
Statistician
, vol.33
, Issue.4
, pp. 391-399
-
-
Groeneveld, R.A.1
Meeden, G.2
-
42
-
-
0035051307
-
Finding interesting associations without support pruning
-
Jan./Feb
-
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, et al., "Finding interesting associations without support pruning," IEEE Trans. Knowl. Data Eng., vol. 13, no. 1, pp. 64-78, Jan./Feb. 2001.
-
(2001)
IEEE Trans. Knowl. Data Eng
, vol.13
, Issue.1
, pp. 64-78
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, P.5
Motwani, R.6
-
43
-
-
77956208484
-
Multilabel text classification for automated tag suggestion
-
Antwerp, Belgium
-
I. Katakis, G. Tsoumakas, and I. Vlahavas, "Multilabel text classification for automated tag suggestion," in Proc. ECML PKDD Discovery Challenge, Antwerp, Belgium, 2008, pp. 75-83.
-
(2008)
Proc. ECML PKDD Discovery Challenge
, pp. 75-83
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
44
-
-
22944464423
-
The enron corpus: A new dataset for email classification research
-
Pisa, Italy
-
B. Klimt and Y. Yang, "The enron corpus: A new dataset for email classification research," in Proc. ECML, Pisa, Italy, 2004, pp. 217-226.
-
(2004)
Proc. ECML
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
45
-
-
46949103773
-
Automatic code assignment to medical text
-
Prague, Czech Republic
-
K. Crammer, M. Dredze, K. Ganchev, P. P. Talukdar, and S. Carroll, "Automatic code assignment to medical text," in Proc. Workshop Biol., Translational, Clinical Lang. Process., Prague, Czech Republic, 2007, pp. 129-136.
-
(2007)
Proc. Workshop Biol., Translational, Clinical Lang. Process
, pp. 129-136
-
-
Crammer, K.1
Dredze, M.2
Ganchev, K.3
Talukdar, P.P.4
Carroll, S.5
-
46
-
-
84937572644
-
Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
-
Copenhagen, Denmark
-
P. Duygulu, K. Barnard, J. de Freitas, and D. Forsyth, "Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary," in Proc. 7th Eur. Conf. Comput. Vis., Copenhagen, Denmark, 2002, pp. 97-112.
-
(2002)
Proc. 7th Eur. Conf. Comput. Vis
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
De Freitas, J.3
Forsyth, D.4
-
47
-
-
0041876117
-
Matching words and pictures
-
Feb
-
K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M. Blei, and M. I. Jordan, "Matching words and pictures," J. Mach. Learn. Res., vol. 3, pp. 1107-1135, Feb. 2003.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1107-1135
-
-
Barnard, K.1
Duygulu, P.2
Forsyth, D.3
De Freitas, N.4
Blei, D.M.5
Jordan, M.I.6
-
48
-
-
57049092565
-
Semantic annotation and retrieval of music and sound effects
-
Feb
-
D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, "Semantic annotation and retrieval of music and sound effects," IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 2, pp. 467-476, Feb. 2008.
-
(2008)
IEEE Trans. Audio, Speech, Lang. Process
, vol.16
, Issue.2
, pp. 467-476
-
-
Turnbull, D.1
Barrington, L.2
Torres, D.3
Lanckriet, G.4
-
49
-
-
70249151061
-
Multi-label classification of emotions in music
-
New York, NY, USA: Springer-Verlag, ch. 30
-
A. Wieczorkowska, P. Synak, and Z. Ras̈, "Multi-label classification of emotions in music," in Intelligent Information Processing and Web Mining, vol. 35. New York, NY, USA: Springer-Verlag, 2006, ch. 30, pp. 307-315.
-
(2006)
Intelligent Information Processing and Web Mining
, vol.35
, pp. 307-315
-
-
Wieczorkowska, A.1
Synak, P.2
Ras̈, Z.3
-
50
-
-
33646536577
-
Protein classification with multiple algorithms
-
Volos, Greece
-
S. Diplaris, G. Tsoumakas, P. Mitkas, and I. Vlahavas, "Protein classification with multiple algorithms," in Proc. 10th PCI, Volos, Greece, 2005, pp. 448-456.
-
(2005)
Proc. 10th PCI
, pp. 448-456
-
-
Diplaris, S.1
Tsoumakas, G.2
Mitkas, P.3
Vlahavas, I.4
-
51
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
Santa Barbara, CA, USA
-
C. G. M. Snoek, M. Worring, J. C. van Gemert, J. M. Geusebroek, and A. W. M. Smeulders, "The challenge problem for automated detection of 101 semantic concepts in multimedia," in Proc. 14th Annu. ACM Int. Conf. Multimedia, Santa Barbara, CA, USA, 2006, pp. 421-430.
-
(2006)
Proc. 14th Annu. ACM Int. Conf. Multimedia
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
Van Gemert, J.C.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
53
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Jan
-
J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
54
-
-
60249094201
-
A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests
-
J. Luengo, S. García, and F. Herrera, "A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests," Expert Syst. Appl., vol. 36, no. 4, pp. 7798-7808, 2009.
-
(2009)
Expert Syst. Appl
, vol.36
, Issue.4
, pp. 7798-7808
-
-
Luengo, J.1
García, S.2
Herrera, F.3
-
56
-
-
79951829331
-
Keel data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework
-
J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, et al., "Keel data-mining software tool: Data set repository and integration of algorithms and experimental analysis framework," J. Multiple-Valued Logic Soft Comput., vol. 17, nos. 2-3, pp. 255-287, 2011.
-
(2011)
J. Multiple-Valued Logic Soft Comput
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcala-Fdez, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
-
57
-
-
80054948724
-
Incorporating label dependency into the binary relevance framework for multi-label classification
-
E. Alvares-Cherman, J. Metz, and M. C. Monard, "Incorporating label dependency into the binary relevance framework for multi-label classification," Expert Syst. Appl., vol. 39, no. 2, pp. 1647-1655, 2012.
-
(2012)
Expert Syst. Appl
, vol.39
, Issue.2
, pp. 1647-1655
-
-
Alvares-Cherman, E.1
Metz, J.2
Monard, M.C.3
|