-
1
-
-
0037154972
-
Epigenetic codes for heterochromatin formation and silencing: Rounding up the usual suspects
-
Richards, E. J., and, Elgin, S. C. R., (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489-500.
-
(2002)
Cell
, vol.108
, pp. 489-500
-
-
Richards, E.J.1
Elgin, S.C.R.2
-
2
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
Grunstein, M., (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349-352.
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
3
-
-
0027916769
-
Histone deacetylase: A key enzyme for the binding of regulatory proteins to chromatin
-
López-Rodas, G., Brosch, G., Georgieva, E. I., Sendra, R., Franco, L., et al. (1993) Histone deacetylase: a key enzyme for the binding of regulatory proteins to chromatin. FEBS Lett. 317, 175-180.
-
(1993)
FEBS Lett.
, vol.317
, pp. 175-180
-
-
López-Rodas, G.1
Brosch, G.2
Georgieva, E.I.3
Sendra, R.4
Franco, L.5
-
4
-
-
0037444803
-
Histone deacetylases (HDACs): Characterization of the classical HDAC family
-
de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., and, van Kuilenburg, A. B., (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.
-
(2003)
Biochem. J.
, vol.370
, pp. 737-749
-
-
De Ruijter, A.J.1
Van Gennip, A.H.2
Caron, H.N.3
Kemp, S.4
Van Kuilenburg, A.B.5
-
5
-
-
1842578986
-
Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
-
Gregoretti, I., Lee, Y.-M., and, Goodson, H. V., (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 17-31
-
-
Gregoretti, I.1
Lee, Y.-M.2
Goodson, H.V.3
-
6
-
-
0034437608
-
Sir2: An NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging
-
Imai, S., Johnson, F. B., Marciniak, R. A., McVey, M., Park, P. U., et al. (2000) Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harbor Symp. Quantit. Biol. 65, 297-302.
-
(2000)
Cold Spring Harbor Symp. Quantit. Biol.
, vol.65
, pp. 297-302
-
-
Imai, S.1
Johnson, F.B.2
Marciniak, R.A.3
McVey, M.4
Park, P.U.5
-
7
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Liszt, G., Ford, E., Kurtev, M., and, Guarente, L., (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
8
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein, M., McVey, M., and, Guarente, L., (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
9
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin, S.-J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Defossez, P.-A., et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348.
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.-J.1
Kaeberlein, M.2
Andalis, A.A.3
Sturtz, L.A.4
Defossez, P.-A.5
-
10
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
Wang, F., Nguyen, M., Qin, F. X.-F., and, Tong, Q., (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505-514.
-
(2007)
Aging Cell
, vol.6
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.-F.3
Tong, Q.4
-
11
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen, D., Steele, A. D., Lindquist, S., and, Guarente, L., (2005) Increase in activity during calorie restriction requires Sirt1. Science 310, 1641.
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
Steele, A.D.2
Lindquist, S.3
Guarente, L.4
-
12
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily, G., Seifert, E. L., Bevilacqua, L., He, X. H., Sabourin, G., et al. (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759.
-
(2008)
PLoS ONE
, vol.3
-
-
Boily, G.1
Seifert, E.L.2
Bevilacqua, L.3
He, X.H.4
Sabourin, G.5
-
13
-
-
79958206937
-
Sirtuins, aging, and medicine
-
Guarente, L., (2011) Sirtuins, aging, and medicine. New Engl. J. Med. 364, 2235-2244.
-
(2011)
New Engl. J. Med.
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
-
14
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., et al. (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
Peshti, V.4
Zinman, G.5
-
15
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye, R. A., (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
16
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
-
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and, Horio, Y., (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 6823-6832
-
-
Tanno, M.1
Sakamoto, J.2
Miura, T.3
Shimamoto, K.4
Horio, Y.5
-
17
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H.-L., et al. (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261.
-
(2006)
Genes Dev.
