-
1
-
-
84883569291
-
Epidemiology of heart failure
-
[1] Roger, V.L., Epidemiology of heart failure. Circ. Res. 113 (2013), 646–659.
-
(2013)
Circ. Res.
, vol.113
, pp. 646-659
-
-
Roger, V.L.1
-
2
-
-
84858702540
-
The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives
-
[2] Chen, L., Magliano, D.J., Zimmet, P.Z., The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat. Rev. Endocrinol. 8 (2012), 228–236.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 228-236
-
-
Chen, L.1
Magliano, D.J.2
Zimmet, P.Z.3
-
3
-
-
0036681988
-
Obesity and the risk of heart failure
-
[3] Kenchaiah, S., Evans, J.C., Levy, D., Wilson, P.W., Benjamin, E.J., Larson, M.G., Kannel, W.B., Vasan, R.S., Obesity and the risk of heart failure. N. Engl. J. Med. 347 (2002), 305–313.
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 305-313
-
-
Kenchaiah, S.1
Evans, J.C.2
Levy, D.3
Wilson, P.W.4
Benjamin, E.J.5
Larson, M.G.6
Kannel, W.B.7
Vasan, R.S.8
-
4
-
-
0035458604
-
Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors
-
[4] Nichols, G.A., Hillier, T.A., Erbey, J.R., Brown, J.B., Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24 (2001), 1614–1619.
-
(2001)
Diabetes Care
, vol.24
, pp. 1614-1619
-
-
Nichols, G.A.1
Hillier, T.A.2
Erbey, J.R.3
Brown, J.B.4
-
5
-
-
34547961920
-
Cardiac energy metabolism in obesity
-
[5] Lopaschuk, G.D., Folmes, C.D., Stanley, W.C., Cardiac energy metabolism in obesity. Circ. Res. 101 (2007), 335–347.
-
(2007)
Circ. Res.
, vol.101
, pp. 335-347
-
-
Lopaschuk, G.D.1
Folmes, C.D.2
Stanley, W.C.3
-
6
-
-
74949133862
-
Myocardial fatty acid metabolism in health and disease
-
[6] Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S., Stanley, W.C., Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90 (2010), 207–258.
-
(2010)
Physiol. Rev.
, vol.90
, pp. 207-258
-
-
Lopaschuk, G.D.1
Ussher, J.R.2
Folmes, C.D.3
Jaswal, J.S.4
Stanley, W.C.5
-
7
-
-
84940911357
-
Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets
-
[7] Fukushima, A., Milner, K., Gupta, A., Lopaschuk, G.D., Myocardial energy substrate metabolism in heart failure: from pathways to therapeutic targets. Curr. Pharm. Des. 21 (2015), 3654–3664.
-
(2015)
Curr. Pharm. Des.
, vol.21
, pp. 3654-3664
-
-
Fukushima, A.1
Milner, K.2
Gupta, A.3
Lopaschuk, G.D.4
-
8
-
-
21244492310
-
Myocardial substrate metabolism in the normal and failing heart
-
[8] Stanley, W.C., Recchia, F.A., Lopaschuk, G.D., Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85 (2005), 1093–1129.
-
(2005)
Physiol. Rev.
, vol.85
, pp. 1093-1129
-
-
Stanley, W.C.1
Recchia, F.A.2
Lopaschuk, G.D.3
-
9
-
-
84896766392
-
The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy
-
[9] Ussher, J.R., The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert. Rev. Cardiovasc. Ther. 12 (2014), 345–358.
-
(2014)
Expert. Rev. Cardiovasc. Ther.
, vol.12
, pp. 345-358
-
-
Ussher, J.R.1
-
10
-
-
84977070483
-
Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes
-
[10] Fukushima, A., Lopaschuk, G.D., Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim. Biophys. Acta 1861 (2016), 1525–1534.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 1525-1534
-
-
Fukushima, A.1
Lopaschuk, G.D.2
-
11
-
-
33947239659
-
The failing heart–an engine out of fuel
-
[11] Neubauer, S., The failing heart–an engine out of fuel. N. Engl. J. Med. 356 (2007), 1140–1151.
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 1140-1151
-
-
Neubauer, S.1
-
12
-
-
0030819144
-
Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy
-
[12] Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J.B., Peters, W., Pabst, T., Ertl, G., Hahn, D., Ingwall, J.S., Kochsiek, K., Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96 (1997), 2190–2196.
-
(1997)
Circulation
, vol.96
, pp. 2190-2196
-
-
Neubauer, S.1
Horn, M.2
Cramer, M.3
Harre, K.4
Newell, J.B.5
Peters, W.6
Pabst, T.7
Ertl, G.8
Hahn, D.9
Ingwall, J.S.10
Kochsiek, K.11
-
13
-
-
84878441741
-
ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4
-
[13] Mori, J., Alrob, O.A., Wagg, C.S., Harris, R.A., Lopaschuk, G.D., Oudit, G.Y., ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304 (2013), H1103–H1113.
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.304
, pp. H1103-H1113
-
-
Mori, J.1
Alrob, O.A.2
Wagg, C.S.3
Harris, R.A.4
Lopaschuk, G.D.5
Oudit, G.Y.6
-
14
-
-
84860134902
-
Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury
-
[14] Ussher, J.R., Wang, W., Gandhi, M., Keung, W., Samokhvalov, V., Oka, T., Wagg, C.S., Jaswal, J.S., Harris, R.A., Clanachan, A.S., Dyck, J.R., Lopaschuk, G.D., Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 94 (2012), 359–369.
-
(2012)
Cardiovasc. Res.
, vol.94
, pp. 359-369
-
-
Ussher, J.R.1
Wang, W.2
Gandhi, M.3
Keung, W.4
Samokhvalov, V.5
Oka, T.6
Wagg, C.S.7
Jaswal, J.S.8
Harris, R.A.9
Clanachan, A.S.10
Dyck, J.R.11
Lopaschuk, G.D.12
-
15
-
-
34347248013
-
The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload
-
[15] Huss, J.M., Imahashi, K., Dufour, C.R., Weinheimer, C.J., Courtois, M., Kovacs, A., Giguere, V., Murphy, E., Kelly, D.P., The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 6 (2007), 25–37.
-
(2007)
Cell Metab.
, vol.6
, pp. 25-37
-
-
Huss, J.M.1
Imahashi, K.2
Dufour, C.R.3
Weinheimer, C.J.4
Courtois, M.5
Kovacs, A.6
Giguere, V.7
Murphy, E.8
Kelly, D.P.9
-
16
-
-
0029800177
-
Fatty acid oxidation enzyme gene expression is downregulated in the failing heart
-
[16] Sack, M.N., Rader, T.A., Park, S., Bastin, J., McCune, S.A., Kelly, D.P., Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94 (1996), 2837–2842.
-
(1996)
Circulation
, vol.94
, pp. 2837-2842
-
-
Sack, M.N.1
Rader, T.A.2
Park, S.3
Bastin, J.4
McCune, S.A.5
Kelly, D.P.6
-
17
-
-
84921837488
-
Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach
-
[17] Lai, L., Leone, T.C., Keller, M.P., Martin, O.J., Broman, A.T., Nigro, J., Kapoor, K., Koves, T.R., Stevens, R., Ilkayeva, O.R., Vega, R.B., Attie, A.D., Muoio, D.M., Kelly, D.P., Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7 (2014), 1022–1031.
-
(2014)
Circ. Heart Fail.
, vol.7
, pp. 1022-1031
-
-
Lai, L.1
Leone, T.C.2
Keller, M.P.3
Martin, O.J.4
Broman, A.T.5
Nigro, J.6
Kapoor, K.7
Koves, T.R.8
Stevens, R.9
Ilkayeva, O.R.10
Vega, R.B.11
Attie, A.D.12
Muoio, D.M.13
Kelly, D.P.14
-
18
-
-
84988848622
-
Mitochondrial protein hyperacetylation in the failing heart
-
[18] Horton, J.L., Martin, O.J., Lai, L., Riley, N.M., Richards, A.L., Vega, R.B., Leone, T.C., Pagliarini, D.J., Muoio, D.M., Bedi, K.C. Jr., Margulies, K.B., Coon, J.J., Kelly, D.P., Mitochondrial protein hyperacetylation in the failing heart. JCI Insight, 2, 2016.
-
(2016)
JCI Insight
, vol.2
-
-
Horton, J.L.1
Martin, O.J.2
Lai, L.3
Riley, N.M.4
Richards, A.L.5
Vega, R.B.6
Leone, T.C.7
Pagliarini, D.J.8
Muoio, D.M.9
Bedi, K.C.10
Margulies, K.B.11
Coon, J.J.12
Kelly, D.P.13
-
19
-
-
84968813502
-
Assessing cardiac metabolism: a scientific statement from the American Heart Association
-
[19] Taegtmeyer, H., Young, M.E., Lopaschuk, G.D., Abel, E.D., Brunengraber, H., Darley-Usmar, V., Des Rosiers, C., Gerszten, R., Glatz, J.F., Griffin, J.L., Gropler, R.J., Holzhuetter, H.G., Kizer, J.R., Lewandowski, E.D., Malloy, C.R., Neubauer, S., Peterson, L.R., Portman, M.A., Recchia, F.A., Van Eyk, J.E., Wang, T.J., Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ. Res. 118 (2016), 1659–1701.
-
(2016)
Circ. Res.
