메뉴 건너뛰기




Volumn 42, Issue 4, 2015, Pages 2013-2025

Mutual Information-based multi-label feature selection using interaction information

Author keywords

Feature dependency; Interaction information; Multi label feature selection; Multivariate feature selection

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFORMATION USE;

EID: 84910651885     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.09.063     Document Type: Article
Times cited : (148)

References (36)
  • 1
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5, 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classification. Pattern Recognition, 37, 1757-1771.
    • (2004) Pattern Recognition , vol.37 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 6
    • 84884203069 scopus 로고    scopus 로고
    • Mutual information-based feature selection for multilabel classification
    • Doquire, G., & Verleysen, M. (2013). Mutual information-based feature selection for multilabel classification. Neurocomputing, 122, 148-155.
    • (2013) Neurocomputing , vol.122 , pp. 148-155
    • Doquire, G.1    Verleysen, M.2
  • 12
    • 0001049514 scopus 로고
    • Nonnegative entropy measures of multivariate symmetric correlations
    • Han, T. (1978). Nonnegative entropy measures of multivariate symmetric correlations. Information and Control, 36, 133-156.
    • (1978) Information and Control , vol.36 , pp. 133-156
    • Han, T.1
  • 14
    • 22944464423 scopus 로고    scopus 로고
    • The Enron corpus: A new dataset for email classification research
    • Klimt, B., & Yang, Y. (2004). The Enron corpus: A new dataset for email classification research. Lecture Notes in Computer Science, 3201, 217-226.
    • (2004) Lecture Notes in Computer Science , vol.3201 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 15
    • 84859904592 scopus 로고    scopus 로고
    • gMLC: A multi-label feature selection framework for graph classification
    • Kong, X., & Yu, P. (2013). gMLC: A multi-label feature selection framework for graph classification. Knowledge and Information Systems, 31, 281-305.
    • (2013) Knowledge and Information Systems , vol.31 , pp. 281-305
    • Kong, X.1    Yu, P.2
  • 16
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N., & Choi, C. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13, 143-159.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.2
  • 17
    • 84870668654 scopus 로고    scopus 로고
    • Feature selection for multi-label classification using multivariate mutual information
    • Lee, J., & Kim, D. W. (2013). Feature selection for multi-label classification using multivariate mutual information. Pattern Recognition Letters, 34, 349-357.
    • (2013) Pattern Recognition Letters , vol.34 , pp. 349-357
    • Lee, J.1    Kim, D.W.2
  • 18
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5, 361-397.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 20
    • 38449109775 scopus 로고    scopus 로고
    • Conditional mutual information based feature selection for classification task
    • Novovičová, J., Somol, P., Haindl, M., & Pudil, P. (2007). Conditional mutual information based feature selection for classification task. Lecture Notes in Computer Science, 4756, 417-426.
    • (2007) Lecture Notes in Computer Science , vol.4756 , pp. 417-426
    • Novovičová, J.1    Somol, P.2    Haindl, M.3    Pudil, P.4
  • 21
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 22
    • 84894107278 scopus 로고    scopus 로고
    • Sentiment topic models for social emotion mining
    • Rao, Y., Li, Q., Mao, X., & Wenyin, L. (2014). Sentiment topic models for social emotion mining. Information Sciences, 266, 90-100.
    • (2014) Information Sciences , vol.266 , pp. 90-100
    • Rao, Y.1    Li, Q.2    Mao, X.3    Wenyin, L.4
  • 24
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 25
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39, 135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 26
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34, 1-47.
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 36
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • Zhang, M., Peña, J., & Robles, V. (2009). Feature selection for multi-label naive Bayes classification. Information Sciences, 179, 3218-3229.
    • (2009) Information Sciences , vol.179 , pp. 3218-3229
    • Zhang, M.1    Peña, J.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.