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
Sutton, A.4
Cheng, H.-L.5
-
18
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard, D. B., Alt, F. W., Cheng, H.-L., Bunkenborg, J., Streeper, R. S., et al. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.-L.3
Bunkenborg, J.4
Streeper, R.S.5
-
19
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase i transcription
-
Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., et al. (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1080.
-
(2006)
Genes Dev.
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
Magin, C.4
Grummt, I.5
-
20
-
-
53249121556
-
Sirtuins - Novel therapeutic targets to treat age-associated diseases
-
Lavu, S., Boss, O., Elliott, P. J., and, Lambert, P. D., (2008) Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 7, 841-853.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 841-853
-
-
Lavu, S.1
Boss, O.2
Elliott, P.J.3
Lambert, P.D.4
-
21
-
-
0034956304
-
Structure of the histone deacetylase SIRT2
-
Finnin, M. S., Donigian, J. R., and, Pavletich, N. P., (2001) Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 8, 621-625.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 621-625
-
-
Finnin, M.S.1
Donigian, J.R.2
Pavletich, N.P.3
-
22
-
-
33847635635
-
Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
-
Schuetz, A., Min, J., Antoshenko, T., Wang, C.-L., Allali-Hassani, A., et al. (2007) Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15, 377-389.
-
(2007)
Structure
, vol.15
, pp. 377-389
-
-
Schuetz, A.1
Min, J.2
Antoshenko, T.3
Wang, C.-L.4
Allali-Hassani, A.5
-
23
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., et al. (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
Zhou, Y.2
Su, X.3
Yu, J.J.4
Khan, S.5
-
24
-
-
84856076413
-
SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity
-
Pan, M., Yuan, H., Brent, M., Ding, E. C., and, Marmorstein, R., (2012) SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J. Biol. Chem. 287, 2468-2476.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2468-2476
-
-
Pan, M.1
Yuan, H.2
Brent, M.3
Ding, E.C.4
Marmorstein, R.5
-
25
-
-
79954581231
-
Structure and biochemical functions of SIRT6
-
Pan, P. W., Feldman, J. L., Devries, M. K., Dong, A., Edwards, A. M., et al. (2011) Structure and biochemical functions of SIRT6. J. Biol. Chem. 286, 14575-14587.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14575-14587
-
-
Pan, P.W.1
Feldman, J.L.2
Devries, M.K.3
Dong, A.4
Edwards, A.M.5
-
26
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., et al. (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114-118.
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
Michishita-Kioi, E.2
Xi, Y.3
Tasselli, L.4
Kioi, M.5
-
27
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells
-
Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., et al. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
-
28
-
-
77952288176
-
Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARα in mice
-
Hayashida, S., Arimoto, A., Kuramoto, Y., Kozako, T., Honda, S.-I., et al. (2010) Fasting promotes the expression of SIRT1, an NAD+-dependent protein deacetylase, via activation of PPARα in mice. Mol. Cell. Biochem. 339, 285-292.
-
(2010)
Mol. Cell. Biochem.
, vol.339
, pp. 285-292
-
-
Hayashida, S.1
Arimoto, A.2
Kuramoto, Y.3
Kozako, T.4
Honda, S.-I.5
-
29
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega, L. G., Feige, J. N., Canto, C., Yamamoto, H., Yu, J., et al. (2011) CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12, 1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
Feige, J.N.2
Canto, C.3
Yamamoto, H.4
Yu, J.5
-
30
-
-
77951210885
-
A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
-
Lee, J., Padhye, A., Sharma, A., Song, G., Miao, J., et al. (2010) A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604-12611.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
Padhye, A.2
Sharma, A.3
Song, G.4
Miao, J.5
-
31
-
-
65249185780
-
Downregulation of MiR-199a derepresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
-
Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., et al. (2009) Downregulation of MiR-199a derepresses hypoxia-inducible factor-1α and sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circul. Res. 104, 879-886.
-
(2009)
Circul. Res.