, vol.118
, pp. 1659-1701
-
-
Taegtmeyer, H.1
Young, M.E.2
Lopaschuk, G.D.3
Abel, E.D.4
Brunengraber, H.5
Darley-Usmar, V.6
Des Rosiers, C.7
Gerszten, R.8
Glatz, J.F.9
Griffin, J.L.10
Gropler, R.J.11
Holzhuetter, H.G.12
Kizer, J.R.13
Lewandowski, E.D.14
Malloy, C.R.15
Neubauer, S.16
Peterson, L.R.17
Portman, M.A.18
Recchia, F.A.19
Van Eyk, J.E.20
Wang, T.J.21
more..
-
20
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
[20] Hebert, A.S., Dittenhafer-Reed, K.E., Yu, W., Bailey, D.J., Selen, E.S., Boersma, M.D., Carson, J.J., Tonelli, M., Balloon, A.J., Higbee, A.J., Westphall, M.S., Pagliarini, D.J., Prolla, T.A., Assadi-Porter, F., Roy, S., Denu, J.M., Coon, J.J., Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49 (2013), 186–199.
-
(2013)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
Dittenhafer-Reed, K.E.2
Yu, W.3
Bailey, D.J.4
Selen, E.S.5
Boersma, M.D.6
Carson, J.J.7
Tonelli, M.8
Balloon, A.J.9
Higbee, A.J.10
Westphall, M.S.11
Pagliarini, D.J.12
Prolla, T.A.13
Assadi-Porter, F.14
Roy, S.15
Denu, J.M.16
Coon, J.J.17
-
21
-
-
61649089277
-
Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
-
[21] Zhang, J., Sprung, R., Pei, J., Tan, X., Kim, S., Zhu, H., Liu, C.F., Grishin, N.V., Zhao, Y., Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 8 (2009), 215–225.
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 215-225
-
-
Zhang, J.1
Sprung, R.2
Pei, J.3
Tan, X.4
Kim, S.5
Zhu, H.6
Liu, C.F.7
Grishin, N.V.8
Zhao, Y.9
-
22
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
[22] Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., Stevens, R.D., Li, Y., Saha, A.K., Ruderman, N.B., Bain, J.R., Newgard, C.B., Farese, R.V. Jr., Alt, F.W., Kahn, C.R., Verdin, E., SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464 (2010), 121–125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
Stevens, R.D.11
Li, Y.12
Saha, A.K.13
Ruderman, N.B.14
Bain, J.R.15
Newgard, C.B.16
Farese, R.V.17
Alt, F.W.18
Kahn, C.R.19
Verdin, E.20
more..
-
23
-
-
84876217035
-
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
-
[23] Rardin, M.J., Newman, J.C., Held, J.M., Cusack, M.P., Sorensen, D.J., Li, B., Schilling, B., Mooney, S.D., Kahn, C.R., Verdin, E., Gibson, B.W., Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 6601–6606.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 6601-6606
-
-
Rardin, M.J.1
Newman, J.C.2
Held, J.M.3
Cusack, M.P.4
Sorensen, D.J.5
Li, B.6
Schilling, B.7
Mooney, S.D.8
Kahn, C.R.9
Verdin, E.10
Gibson, B.W.11
-
24
-
-
84870880080
-
Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
-
e50545
-
[24] Sol, E.M., Wagner, S.A., Weinert, B.T., Kumar, A., Kim, H.S., Deng, C.X., Choudhary, C., Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS One, 7, 2012, e50545.
-
(2012)
PLoS One
, vol.7
-
-
Sol, E.M.1
Wagner, S.A.2
Weinert, B.T.3
Kumar, A.4
Kim, H.S.5
Deng, C.X.6
Choudhary, C.7
-
25
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
[25] Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., Mann, M., Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325 (2009), 834–840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
Nielsen, M.L.4
Rehman, M.5
Walther, T.C.6
Olsen, J.V.7
Mann, M.8
-
26
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
[26] Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S.M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong, Y., Guan, K.L., Regulation of cellular metabolism by protein lysine acetylation. Science 327 (2010), 1000–1004.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
Yu, W.4
Lin, Y.5
Zhang, T.6
Yao, J.7
Zhou, L.8
Zeng, Y.9
Li, H.10
Li, Y.11
Shi, J.12
An, W.13
Hancock, S.M.14
He, F.15
Qin, L.16
Chin, J.17
Yang, P.18
Chen, X.19
Lei, Q.20
Xiong, Y.21
Guan, K.L.22
more..
-
27
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
[27] Lin, S.J., Defossez, P.A., Guarente, L., Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289 (2000), 2126–2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
Defossez, P.A.2
Guarente, L.3
-
28
-
-
84885155285
-
Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix
-
[28] Wagner, G.R., Payne, R.M., Widespread and enzyme-independent Nepsilon-acetylation and Nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288 (2013), 29036–29045.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29036-29045
-
-
Wagner, G.R.1
Payne, R.M.2
-
29
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
[29] Lin, S.J., Ford, E., Haigis, M., Liszt, G., Guarente, L., Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18 (2004), 12–16.
-
(2004)
Genes Dev.
, vol.18
, pp. 12-16
-
-
Lin, S.J.1
Ford, E.2
Haigis, M.3
Liszt, G.4
Guarente, L.5
-
30
-
-
84955354799
-
The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins
-
[30] Davies, M.N., Kjalarsdottir, L., Thompson, J.W., Dubois, L.G., Stevens, R.D., Ilkayeva, O.R., Brosnan, M.J., Rolph, T.P., Grimsrud, P.A., Muoio, D.M., The acetyl group buffering action of carnitine acetyltransferase offsets macronutrient-induced lysine acetylation of mitochondrial proteins. Cell Rep. 14 (2016), 243–254.
-
(2016)
Cell Rep.
, vol.14
, pp. 243-254
-
-
Davies, M.N.1
Kjalarsdottir, L.2
Thompson, J.W.3
Dubois, L.G.4
Stevens, R.D.5
Ilkayeva, O.R.6
Brosnan, M.J.7
Rolph, T.P.8
Grimsrud, P.A.9
Muoio, D.M.10
-
31
-
-
84948129560
-
Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart
-
[31] Vazquez, E.J., Berthiaume, J.M., Kamath, V., Achike, O., Buchanan, E., Montano, M.M., Chandler, M.P., Miyagi, M., Rosca, M.G., Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc. Res. 107 (2015), 453–465.
-
(2015)
Cardiovasc. Res.
, vol.107
, pp. 453-465
-
-
Vazquez, E.J.1
Berthiaume, J.M.2
Kamath, V.3
Achike, O.4
Buchanan, E.5
Montano, M.M.6
Chandler, M.P.7
Miyagi, M.8
Rosca, M.G.9
-
32
-
-
84907339466
-
Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling
-
[32] Alrob, O.A., Sankaralingam, S., Ma, C., Wagg, C.S., Fillmore, N., Jaswal, J.S., Sack, M.N., Lehner, R., Gupta, M.P., Michelakis, E.D., Padwal, R.S., Johnstone, D.E., Sharma, A.M., Lopaschuk, G.D., Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc. Res. 103 (2014), 485–497.
-
(2014)
Cardiovasc. Res.
, vol.103
, pp. 485-497
-
-
Alrob, O.A.1
Sankaralingam, S.2
Ma, C.3
Wagg, C.S.4
Fillmore, N.5
Jaswal, J.S.6
Sack, M.N.7
Lehner, R.8
Gupta, M.P.9
Michelakis, E.D.10
Padwal, R.S.11
Johnstone, D.E.12
Sharma, A.M.13
Lopaschuk, G.D.14
-
33
-
-
84933529046
-
Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox
-
[33] Sankaralingam, S., Abo Alrob, O., Zhang, L., Jaswal, J.S., Wagg, C.S., Fukushima, A., Padwal, R.S., Johnstone, D.E., Sharma, A.M., Lopaschuk, G.D., Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: implications for the obesity paradox. Diabetes 64 (2015), 1643–1657.
-
(2015)
Diabetes
, vol.64
, pp. 1643-1657
-
-
Sankaralingam, S.1
Abo Alrob, O.2
Zhang, L.3
Jaswal, J.S.4
Wagg, C.S.5
Fukushima, A.6
Padwal, R.S.7
Johnstone, D.E.8
Sharma, A.M.9
Lopaschuk, G.D.10
-
34
-
-
84926163974
-
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond
-
[34] Verdin, E., Ott, M., 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16 (2015), 258–264.
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 258-264
-
-
Verdin, E.1
Ott, M.2
-
35
-
-
78651162036
-
Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
-
[35] Allfrey, V.G., Faulkner, R., Mirsky, A.E., Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U. S. A. 51 (1964), 786–794.
-
(1964)
Proc. Natl. Acad. Sci. U. S. A.
, vol.51
, pp. 786-794
-
-
Allfrey, V.G.1
Faulkner, R.2
Mirsky, A.E.3
-
36
-
-
34547697009
-
Metabolism, cytoskeleton and cellular signalling in the grip of protein Nepsilon - and O-acetylation
-
[36] Yang, X.J., Gregoire, S., Metabolism, cytoskeleton and cellular signalling in the grip of protein Nepsilon - and O-acetylation. EMBO Rep. 8 (2007), 556–562.
-
(2007)
EMBO Rep.
, vol.8
, pp. 556-562
-
-
Yang, X.J.1
Gregoire, S.2
-
37
-
-
48249157846
-
Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation
-
[37] Shaw, B.F., Schneider, G.F., Bilgicer, B., Kaufman, G.K., Neveu, J.M., Lane, W.S., Whitelegge, J.P., Whitesides, G.M., Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation. Protein Sci. 17 (2008), 1446–1455.
-
(2008)
Protein Sci.