, vol.104
, pp. 879-886
-
-
Rane, S.1
He, M.2
Sayed, D.3
Vashistha, H.4
Malhotra, A.5
-
32
-
-
79955768567
-
Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
-
Giralt, A., Hondares, E., Villena, J. A., Ribas, F., Díaz- Delfín, J., et al. (2011) Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 286, 16958-16966.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16958-16966
-
-
Giralt, A.1
Hondares, E.2
Villena, J.A.3
Ribas, F.4
Díaz-Delfín, J.5
-
33
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki, T., Maier, B., Koclega, K. D., Chruszcz, M., Gluba, W., et al. (2008) Phosphorylation regulates SIRT1 function. PLoS ONE 3, e4020.
-
(2008)
PLoS ONE
, vol.3
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
Chruszcz, M.4
Gluba, W.5
-
34
-
-
77949539030
-
JNK1 Phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin, N., Kaushik, V. K., Fortier, E., Wall, D., Pearson, K. J., et al. (2009) JNK1 Phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE 4, e8414.
-
(2009)
PLoS ONE
, vol.4
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
Wall, D.4
Pearson, K.J.5
-
35
-
-
77951225449
-
DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
-
Guo, X., Williams, J. G., Schug, T. T., and, Li, X., (2010) DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J. Biol. Chem. 285, 13223-13232.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13223-13232
-
-
Guo, X.1
Williams, J.G.2
Schug, T.T.3
Li, X.4
-
36
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang, Y., Fu, W., Chen, J., Olashaw, N., Zhang, X., et al. (2007) SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat. Cell Biol. 9, 1253-1262.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
-
37
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
Kim, J.-E., Chen, J., and, Lou, Z., (2008) DBC1 is a negative regulator of SIRT1. Nature 451, 583-586.
-
(2008)
Nature
, vol.451
, pp. 583-586
-
-
Kim, J.-E.1
Chen, J.2
Lou, Z.3
-
38
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim, E.-J., Kho, J.-H., Kang, M.-R., and, Um, S.-J., (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell 28, 277-290.
-
(2007)
Mol. Cell
, vol.28
, pp. 277-290
-
-
Kim, E.-J.1
Kho, J.-H.2
Kang, M.-R.3
Um, S.-J.4
-
39
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
-
Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
-
40
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., et al. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
-
41
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen, D., Bruno, J., Easlon, E., Lin, S.-J., Cheng, H.-L., et al. (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753-1757.
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.-J.4
Cheng, H.-L.5
-
42
-
-
79955433960
-
Metabolomic analysis of livers and serum from high-fat diet induced obese mice
-
Kim, H.-J., Kim, J. H., Noh, S., Hur, H. J., Sung, M. J., et al. (2010) Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Prot. Res. 10, 722-731.
-
(2010)
J. Prot. Res.
, vol.10
, pp. 722-731
-
-
Kim, H.-J.1
Kim, J.H.2
Noh, S.3
Hur, H.J.4
Sung, M.J.5
-
43
-
-
81055125040
-
Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction
-
Szántó, M., Rutkai, I., Hegedus, C., Czikora, Á., Rózsahegyi, M., et al. (2011) Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction. Cardiovasc. Res. 92, 430-438.
-
(2011)
Cardiovasc. Res.
, vol.92
, pp. 430-438
-
-
Szántó, M.1
Rutkai, I.2
Hegedus, C.3
Czikora, Á.4
Rózsahegyi, M.5
-
44
-
-
84864678390
-
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction
-
Chalkiadaki, A., and, Guarente, L., (2012) High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180-188.
-
(2012)
Cell Metab.
, vol.16
, pp. 180-188
-
-
Chalkiadaki, A.1
Guarente, L.2
-
45
-
-
33845868198
-
Sirtuins as potential targets for metabolic syndrome
-
Guarente, L., (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444, 868-874.
-
(2006)
Nature
, vol.444
, pp. 868-874
-
-
Guarente, L.1
-
46
-
-
17144429302
-
Calorie restriction, SIRT1 and metabolism: Understanding longevity
-
Bordone, L., and, Guarente, L., (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298-305.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
47
-
-
82255183409
-
WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis
-
Wu, J., Zhang, F., Yan, M., Wu, D., Yu, Q., et al. (2011) WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis. Diabetes 60, 3197-3207.
-
(2011)
Diabetes
, vol.60
, pp. 3197-3207
-
-
Wu, J.1
Zhang, F.2
Yan, M.3
Wu, D.4
Yu, Q.5
-
48
-
-
84863012694
-
Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding
-
Purushotham, A., Xu, Q., and, Li, X., (2012) Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding. FASEB J. 26, 656-667.
-
(2012)
FASEB J.
, vol.26
, pp. 656-667
-
-
Purushotham, A.1
Xu, Q.2
Li, X.3
-
49
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks, A. S., Kon, N., Knight, C., Matsumoto, M., Gutiérrez- Juárez, R., et al. (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333-341.
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutiérrez-Juárez, R.5
-
50
-
-
82955169641
-
Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through creb deacetylation
-
Qiang, L., Lin, H.V., Kim-Muller, J. Y., Welch, C. L., Gu, W., et al. (2011) Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through creb deacetylation. Cell Metab. 14, 758-767.
-
(2011)
Cell Metab.
, vol.14
, pp. 758-767
-
-
Qiang, L.1
Lin, H.V.2
Kim-Muller, J.Y.3
Welch, C.L.4
Gu, W.5
-
51
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows, W. C., Yu, W., Smith, B. C., Devires, M. K., Ellinger, J. J., et al. (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
Yu, W.2
Smith, B.C.3
Devires, M.K.4
Ellinger, J.J.5
-
52
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., et al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
-
53
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows, W. C., Lee, S., and, Denu, J. M., (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
54
-
-
3543029821
-
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
-
Samuel, V. T., Liu, Z.-X., Qu, X., Elder, B. D., Bilz, S., et al. (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345-32353.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 32345-32353
-
-
Samuel, V.T.1
Liu, Z.-X.2
Qu, X.3
Elder, B.D.4
Bilz, S.5
-
55
-
-
27644499523
-
Review article: Non-alcoholic fatty liver disease and hepatitis C - Risk factors and clinical implications
-
Sanyal, A. J., (2005) Review article: non-alcoholic fatty liver disease and hepatitis C-risk factors and clinical implications. Aliment. Pharmacol. Ther. 22, 48-51.
-
(2005)
Aliment. Pharmacol. Ther.
, vol.22
, pp. 48-51
-
-
Sanyal, A.J.1
-
56
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou, X., Xu, S., Maitland-Toolan, K. A., Sato, K., Jiang, B., et al. (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015-20026.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
-
57
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti, B., Kim, D.-H., Xiao, Z., Smith, Z., Miao, J., et al. (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959-33970.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.-H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
-
58
-
-
77954515012
-
Lack of SIRT1 (mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: A role of lipid mobilization and inflammation
-
Xu, F., Gao, Z., Zhang, J., Rivera, C. A., Yin, J., et al. (2010) Lack of SIRT1 (mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 151, 2504-2514.
-
(2010)
Endocrinology
, vol.151
, pp. 2504-2514
-
-
Xu, F.1
Gao, Z.2
Zhang, J.3
Rivera, C.A.4
Yin, J.5
-
59
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li, X., Zhang, S., Blander, G., Tse, J. G., Krieger, M., et al. (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91-106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
-
60
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., Guo, X., et al. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327-338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
-
61
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper, J. K., Xiao, Z., Ponugoti, B., Miao, J., Fang, S., et al. (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392-404.
-
(2009)
Cell Metab.