, vol.17
, pp. 1446-1455
-
-
Shaw, B.F.1
Schneider, G.F.2
Bilgicer, B.3
Kaufman, G.K.4
Neveu, J.M.5
Lane, W.S.6
Whitelegge, J.P.7
Whitesides, G.M.8
-
38
-
-
84864996189
-
Mechanistic insights into the regulation of metabolic enzymes by acetylation
-
[38] Xiong, Y., Guan, K.L., Mechanistic insights into the regulation of metabolic enzymes by acetylation. J. Cell Biol. 198 (2012), 155–164.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 155-164
-
-
Xiong, Y.1
Guan, K.L.2
-
39
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
[39] Grunstein, M., Histone acetylation in chromatin structure and transcription. Nature 389 (1997), 349–352.
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
40
-
-
84896393257
-
The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism
-
[40] Fiorino, E., Giudici, M., Ferrari, A., Mitro, N., Caruso, D., De Fabiani, E., Crestani, M., The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. IUBMB Life 66 (2014), 89–99.
-
(2014)
IUBMB Life
, vol.66
, pp. 89-99
-
-
Fiorino, E.1
Giudici, M.2
Ferrari, A.3
Mitro, N.4
Caruso, D.5
De Fabiani, E.6
Crestani, M.7
-
41
-
-
56049090769
-
Acetylation of non-histone proteins modulates cellular signalling at multiple levels
-
[41] Spange, S., Wagner, T., Heinzel, T., Kramer, O.H., Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 41 (2009), 185–198.
-
(2009)
Int. J. Biochem. Cell Biol.
, vol.41
, pp. 185-198
-
-
Spange, S.1
Wagner, T.2
Heinzel, T.3
Kramer, O.H.4
-
42
-
-
28044471827
-
Acetylation and deacetylation of non-histone proteins
-
[42] Glozak, M.A., Sengupta, N., Zhang, X., Seto, E., Acetylation and deacetylation of non-histone proteins. Gene 363 (2005), 15–23.
-
(2005)
Gene
, vol.363
, pp. 15-23
-
-
Glozak, M.A.1
Sengupta, N.2
Zhang, X.3
Seto, E.4
-
43
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
[43] Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N.V., White, M., Yang, X.J., Zhao, Y., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23 (2006), 607–618.
-
(2006)
Mol. Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
Xu, Y.4
Ball, H.5
Pei, J.6
Cheng, T.7
Kho, Y.8
Xiao, H.9
Xiao, L.10
Grishin, N.V.11
White, M.12
Yang, X.J.13
Zhao, Y.14
-
44
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
[44] Schwer, B., Eckersdorff, M., Li, Y., Silva, J.C., Fermin, D., Kurtev, M.V., Giallourakis, C., Comb, M.J., Alt, F.W., Lombard, D.B., Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8 (2009), 604–606.
-
(2009)
Aging Cell
, vol.8
, pp. 604-606
-
-
Schwer, B.1
Eckersdorff, M.2
Li, Y.3
Silva, J.C.4
Fermin, D.5
Kurtev, M.V.6
Giallourakis, C.7
Comb, M.J.8
Alt, F.W.9
Lombard, D.B.10
-
45
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
[45] Kendrick, A.A., Choudhury, M., Rahman, S.M., McCurdy, C.E., Friederich, M., Van Hove, J.L., Watson, P.A., Birdsey, N., Bao, J., Gius, D., Sack, M.N., Jing, E., Kahn, C.R., Friedman, J.E., Jonscher, K.R., Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 433 (2011), 505–514.
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
Van Hove, J.L.6
Watson, P.A.7
Birdsey, N.8
Bao, J.9
Gius, D.10
Sack, M.N.11
Jing, E.12
Kahn, C.R.13
Friedman, J.E.14
Jonscher, K.R.15
-
46
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
[46] Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M.M., Schwer, B., Stevens, R.D., Muehlbauer, M.J., Kakar, S., Bass, N.M., Kuusisto, J., Laakso, M., Alt, F.W., Newgard, C.B., Farese, R.V. Jr., Kahn, C.R., Verdin, E., SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44 (2011), 177–190.
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
Shimazu, T.2
Jing, E.3
Grueter, C.A.4
Collins, A.M.5
Aouizerat, B.6
Stancakova, A.7
Goetzman, E.8
Lam, M.M.9
Schwer, B.10
Stevens, R.D.11
Muehlbauer, M.J.12
Kakar, S.13
Bass, N.M.14
Kuusisto, J.15
Laakso, M.16
Alt, F.W.17
Newgard, C.B.18
Farese, R.V.19
Kahn, C.R.20
Verdin, E.21
more..
-
47
-
-
74549209572
-
Chronic ethanol consumption induces global hepatic protein hyperacetylation
-
[47] Shepard, B.D., Tuma, D.J., Tuma, P.L., Chronic ethanol consumption induces global hepatic protein hyperacetylation. Alcohol. Clin. Exp. Res. 34 (2010), 280–291.
-
(2010)
Alcohol. Clin. Exp. Res.
, vol.34
, pp. 280-291
-
-
Shepard, B.D.1
Tuma, D.J.2
Tuma, P.L.3
-
48
-
-
84858796367
-
A two-way street: reciprocal regulation of metabolism and signalling
-
[48] Wellen, K.E., Thompson, C.B., A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13 (2012), 270–276.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 270-276
-
-
Wellen, K.E.1
Thompson, C.B.2
-
49
-
-
84902331962
-
Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation
-
[49] Pougovkina, O., te Brinke, H., Ofman, R., van Cruchten, A.G., Kulik, W., Wanders, R.J., Houten, S.M., de Boer, V.C., Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23 (2014), 3513–3522.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 3513-3522
-
-
Pougovkina, O.1
te Brinke, H.2
Ofman, R.3
van Cruchten, A.G.4
Kulik, W.5
Wanders, R.J.6
Houten, S.M.7
de Boer, V.C.8
-
50
-
-
70350706093
-
The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology
-
[50] Lu, Z., Scott, I., Webster, B.R., Sack, M.N., The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology. Circ. Res. 105 (2009), 830–841.
-
(2009)
Circ. Res.
, vol.105
, pp. 830-841
-
-
Lu, Z.1
Scott, I.2
Webster, B.R.3
Sack, M.N.4
-
51
-
-
0018564390
-
A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci
-
[51] Rine, J., Strathern, J.N., Hicks, J.B., Herskowitz, I., A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 93 (1979), 877–901.
-
(1979)
Genetics
, vol.93
, pp. 877-901
-
-
Rine, J.1
Strathern, J.N.2
Hicks, J.B.3
Herskowitz, I.4
-
52
-
-
77649324591
-
New endogenous regulators of class I histone deacetylases
-
(pe1
-
[52] Riccio, A., New endogenous regulators of class I histone deacetylases. Sci. Signal., 3, 2010 (pe1.
-
(2010)
Sci. Signal.
, vol.3
-
-
Riccio, A.1
-
53
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
[53] Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., Guarente, L., Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418 (2002), 344–348.
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
Kaeberlein, M.2
Andalis, A.A.3
Sturtz, L.A.4
Defossez, P.A.5
Culotta, V.C.6
Fink, G.R.7
Guarente, L.8
-
54
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
[54] Finkel, T., Deng, C.X., Mostoslavsky, R., Recent progress in the biology and physiology of sirtuins. Nature 460 (2009), 587–591.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
55
-
-
84874594425
-
The sirtuin family's role in aging and age-associated pathologies
-
[55] Hall, J.A., Dominy, J.E., Lee, Y., Puigserver, P., The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 123 (2013), 973–979.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 973-979
-
-
Hall, J.A.1
Dominy, J.E.2
Lee, Y.3
Puigserver, P.4
-
57
-
-
8844247034
-
Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes
-
[57] Alcendor, R.R., Kirshenbaum, L.A., Imai, S., Vatner, S.F., Sadoshima, J., Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res. 95 (2004), 971–980.
-
(2004)
Circ. Res.
, vol.95
, pp. 971-980
-
-
Alcendor, R.R.1
Kirshenbaum, L.A.2
Imai, S.3
Vatner, S.F.4
Sadoshima, J.5
-
58
-
-
65249094726
-
Sirt1 hyperexpression in SHR heart related to left ventricular hypertrophy
-
[58] Li, L., Zhao, L., Yi-Ming, W., Yu, Y.S., Xia, C.Y., Duan, J.L., Su, D.F., Sirt1 hyperexpression in SHR heart related to left ventricular hypertrophy. Can. J. Physiol. Pharmacol. 87 (2009), 56–62.
-
(2009)
Can. J. Physiol. Pharmacol.
, vol.87
, pp. 56-62
-
-
Li, L.1
Zhao, L.2
Yi-Ming, W.3
Yu, Y.S.4
Xia, C.Y.5
Duan, J.L.6
Su, D.F.7
-
59
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
[59] Alcendor, R.R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S.F., Sadoshima, J., Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100 (2007), 1512–1521.
-
(2007)
Circ. Res.
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
60
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
[60] Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W., Chua, K.F., Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 10794–10799.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
Manis, J.P.4
Gu, Y.5
Patel, P.6
Bronson, R.7
Appella, E.8
Alt, F.W.9
Chua, K.F.10
-
61
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}
-
[61] Nemoto, S., Fergusson, M.M., Finkel, T., SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 280 (2005), 16456–16460.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
62
-
-
34547906123
-
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1
-
[62] Rodgers, J.T., Puigserver, P., Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 12861–12866.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12861-12866
-
-
Rodgers, J.T.1
Puigserver, P.2
-
63
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
[63] Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z., Puigserver, P., Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26 (2007), 1913–1923.
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
64
-
-
80455128956
-
PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
-
[64] Oka, S., Alcendor, R., Zhai, P., Park, J.Y., Shao, D., Cho, J., Yamamoto, T., Tian, B., Sadoshima, J., PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 14 (2011), 598–611.
-
(2011)
Cell Metab.
, vol.14
, pp. 598-611
-
-
Oka, S.1
Alcendor, R.2
Zhai, P.3
Park, J.Y.4
Shao, D.5
Cho, J.6
Yamamoto, T.7
Tian, B.8
Sadoshima, J.9
-
65
-
-
84947768796
-
Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart
-
[65] Oka, S., Zhai, P., Yamamoto, T., Ikeda, Y., Byun, J., Hsu, C.P., Sadoshima, J., Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ. Heart Fail. 8 (2015), 1123–1132.
-
(2015)
Circ. Heart Fail.
, vol.8
, pp. 1123-1132
-
-
Oka, S.1
Zhai, P.2
Yamamoto, T.3
Ikeda, Y.4
Byun, J.5
Hsu, C.P.6
Sadoshima, J.7
-
66
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
-
[66] Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., Park, J.W., Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 38 (2010), 864–878.
-
(2010)
Mol. Cell
, vol.38
, pp. 864-878
-
-
Lim, J.H.1
Lee, Y.M.2
Chun, Y.S.3
Chen, J.4
Kim, J.E.5
Park, J.W.6
-
67
-
-
84856742769
-
Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation
-
[67] Hallows, W.C., Yu, W., Denu, J.M., Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem. 287 (2012), 3850–3858.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3850-3858
-
-
Hallows, W.C.1
Yu, W.2
Denu, J.M.3
-
68
-
-
84929088095
-
SIRT3 deficiency impairs mitochondrial and contractile function in the heart
-
[68] Koentges, C., Pfeil, K., Schnick, T., Wiese, S., Dahlbock, R., Cimolai, M.C., Meyer-Steenbuck, M., Cenkerova, K., Hoffmann, M.M., Jaeger, C., Odening, K.E., Kammerer, B., Hein, L., Bode, C., Bugger, H., SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res. Cardiol., 110, 2015, 36.
-
(2015)
Basic Res. Cardiol.
, vol.110
, pp. 36
-
-
Koentges, C.1
Pfeil, K.2
Schnick, T.3
Wiese, S.4
Dahlbock, R.5
Cimolai, M.C.6
Meyer-Steenbuck, M.7
Cenkerova, K.8
Hoffmann, M.M.9
Jaeger, C.10
Odening, K.E.11
Kammerer, B.12
Hein, L.13
Bode, C.14
Bugger, H.15
-
69
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
[69] Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A., Gupta, M.P., Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119 (2009), 2758–2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
70
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
[70] Hallows, W.C., Yu, W., Smith, B.C., Devries, M.K., Ellinger, J.J., Someya, S., Shortreed, M.R., Prolla, T., Markley, J.L., Smith, L.M., Zhao, S., Guan, K.L., Denu, J.M., Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41 (2011), 139–149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
Yu, W.2
Smith, B.C.3
Devries, M.K.4
Ellinger, J.J.5
Someya, S.6
Shortreed, M.R.7
Prolla, T.8
Markley, J.L.9
Smith, L.M.10
Zhao, S.11
Guan, K.L.12
Denu, J.M.13
-
71
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
[71] Bharathi, S.S., Zhang, Y., Mohsen, A.W., Uppala, R., Balasubramani, M., Schreiber, E., Uechi, G., Beck, M.E., Rardin, M.J., Vockley, J., Verdin, E., Gibson, B.W., Hirschey, M.D., Goetzman, E.S., Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288 (2013), 33837–33847.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
Zhang, Y.2
Mohsen, A.W.3
Uppala, R.4
Balasubramani, M.5
Schreiber, E.6
Uechi, G.7
Beck, M.E.8
Rardin, M.J.9
Vockley, J.10
Verdin, E.11
Gibson, B.W.12
Hirschey, M.D.13
Goetzman, E.S.14
-
72
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
[72] Jing, E., O'Neill, B.T., Rardin, M.J., Kleinridders, A., Ilkeyeva, O.R., Ussar, S., Bain, J.R., Lee, K.Y., Verdin, E.M., Newgard, C.B., Gibson, B.W., Kahn, C.R., Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62 (2013), 3404–3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
O'Neill, B.T.2
Rardin, M.J.3
Kleinridders, A.4
Ilkeyeva, O.R.5
Ussar, S.6
Bain, J.R.7
Lee, K.Y.8
Verdin, E.M.9
Newgard, C.B.10
Gibson, B.W.11
Kahn, C.R.12
-
73
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
[73] Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., Prolla, T.A., Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143 (2010), 802–812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
Yu, W.2
Hallows, W.C.3
Xu, J.4
Vann, J.M.5
Leeuwenburgh, C.6
Tanokura, M.7
Denu, J.M.8
Prolla, T.A.9
-
74
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
[74] Cimen, H., Han, M.J., Yang, Y., Tong, Q., Koc, H., Koc, E.C., Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry (Mosc) 49 (2010), 304–311.
-
(2010)
Biochemistry (Mosc)
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
75
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
[75] Ahn, B.H., Kim, H.S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.X., Finkel, T., A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 14447–14452.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
Deng, C.X.7
Finkel, T.8
-
76
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
[76] Jing, E., Emanuelli, B., Hirschey, M.D., Boucher, J., Lee, K.Y., Lombard, D., Verdin, E.M., Kahn, C.R., Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 14608–14613.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
Emanuelli, B.2
Hirschey, M.D.3
Boucher, J.4
Lee, K.Y.5
Lombard, D.6
Verdin, E.M.7
Kahn, C.R.8
-
77
-
-
84869201195
-
The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
-
[77] Sundaresan, N.R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., Pillai, V.B., Ravindra, P.V., Gupta, M., Jeevanandam, V., Cunningham, J.M., Deng, C.X., Lombard, D.B., Mostoslavsky, R., Gupta, M.P., The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18 (2012), 1643–1650.
-
(2012)
Nat. Med.
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
Vasudevan, P.2
Zhong, L.3
Kim, G.4
Samant, S.5
Parekh, V.6
Pillai, V.B.7
Ravindra, P.V.8
Gupta, M.9
Jeevanandam, V.10
Cunningham, J.M.11
Deng, C.X.12
Lombard, D.B.13
Mostoslavsky, R.14
Gupta, M.P.15
-
78
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
[78] Kim, H.S., Xiao, C., Wang, R.H., Lahusen, T., Xu, X., Vassilopoulos, A., Vazquez-Ortiz, G., Jeong, W.I., Park, O., Ki, S.H., Gao, B., Deng, C.X., Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12 (2010), 224–236.
-
(2010)
Cell Metab.
, vol.12
, pp. 224-236
-
-
Kim, H.S.1
Xiao, C.2
Wang, R.H.3
Lahusen, T.4
Xu, X.5
Vassilopoulos, A.6
Vazquez-Ortiz, G.7
Jeong, W.I.8
Park, O.9
Ki, S.H.10
Gao, B.11
Deng, C.X.12
-
79
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
[79] Dominy, J.E. Jr., Lee, Y., Jedrychowski, M.P., Chim, H., Jurczak, M.J., Camporez, J.P., Ruan, H.B., Feldman, J., Pierce, K., Mostoslavsky, R., Denu, J.M., Clish, C.B., Yang, X., Shulman, G.I., Gygi, S.P., Puigserver, P., The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48 (2012), 900–913.
-
(2012)
Mol. Cell
, vol.48
, pp. 900-913
-
-
Dominy, J.E.1
Lee, Y.2
Jedrychowski, M.P.3
Chim, H.4
Jurczak, M.J.5
Camporez, J.P.6
Ruan, H.B.7
Feldman, J.8
Pierce, K.9
Mostoslavsky, R.10
Denu, J.M.11
Clish, C.B.12
Yang, X.13
Shulman, G.I.14
Gygi, S.P.15
Puigserver, P.16
-
80
-
-
84983688475
-
Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart
-
(ajpheart 00900 02015)
-
[80] Fukushima, A., Alrob, O.A., Zhang, L., Wagg, C.S., Altamimi, T., Rawat, S., Rebeyka, I.M., Kantor, P.F., Lopaschuk, G.D., Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am. J. Physiol. Heart Circ. Physiol., 2016 (ajpheart 00900 02015).
-
(2016)
Am. J. Physiol. Heart Circ. Physiol.
-
-
Fukushima, A.1
Alrob, O.A.2
Zhang, L.3
Wagg, C.S.4
Altamimi, T.5
Rawat, S.6
Rebeyka, I.M.7
Kantor, P.F.8
Lopaschuk, G.D.9
-
81
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
[81] Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies, M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B., Lovitch, S.B., Sharpe, A.H., Kurland, I.J., Steegborn, C., Gygi, S.P., Muoio, D.M., Ruderman, N.B., Haigis, M.C., SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50 (2013), 686–698.
-
(2013)
Mol. Cell
, vol.50
, pp. 686-698
-
-
Laurent, G.1
German, N.J.2
Saha, A.K.3
de Boer, V.C.4
Davies, M.5
Koves, T.R.6
Dephoure, N.7
Fischer, F.8
Boanca, G.9
Vaitheesvaran, B.10
Lovitch, S.B.11
Sharpe, A.H.12
Kurland, I.J.13
Steegborn, C.14
Gygi, S.P.15
Muoio, D.M.16
Ruderman, N.B.17
Haigis, M.C.18
-
82
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
[82] Park, J., Chen, Y., Tishkoff, D.X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B.M., Skinner, M.E., Lombard, D.B., Zhao, Y., SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50 (2013), 919–930.
-
(2013)
Mol. Cell
, vol.50
, pp. 919-930
-
-
Park, J.1
Chen, Y.2
Tishkoff, D.X.3
Peng, C.4
Tan, M.5
Dai, L.6
Xie, Z.7
Zhang, Y.8
Zwaans, B.M.9
Skinner, M.E.10
Lombard, D.B.11
Zhao, Y.12
-
83
-
-
84937517955
-
SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target
-
[83] Nishida, Y., Rardin, M.J., Carrico, C., He, W., Sahu, A.K., Gut, P., Najjar, R., Fitch, M., Hellerstein, M., Gibson, B.W., Verdin, E., SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59 (2015), 321–332.
-
(2015)
Mol. Cell
, vol.59
, pp. 321-332
-
-
Nishida, Y.1
Rardin, M.J.2
Carrico, C.3
He, W.4
Sahu, A.K.5
Gut, P.6
Najjar, R.7
Fitch, M.8
Hellerstein, M.9
Gibson, B.W.10
Verdin, E.11
-
84
-
-
84903770687
-
Writers and readers of histone acetylation: structure, mechanism, and inhibition
-
[84] Marmorstein, R., Zhou, M.M., Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol., 6, 2014, a018762.
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a018762
-
-
Marmorstein, R.1
Zhou, M.M.2
-
85
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
-
[85] Lerin, C., Rodgers, J.T., Kalume, D.E., Kim, S.H., Pandey, A., Puigserver, P., GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3 (2006), 429–438.
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.H.4
Pandey, A.5
Puigserver, P.6
-
86
-
-
77953292242
-
Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5
-
[86] Dominy, J.E. Jr., Lee, Y., Gerhart-Hines, Z., Puigserver, P., Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804 (2010), 1676–1683.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1676-1683
-
-
Dominy, J.E.1
Lee, Y.2
Gerhart-Hines, Z.3
Puigserver, P.4
-
87
-
-
84860192261
-
Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1
-
[87] Scott, I., Webster, B.R., Li, J.H., Sack, M.N., Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 443 (2012), 655–661.
-
(2012)
Biochem. J.
, vol.443
, pp. 655-661
-
-
Scott, I.1
Webster, B.R.2
Li, J.H.3
Sack, M.N.4
-
88
-
-
0037166274
-
Manipulation of a nuclear NAD + salvage pathway delays aging without altering steady-state NAD + levels
-
[88] Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., Cohen, H., Lin, S.S., Manchester, J.K., Gordon, J.I., Sinclair, D.A., Manipulation of a nuclear NAD + salvage pathway delays aging without altering steady-state NAD + levels. J. Biol. Chem. 277 (2002), 18881–18890.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 18881-18890
-
-
Anderson, R.M.1
Bitterman, K.J.2
Wood, J.G.3
Medvedik, O.4
Cohen, H.5
Lin, S.S.6
Manchester, J.K.7
Gordon, J.I.8
Sinclair, D.A.9
-
89
-
-
35848932089
-
Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes
-
[89] Alano, C.C., Tran, A., Tao, R., Ying, W., Karliner, J.S., Swanson, R.A., Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J. Neurosci. Res. 85 (2007), 3378–3385.
-
(2007)
J. Neurosci. Res.
, vol.85
, pp. 3378-3385
-
-
Alano, C.C.1
Tran, A.2
Tao, R.3
Ying, W.4
Karliner, J.S.5
Swanson, R.A.6
-
90
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD + levels dictate cell survival
-
[90] Yang, H., Yang, T., Baur, J.A., Perez, E., Matsui, T., Carmona, J.J., Lamming, D.W., Souza-Pinto, N.C., Bohr, V.A., Rosenzweig, A., de Cabo, R., Sauve, A.A., Sinclair, D.A., Nutrient-sensitive mitochondrial NAD + levels dictate cell survival. Cell 130 (2007), 1095–1107.
-
(2007)
Cell
, vol.130
, pp. 1095-1107
-
-
Yang, H.1
Yang, T.2
Baur, J.A.3
Perez, E.4
Matsui, T.5
Carmona, J.J.6
Lamming, D.W.7
Souza-Pinto, N.C.8
Bohr, V.A.9
Rosenzweig, A.10
de Cabo, R.11
Sauve, A.A.12
Sinclair, D.A.13
-
91
-
-
77958569431
-
Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool
-
[91] Pittelli, M., Formentini, L., Faraco, G., Lapucci, A., Rapizzi, E., Cialdai, F., Romano, G., Moneti, G., Moroni, F., Chiarugi, A., Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285 (2010), 34106–34114.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34106-34114
-
-
Pittelli, M.1
Formentini, L.2
Faraco, G.3
Lapucci, A.4
Rapizzi, E.5
Cialdai, F.6
Romano, G.7
Moneti, G.8
Moroni, F.9
Chiarugi, A.10
-
92
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
[92] Nakagawa, T., Lomb, D.J., Haigis, M.C., Guarente, L., SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137 (2009), 560–570.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
93
-
-
84865411082
-
The dynamic regulation of NAD metabolism in mitochondria
-
[93] Stein, L.R., Imai, S., The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23 (2012), 420–428.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 420-428
-
-
Stein, L.R.1
Imai, S.2
-
94
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
[94] Canto, C., Houtkooper, R.H., Pirinen, E., Youn, D.Y., Oosterveer, M.H., Cen, Y., Fernandez-Marcos, P.J., Yamamoto, H., Andreux, P.A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A.A., Auwerx, J., The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15 (2012), 838–847.
-
(2012)
Cell Metab.
, vol.15
, pp. 838-847
-
-
Canto, C.1
Houtkooper, R.H.2
Pirinen, E.3
Youn, D.Y.4
Oosterveer, M.H.5
Cen, Y.6
Fernandez-Marcos, P.J.7
Yamamoto, H.8
Andreux, P.A.9
Cettour-Rose, P.10
Gademann, K.11
Rinsch, C.12
Schoonjans, K.13
Sauve, A.A.14
Auwerx, J.15
-
95
-
-
70149095672
-
Nicotinamide phosphoribosyltransferase regulates cell survival through NAD + synthesis in cardiac myocytes
-
[95] Hsu, C.P., Oka, S., Shao, D., Hariharan, N., Sadoshima, J., Nicotinamide phosphoribosyltransferase regulates cell survival through NAD + synthesis in cardiac myocytes. Circ. Res. 105 (2009), 481–491.
-
(2009)
Circ. Res.
, vol.105
, pp. 481-491
-
-
Hsu, C.P.1
Oka, S.2
Shao, D.3
Hariharan, N.4
Sadoshima, J.5
-
96
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
[96] Yoshino, J., Mills, K.F., Yoon, M.J., Imai, S., Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14 (2011), 528–536.
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
97
-
-
15244355745
-
Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme
-
[97] Avalos, J.L., Bever, K.M., Wolberger, C., Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17 (2005), 855–868.
-
(2005)
Mol. Cell
, vol.17
, pp. 855-868
-
-
Avalos, J.L.1
Bever, K.M.2
Wolberger, C.3
-
98
-
-
84940068861
-
Mitochondrion as a target for heart failure therapy-role of protein lysine acetylation
-
[98] Lee, C.F., Tian, R., Mitochondrion as a target for heart failure therapy-role of protein lysine acetylation. Circ. J. 79 (2015), 1863–1870.
-
(2015)
Circ. J.
, vol.79
, pp. 1863-1870
-
-
Lee, C.F.1
Tian, R.2
-
99
-
-
84860003699
-
Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase
-
[99] Wagner, G.R., Pride, P.M., Babbey, C.M., Payne, R.M., Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Hum. Mol. Genet. 21 (2012), 2688–2697.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 2688-2697
-
-
Wagner, G.R.1
Pride, P.M.2
Babbey, C.M.3
Payne, R.M.4
-
100
-
-
84881348520
-
Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure
-
[100] Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C. Jr., Suthammarak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W., Tian, R., Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18 (2013), 239–250.
-
(2013)
Cell Metab.
, vol.18
, pp. 239-250
-
-
Karamanlidis, G.1
Lee, C.F.2
Garcia-Menendez, L.3
Kolwicz, S.C.4
Suthammarak, W.5
Gong, G.6
Sedensky, M.M.7
Morgan, P.G.8
Wang, W.9
Tian, R.10
-
101
-
-
84964734941
-
Investigating the sensitivity of NAD +-dependent sirtuin deacylation activities to NADH
-
[101] Madsen, A.S., Andersen, C., Daoud, M., Anderson, K.A., Laursen, J.S., Chakladar, S., Huynh, F.K., Colaco, A.R., Backos, D.S., Fristrup, P., Hirschey, M.D., Olsen, C.A., Investigating the sensitivity of NAD +-dependent sirtuin deacylation activities to NADH. J. Biol. Chem. 291 (2016), 7128–7141.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 7128-7141
-
-
Madsen, A.S.1
Andersen, C.2
Daoud, M.3
Anderson, K.A.4
Laursen, J.S.5
Chakladar, S.6
Huynh, F.K.7
Colaco, A.R.8
Backos, D.S.9
Fristrup, P.10
Hirschey, M.D.11
Olsen, C.A.12
-
102
-
-
84930589309
-
Acetyl coenzyme A: a central metabolite and second messenger
-
[102] Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F., Kroemer, G., Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21 (2015), 805–821.
-
(2015)
Cell Metab.
, vol.21
, pp. 805-821
-
-
Pietrocola, F.1
Galluzzi, L.2
Bravo-San Pedro, J.M.3
Madeo, F.4
Kroemer, G.5
-
103
-
-
84898012537
-
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
-
[103] Weinert, B.T., Iesmantavicius, V., Moustafa, T., Scholz, C., Wagner, S.A., Magnes, C., Zechner, R., Choudhary, C., Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol., 10, 2014, 716.
-
(2014)
Mol. Syst. Biol.
, vol.10
, pp. 716
-
-
Weinert, B.T.1
Iesmantavicius, V.2
Moustafa, T.3
Scholz, C.4
Wagner, S.A.5
Magnes, C.6
Zechner, R.7
Choudhary, C.8
-
104
-
-
84904872156
-
The growing landscape of lysine acetylation links metabolism and cell signalling
-
[104] Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E., Mann, M., The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15 (2014), 536–550.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 536-550
-
-
Choudhary, C.1
Weinert, B.T.2
Nishida, Y.3
Verdin, E.4
Mann, M.5
-
105
-
-
84888604134
-
Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications
-
[105] Ghanta, S., Grossmann, R.E., Brenner, C., Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 48 (2013), 561–574.
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.48
, pp. 561-574
-
-
Ghanta, S.1
Grossmann, R.E.2
Brenner, C.3
-
106
-
-
0014937061
-
Nonenzymatic acetylation of histones with acetyl-CoA
-
[106] Paik, W.K., Pearson, D., Lee, H.W., Kim, S., Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213 (1970), 513–522.
-
(1970)
Biochim. Biophys. Acta
, vol.213
, pp. 513-522
-
-
Paik, W.K.1
Pearson, D.2
Lee, H.W.3
Kim, S.4
-
107
-
-
37449020075
-
Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
-
[107] Koves, T.R., Ussher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J.R., Newgard, C.B., Lopaschuk, G.D., Muoio, D.M., Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7 (2008), 45–56.
-
(2008)
Cell Metab.
, vol.7
, pp. 45-56
-
-
Koves, T.R.1
Ussher, J.R.2
Noland, R.C.3
Slentz, D.4
Mosedale, M.5
Ilkayeva, O.6
Bain, J.7
Stevens, R.8
Dyck, J.R.9
Newgard, C.B.10
Lopaschuk, G.D.11
Muoio, D.M.12
-
108
-
-
84975775436
-
Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure
-
[108] Bedi, K.C. Jr., Snyder, N.W., Brandimarto, J., Aziz, M., Mesaros, C., Worth, A.J., Wang, L.L., Javaheri, A., Blair, I.A., Margulies, K.B., Rame, J.E., Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133 (2016), 706–716.
-
(2016)
Circulation
, vol.133
, pp. 706-716
-
-
Bedi, K.C.1
Snyder, N.W.2
Brandimarto, J.3
Aziz, M.4
Mesaros, C.5
Worth, A.J.6
Wang, L.L.7
Javaheri, A.8
Blair, I.A.9
Margulies, K.B.10
Rame, J.E.11
-
109
-
-
84896713080
-
Regulation of autophagy by cytosolic acetyl-coenzyme A
-
[109] Marino, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S.A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D.P., Fernandez, A.F., Martins, I., Kepp, O., Senovilla, L., Bauvy, C., Morselli, E., Vacchelli, E., Bennetzen, M., Magnes, C., Sinner, F., Pieber, T., Lopez-Otin, C., Maiuri, M.C., Codogno, P., Andersen, J.S., Hill, J.A., Madeo, F., Kroemer, G., Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53 (2014), 710–725.
-
(2014)
Mol. Cell
, vol.53
, pp. 710-725
-
-
Marino, G.1
Pietrocola, F.2
Eisenberg, T.3
Kong, Y.4
Malik, S.A.5
Andryushkova, A.6
Schroeder, S.7
Pendl, T.8
Harger, A.9
Niso-Santano, M.10
Zamzami, N.11
Scoazec, M.12
Durand, S.13
Enot, D.P.14
Fernandez, A.F.15
Martins, I.16
Kepp, O.17
Senovilla, L.18
Bauvy, C.19
Morselli, E.20
Vacchelli, E.21
Bennetzen, M.22
Magnes, C.23
Sinner, F.24
Pieber, T.25
Lopez-Otin, C.26
Maiuri, M.C.27
Codogno, P.28
Andersen, J.S.29
Hill, J.A.30
Madeo, F.31
Kroemer, G.32
more..
-
110
-
-
84864858864
-
ATP-citrate lyase: a key player in cancer metabolism
-
[110] Zaidi, N., Swinnen, J.V., Smans, K., ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72 (2012), 3709–3714.
-
(2012)
Cancer Res.
, vol.72
, pp. 3709-3714
-
-
Zaidi, N.1
Swinnen, J.V.2
Smans, K.3
-
111
-
-
84860476829
-
Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility
-
[111] Muoio, D.M., Noland, R.C., Kovalik, J.P., Seiler, S.E., Davies, M.N., DeBalsi, K.L., Ilkayeva, O.R., Stevens, R.D., Kheterpal, I., Zhang, J., Covington, J.D., Bajpeyi, S., Ravussin, E., Kraus, W., Koves, T.R., Mynatt, R.L., Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 15 (2012), 764–777.
-
(2012)
Cell Metab.
, vol.15
, pp. 764-777
-
-
Muoio, D.M.1
Noland, R.C.2
Kovalik, J.P.3
Seiler, S.E.4
Davies, M.N.5
DeBalsi, K.L.6
Ilkayeva, O.R.7
Stevens, R.D.8
Kheterpal, I.9
Zhang, J.10
Covington, J.D.11
Bajpeyi, S.12
Ravussin, E.13
Kraus, W.14
Koves, T.R.15
Mynatt, R.L.16
-
112
-
-
84905816041
-
Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation
-
[112] Abo Alrob, O., Lopaschuk, G.D., Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem. Soc. Trans. 42 (2014), 1043–1051.
-
(2014)
Biochem. Soc. Trans.
, vol.42
, pp. 1043-1051
-
-
Abo Alrob, O.1
Lopaschuk, G.D.2
-
113
-
-
73449116731
-
Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation
-
[113] Madiraju, P., Pande, S.V., Prentki, M., Madiraju, S.R., Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4 (2009), 399–403.
-
(2009)
Epigenetics
, vol.4
, pp. 399-403
-
-
Madiraju, P.1
Pande, S.V.2
Prentki, M.3
Madiraju, S.R.4
-
114
-
-
27844457564
-
Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity
-
[114] Buchanan, J., Mazumder, P.K., Hu, P., Chakrabarti, G., Roberts, M.W., Yun, U.J., Cooksey, R.C., Litwin, S.E., Abel, E.D., Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146 (2005), 5341–5349.
-
(2005)
Endocrinology
, vol.146
, pp. 5341-5349
-
-
Buchanan, J.1
Mazumder, P.K.2
Hu, P.3
Chakrabarti, G.4
Roberts, M.W.5
Yun, U.J.6
Cooksey, R.C.7
Litwin, S.E.8
Abel, E.D.9
-
115
-
-
4344601004
-
Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts
-
[115] Mazumder, P.K., O'Neill, B.T., Roberts, M.W., Buchanan, J., Yun, U.J., Cooksey, R.C., Boudina, S., Abel, E.D., Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53 (2004), 2366–2374.
-
(2004)
Diabetes
, vol.53
, pp. 2366-2374
-
-
Mazumder, P.K.1
O'Neill, B.T.2
Roberts, M.W.3
Buchanan, J.4
Yun, U.J.5
Cooksey, R.C.6
Boudina, S.7
Abel, E.D.8
-
116
-
-
68049136011
-
Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase
-
[116] Ussher, J.R., Koves, T.R., Jaswal, J.S., Zhang, L., Ilkayeva, O., Dyck, J.R., Muoio, D.M., Lopaschuk, G.D., Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes 58 (2009), 1766–1775.
-
(2009)
Diabetes
, vol.58
, pp. 1766-1775
-
-
Ussher, J.R.1
Koves, T.R.2
Jaswal, J.S.3
Zhang, L.4
Ilkayeva, O.5
Dyck, J.R.6
Muoio, D.M.7
Lopaschuk, G.D.8
-
117
-
-
78650481257
-
Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation
-
[117] Zhang, L., Ussher, J.R., Oka, T., Cadete, V.J., Wagg, C., Lopaschuk, G.D., Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc. Res. 89 (2011), 148–156.
-
(2011)
Cardiovasc. Res.
, vol.89
, pp. 148-156
-
-
Zhang, L.1
Ussher, J.R.2
Oka, T.3
Cadete, V.J.4
Wagg, C.5
Lopaschuk, G.D.6
-
118
-
-
80052154999
-
Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss
-
[118] Lin, C.H., Kurup, S., Herrero, P., Schechtman, K.B., Eagon, J.C., Klein, S., Davila-Roman, V.G., Stein, R.I., Dorn, G.W. II, Gropler, R.J., Waggoner, A.D., Peterson, L.R., Myocardial oxygen consumption change predicts left ventricular relaxation improvement in obese humans after weight loss. Obesity 19 (2011), 1804–1812.
-
(2011)
Obesity
, vol.19
, pp. 1804-1812
-
-
Lin, C.H.1
Kurup, S.2
Herrero, P.3
Schechtman, K.B.4
Eagon, J.C.5
Klein, S.6
Davila-Roman, V.G.7
Stein, R.I.8
Dorn, G.W.9
Gropler, R.J.10
Waggoner, A.D.11
Peterson, L.R.12
-
119
-
-
31644445201
-
Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus
-
[119] Herrero, P., Peterson, L.R., McGill, J.B., Matthew, S., Lesniak, D., Dence, C., Gropler, R.J., Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47 (2006), 598–604.
-
(2006)
J. Am. Coll. Cardiol.
, vol.47
, pp. 598-604
-
-
Herrero, P.1
Peterson, L.R.2
McGill, J.B.3
Matthew, S.4
Lesniak, D.5
Dence, C.6
Gropler, R.J.7
-
120
-
-
84865475113
-
Insulin resistance: metabolic mechanisms and consequences in the heart
-
[120] Abel, E.D., O'Shea, K.M., Ramasamy, R., Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler. Thromb. Vasc. Biol. 32 (2012), 2068–2076.
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 2068-2076
-
-
Abel, E.D.1
O'Shea, K.M.2
Ramasamy, R.3
-
121
-
-
27444441492
-
Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity
-
[121] Boudina, S., Sena, S., O'Neill, B.T., Tathireddy, P., Young, M.E., Abel, E.D., Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112 (2005), 2686–2695.
-
(2005)
Circulation
, vol.112
, pp. 2686-2695
-
-
Boudina, S.1
Sena, S.2
O'Neill, B.T.3
Tathireddy, P.4
Young, M.E.5
Abel, E.D.6
-
122
-
-
34548848059
-
Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins
-
[122] Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J.J., Hu, X.X., Aziz, S., Johnson, J.I., Bugger, H., Zaha, V.G., Abel, E.D., Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56 (2007), 2457–2466.
-
(2007)
Diabetes
, vol.56
, pp. 2457-2466
-
-
Boudina, S.1
Sena, S.2
Theobald, H.3
Sheng, X.4
Wright, J.J.5
Hu, X.X.6
Aziz, S.7
Johnson, J.I.8
Bugger, H.9
Zaha, V.G.10
Abel, E.D.11
-
123
-
-
33644784921
-
Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice
-
[123] How, O.J., Aasum, E., Severson, D.L., Chan, W.Y., Essop, M.F., Larsen, T.S., Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55 (2006), 466–473.
-
(2006)
Diabetes
, vol.55
, pp. 466-473
-
-
How, O.J.1
Aasum, E.2
Severson, D.L.3
Chan, W.Y.4
Essop, M.F.5
Larsen, T.S.6
-
124
-
-
2442492971
-
Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women
-
[124] Peterson, L.R., Herrero, P., Schechtman, K.B., Racette, S.B., Waggoner, A.D., Kisrieva-Ware, Z., Dence, C., Klein, S., Marsala, J., Meyer, T., Gropler, R.J., Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109 (2004), 2191–2196.
-
(2004)
Circulation
, vol.109
, pp. 2191-2196
-
-
Peterson, L.R.1
Herrero, P.2
Schechtman, K.B.3
Racette, S.B.4
Waggoner, A.D.5
Kisrieva-Ware, Z.6
Dence, C.7
Klein, S.8
Marsala, J.9
Meyer, T.10
Gropler, R.J.11
-
125
-
-
38449092540
-
Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes
-
[125] Peterson, L.R., Herrero, P., McGill, J., Schechtman, K.B., Kisrieva-Ware, Z., Lesniak, D., Gropler, R.J., Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 57 (2008), 32–40.
-
(2008)
Diabetes
, vol.57
, pp. 32-40
-
-
Peterson, L.R.1
Herrero, P.2
McGill, J.3
Schechtman, K.B.4
Kisrieva-Ware, Z.5
Lesniak, D.6
Gropler, R.J.7
-
126
-
-
71549149354
-
Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle
-
[126] Zhang, L., Keung, W., Samokhvalov, V., Wang, W., Lopaschuk, G.D., Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim. Biophys. Acta 1801 (2010), 1–22.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 1-22
-
-
Zhang, L.1
Keung, W.2
Samokhvalov, V.3
Wang, W.4
Lopaschuk, G.D.5
-
127
-
-
84959180301
-
Lipotoxicity in obesity and diabetes-related cardiac dysfunction
-
[127] Zlobine, I., Gopal, K., Ussher, J.R., Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim. Biophys. Acta 1861 (2016), 1555–1568.
-
(2016)
Biochim. Biophys. Acta
, vol.1861
, pp. 1555-1568
-
-
Zlobine, I.1
Gopal, K.2
Ussher, J.R.3
-
128
-
-
0034652225
-
Lipotoxic heart disease in obese rats: implications for human obesity
-
[128] Zhou, Y.T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., Orci, L., Unger, R.H., Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 1784–1789.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 1784-1789
-
-
Zhou, Y.T.1
Grayburn, P.2
Karim, A.3
Shimabukuro, M.4
Higa, M.5
Baetens, D.6
Orci, L.7
Unger, R.H.8
-
129
-
-
0037316670
-
Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy
-
[129] Yagyu, H., Chen, G., Yokoyama, M., Hirata, K., Augustus, A., Kako, Y., Seo, T., Hu, Y., Lutz, E.P., Merkel, M., Bensadoun, A., Homma, S., Goldberg, I.J., Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J. Clin. Invest. 111 (2003), 419–426.
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 419-426
-
-
Yagyu, H.1
Chen, G.2
Yokoyama, M.3
Hirata, K.4
Augustus, A.5
Kako, Y.6
Seo, T.7
Hu, Y.8
Lutz, E.P.9
Merkel, M.10
Bensadoun, A.11
Homma, S.12
Goldberg, I.J.13
-
130
-
-
0036143320
-
The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus
-
[130] Finck, B.N., Lehman, J.J., Leone, T.C., Welch, M.J., Bennett, M.J., Kovacs, A., Han, X., Gross, R.W., Kozak, R., Lopaschuk, G.D., Kelly, D.P., The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109 (2002), 121–130.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 121-130
-
-
Finck, B.N.1
Lehman, J.J.2
Leone, T.C.3
Welch, M.J.4
Bennett, M.J.5
Kovacs, A.6
Han, X.7
Gross, R.W.8
Kozak, R.9
Lopaschuk, G.D.10
Kelly, D.P.11
-
131
-
-
3042739406
-
Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats
-
[131] Coort, S.L., Hasselbaink, D.M., Koonen, D.P., Willems, J., Coumans, W.A., Chabowski, A., van der Vusse, G.J., Bonen, A., Glatz, J.F., Luiken, J.J., Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 53 (2004), 1655–1663.
-
(2004)
Diabetes
, vol.53
, pp. 1655-1663
-
-
Coort, S.L.1
Hasselbaink, D.M.2
Koonen, D.P.3
Willems, J.4
Coumans, W.A.5
Chabowski, A.6
van der Vusse, G.J.7
Bonen, A.8
Glatz, J.F.9
Luiken, J.J.10
-
132
-
-
0035798670
-
Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats
-
[132] Luiken, J.J., Arumugam, Y., Dyck, D.J., Bell, R.C., Pelsers, M.M., Turcotte, L.P., Tandon, N.N., Glatz, J.F., Bonen, A., Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J. Biol. Chem. 276 (2001), 40567–40573.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 40567-40573
-
-
Luiken, J.J.1
Arumugam, Y.2
Dyck, D.J.3
Bell, R.C.4
Pelsers, M.M.5
Turcotte, L.P.6
Tandon, N.N.7
Glatz, J.F.8
Bonen, A.9
-
133
-
-
0034010557
-
Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart
-
[133] Sakamoto, J., Barr, R.L., Kavanagh, K.M., Lopaschuk, G.D., Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am. J. Physiol. Heart Circ. Physiol. 278 (2000), H1196–H1204.
-
(2000)
Am. J. Physiol. Heart Circ. Physiol.
, vol.278
, pp. H1196-H1204
-
-
Sakamoto, J.1
Barr, R.L.2
Kavanagh, K.M.3
Lopaschuk, G.D.4
-
134
-
-
0037040203
-
A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase
-
[134] Campbell, F.M., Kozak, R., Wagner, A., Altarejos, J.Y., Dyck, J.R., Belke, D.D., Severson, D.L., Kelly, D.P., Lopaschuk, G.D., A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277 (2002), 4098–4103.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 4098-4103
-
-
Campbell, F.M.1
Kozak, R.2
Wagner, A.3
Altarejos, J.Y.4
Dyck, J.R.5
Belke, D.D.6
Severson, D.L.7
Kelly, D.P.8
Lopaschuk, G.D.9
-
135
-
-
34248589911
-
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease
-
[135] Finck, B.N., Kelly, D.P., Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115 (2007), 2540–2548.
-
(2007)
Circulation
, vol.115
, pp. 2540-2548
-
-
Finck, B.N.1
Kelly, D.P.2
-
136
-
-
84922031813
-
Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function
-
[136] Lu, Z., Chen, Y., Aponte, A.M., Battaglia, V., Gucek, M., Sack, M.N., Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function. J. Biol. Chem. 290 (2015), 2466–2476.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 2466-2476
-
-
Lu, Z.1
Chen, Y.2
Aponte, A.M.3
Battaglia, V.4
Gucek, M.5
Sack, M.N.6
-
137
-
-
84949624063
-
Protein acetylation in metabolism - metabolites and cofactors
-
[137] Menzies, K.J., Zhang, H., Katsyuba, E., Auwerx, J., Protein acetylation in metabolism - metabolites and cofactors. Nat. Rev. Endocrinol. 12 (2016), 43–60.
-
(2016)
Nat. Rev. Endocrinol.
, vol.12
, pp. 43-60
-
-
Menzies, K.J.1
Zhang, H.2
Katsyuba, E.3
Auwerx, J.4
-
138
-
-
79957937929
-
Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart
-
[138] Jaswal, J.S., Keung, W., Wang, W., Ussher, J.R., Lopaschuk, G.D., Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta 1813 (2011), 1333–1350.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1333-1350
-
-
Jaswal, J.S.1
Keung, W.2
Wang, W.3
Ussher, J.R.4
Lopaschuk, G.D.5
-
139
-
-
0028347574
-
Inherited cardiomyopathies
-
[139] Kelly, D.P., Strauss, A.W., Inherited cardiomyopathies. N. Engl. J. Med. 330 (1994), 913–919.
-
(1994)
N. Engl. J. Med.
, vol.330
, pp. 913-919
-
-
Kelly, D.P.1
Strauss, A.W.2
-
140
-
-
84887490616
-
Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy
-
[140] Zhang, L., Jaswal, J.S., Ussher, J.R., Sankaralingam, S., Wagg, C., Zaugg, M., Lopaschuk, G.D., Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail. 6 (2013), 1039–1048.
-
(2013)
Circ. Heart Fail.
, vol.6
, pp. 1039-1048
-
-
Zhang, L.1
Jaswal, J.S.2
Ussher, J.R.3
Sankaralingam, S.4
Wagg, C.5
Zaugg, M.6
Lopaschuk, G.D.7
-
141
-
-
84874672555
-
Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload
-
[141] Zhabyeyev, P., Gandhi, M., Mori, J., Basu, R., Kassiri, Z., Clanachan, A., Lopaschuk, G.D., Oudit, G.Y., Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 97 (2013), 676–685.
-
(2013)
Cardiovasc. Res.
, vol.97
, pp. 676-685
-
-
Zhabyeyev, P.1
Gandhi, M.2
Mori, J.3
Basu, R.4
Kassiri, Z.5
Clanachan, A.6
Lopaschuk, G.D.7
Oudit, G.Y.8
-
142
-
-
84891350842
-
Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation
-
[142] Masoud, W.G., Ussher, J.R., Wang, W., Jaswal, J.S., Wagg, C.S., Dyck, J.R., Lygate, C.A., Neubauer, S., Clanachan, A.S., Lopaschuk, G.D., Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 101 (2014), 30–38.
-
(2014)
Cardiovasc. Res.
, vol.101
, pp. 30-38
-
-
Masoud, W.G.1
Ussher, J.R.2
Wang, W.3
Jaswal, J.S.4
Wagg, C.S.5
Dyck, J.R.6
Lygate, C.A.7
Neubauer, S.8
Clanachan, A.S.9
Lopaschuk, G.D.10
-
143
-
-
4644231528
-
Nuclear receptor signaling and cardiac energetics
-
[143] Huss, J.M., Kelly, D.P., Nuclear receptor signaling and cardiac energetics. Circ. Res. 95 (2004), 568–578.
-
(2004)
Circ. Res.
, vol.95
, pp. 568-578
-
-
Huss, J.M.1
Kelly, D.P.2
-
144
-
-
39149097521
-
The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover
-
[144] O'Donnell, J.M., Fields, A.D., Sorokina, N., Lewandowski, E.D., The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J. Mol. Cell. Cardiol. 44 (2008), 315–322.
-
(2008)
J. Mol. Cell. Cardiol.
, vol.44
, pp. 315-322
-
-
O'Donnell, J.M.1
Fields, A.D.2
Sorokina, N.3
Lewandowski, E.D.4
-
145
-
-
0035136262
-
An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure
-
[145] Taylor, M., Wallhaus, T.R., Degrado, T.R., Russell, D.C., Stanko, P., Nickles, R.J., Stone, C.K., An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 42 (2001), 55–62.
-
(2001)
J. Nucl. Med.
, vol.42
, pp. 55-62
-
-
Taylor, M.1
Wallhaus, T.R.2
Degrado, T.R.3
Russell, D.C.4
Stanko, P.5
Nickles, R.J.6
Stone, C.K.7
-
146
-
-
0024576804
-
Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy
-
[146] Grover-McKay, M., Schwaiger, M., Krivokapich, J., Perloff, J.K., Phelps, M.E., Schelbert, H.R., Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 13 (1989), 317–324.
-
(1989)
J. Am. Coll. Cardiol.
, vol.13
, pp. 317-324
-
-
Grover-McKay, M.1
Schwaiger, M.2
Krivokapich, J.3
Perloff, J.K.4
Phelps, M.E.5
Schelbert, H.R.6
-
147
-
-
4744373271
-
Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation
-
[147] Chandler, M.P., Kerner, J., Huang, H., Vazquez, E., Reszko, A., Martini, W.Z., Hoppel, C.L., Imai, M., Rastogi, S., Sabbah, H.N., Stanley, W.C., Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am. J. Physiol. Heart Circ. Physiol. 287 (2004), H1538–H1543.
-
(2004)
Am. J. Physiol. Heart Circ. Physiol.
, vol.287
, pp. H1538-H1543
-
-
Chandler, M.P.1
Kerner, J.2
Huang, H.3
Vazquez, E.4
Reszko, A.5
Martini, W.Z.6
Hoppel, C.L.7
Imai, M.8
Rastogi, S.9
Sabbah, H.N.10
Stanley, W.C.11
-
148
-
-
84929121391
-
Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD
-
e0118909
-
[148] Chen, T., Liu, J., Li, N., Wang, S., Liu, H., Li, J., Zhang, Y., Bu, P., Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One, 10, 2015, e0118909.
-
(2015)
PLoS One
, vol.10
-
-
Chen, T.1
Liu, J.2
Li, N.3
Wang, S.4
Liu, H.5
Li, J.6
Zhang, Y.7
Bu, P.8
-
149
-
-
76349122643
-
Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors
-
[149] Bush, E.W., McKinsey, T.A., Protein acetylation in the cardiorenal axis: the promise of histone deacetylase inhibitors. Circ. Res. 106 (2010), 272–284.
-
(2010)
Circ. Res.
, vol.106
, pp. 272-284
-
-
Bush, E.W.1
McKinsey, T.A.2
-
150
-
-
85047694248
-
Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop
-
[150] Kook, H., Lepore, J.J., Gitler, A.D., Lu, M.M., Wing-Man Yung, W., Mackay, J., Zhou, R., Ferrari, V., Gruber, P., Epstein, J.A., Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J. Clin. Invest. 112 (2003), 863–871.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 863-871
-
-
Kook, H.1
Lepore, J.J.2
Gitler, A.D.3
Lu, M.M.4
Wing-Man Yung, W.5
Mackay, J.6
Zhou, R.7
Ferrari, V.8
Gruber, P.9
Epstein, J.A.10
-
151
-
-
33644861578
-
Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding
-
[151] Kee, H.J., Sohn, I.S., Nam, K.I., Park, J.E., Qian, Y.R., Yin, Z., Ahn, Y., Jeong, M.H., Bang, Y.J., Kim, N., Kim, J.K., Kim, K.K., Epstein, J.A., Kook, H., Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113 (2006), 51–59.
-
(2006)
Circulation
, vol.113
, pp. 51-59
-
-
Kee, H.J.1
Sohn, I.S.2
Nam, K.I.3
Park, J.E.4
Qian, Y.R.5
Yin, Z.6
Ahn, Y.7
Jeong, M.H.8
Bang, Y.J.9
Kim, N.10
Kim, J.K.11
Kim, K.K.12
Epstein, J.A.13
Kook, H.14
-
152
-
-
84902579141
-
Nicotinamide mononucleotide, an intermediate of NAD + synthesis, protects the heart from ischemia and reperfusion
-
e98972
-
[152] Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., Sadoshima, J., Nicotinamide mononucleotide, an intermediate of NAD + synthesis, protects the heart from ischemia and reperfusion. PLoS One, 9, 2014, e98972.
-
(2014)
PLoS One
, vol.9
-
-
Yamamoto, T.1
Byun, J.2
Zhai, P.3
Ikeda, Y.4
Oka, S.5
Sadoshima, J.6
-
153
-
-
84925030847
-
Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism
-
[153] Sung, M.M., Das, S.K., Levasseur, J., Byrne, N.J., Fung, D., Kim, T.T., Masson, G., Boisvenue, J., Soltys, C.L., Oudit, G.Y., Dyck, J.R., Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism. Circ. Heart Fail. 8 (2015), 128–137.
-
(2015)
Circ. Heart Fail.
, vol.8
, pp. 128-137
-
-
Sung, M.M.1
Das, S.K.2
Levasseur, J.3
Byrne, N.J.4
Fung, D.5
Kim, T.T.6
Masson, G.7
Boisvenue, J.8
Soltys, C.L.9
Oudit, G.Y.10
Dyck, J.R.11
-
154
-
-
80054736902
-
Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure
-
e26391
-
[154] Rimbaud, S., Ruiz, M., Piquereau, J., Mateo, P., Fortin, D., Veksler, V., Garnier, A., Ventura-Clapier, R., Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 6, 2011, e26391.
-
(2011)
PLoS One
, vol.6
-
-
Rimbaud, S.1
Ruiz, M.2
Piquereau, J.3
Mateo, P.4
Fortin, D.5
Veksler, V.6
Garnier, A.7
Ventura-Clapier, R.8
-
155
-
-
84928162648
-
Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3
-
[155] Pillai, V.B., Samant, S., Sundaresan, N.R., Raghuraman, H., Kim, G., Bonner, M.Y., Arbiser, J.L., Walker, D.I., Jones, D.P., Gius, D., Gupta, M.P., Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat. Commun., 6, 2015, 6656.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6656
-
-
Pillai, V.B.1
Samant, S.2
Sundaresan, N.R.3
Raghuraman, H.4
Kim, G.5
Bonner, M.Y.6
Arbiser, J.L.7
Walker, D.I.8
Jones, D.P.9
Gius, D.10
Gupta, M.P.11
|