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
-
62
-
-
84860009972
-
Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/Farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice
-
Purushotham, A., Xu, Q., Lu, J., Foley, J. F., Yan, X., et al. (2012) Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/Farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol. Cell. Biol. 32, 1226-1236.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1226-1236
-
-
Purushotham, A.1
Xu, Q.2
Lu, J.3
Foley, J.F.4
Yan, X.5
-
63
-
-
40449093056
-
Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice
-
You, M., Cao, Q., Liang, X., Ajmo, J. M., and, Ness, G. C., (2008) Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J. Nutr. 138, 497-501.
-
(2008)
J. Nutr.
, vol.138
, pp. 497-501
-
-
You, M.1
Cao, Q.2
Liang, X.3
Ajmo, J.M.4
Ness, G.C.5
-
64
-
-
84858968923
-
MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1
-
Yin, H., Hu, M., Zhang, R., Shen, Z., Flatow, L., et al. (2012) MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J. Biol. Chem. 287, 9817-9826.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 9817-9826
-
-
Yin, H.1
Hu, M.2
Zhang, R.3
Shen, Z.4
Flatow, L.5
-
65
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone, L., Cohen, D., Robinson, A., Motta, M. C., Van Veen, E., et al. (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759-767.
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
Motta, M.C.4
Van Veen, E.5
-
66
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M., and, Tschöp, M. H., (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. USA 105, 9793-9798.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschöp, M.H.5
-
67
-
-
76349125988
-
SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells
-
Shi, T., Fan, G. Q., and, Xiao, S. D., (2010) SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells. J. Dig. Dis. 11, 55-62.
-
(2010)
J. Dig. Dis.
, vol.11
, pp. 55-62
-
-
Shi, T.1
Fan, G.Q.2
Xiao, S.D.3
-
68
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu, T., Hirschey, M. D., Hua, L., Dittenhafer-Reed, K. E., Schwer, B., et al. (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
Hirschey, M.D.2
Hua, L.3
Dittenhafer-Reed, K.E.4
Schwer, B.5
-
69
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick, A. A., Choudhury, M., Rahman, S. M., McCurdy, C. E., Friederich, M., et al. (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 433, 505-514.
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
-
70
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare', O. C., et al. (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 285, 31995-32002.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
Wu, X.2
Fortier, E.3
Feng, Y.4
Bare, O.C.5
-
71
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim, H.-S., Xiao, C., Wang, R.-H., Lahusen, T., Xu, X., et al. (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12, 224-236.
-
(2010)
Cell Metab.
, vol.12
, pp. 224-236
-
-
Kim, H.-S.1
Xiao, C.2
Wang, R.-H.3
Lahusen, T.4
Xu, X.5
-
72
-
-
79958058361
-
Food restriction improves glucose and lipid metabolism through Sirt1 expression: A study using a new rat model with obesity and severe hypertension
-
Takemori, K., Kimura, T., Shirasaka, N., Inoue, T., Masuno, K., et al. (2011) Food restriction improves glucose and lipid metabolism through Sirt1 expression: a study using a new rat model with obesity and severe hypertension. Life Sci. 88, 1088-1094.
-
(2011)
Life Sci.
, vol.88
, pp. 1088-1094
-
-
Takemori, K.1
Kimura, T.2
Shirasaka, N.3
Inoue, T.4
Masuno, K.5
-
73
-
-
77950538806
-
C/EBPα regulates SIRT1 expression during adipogenesis
-
Jin, Q., Zhang, F., Yan, T., Liu, Z., Wang, C., et al. (2010) C/EBPα regulates SIRT1 expression during adipogenesis. Cell Res. 20, 470-479.
-
(2010)
Cell Res.
, vol.20
, pp. 470-479
-
-
Jin, Q.1
Zhang, F.2
Yan, T.3
Liu, Z.4
Wang, C.5
-
74
-
-
80051826470
-
SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL
-
Chakrabarti, P., English, T., Karki, S., Qiang, L., Tao, R., et al. (2011) SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid Res. 52, 1693-1701.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 1693-1701
-
-
Chakrabarti, P.1
English, T.2
Karki, S.3
Qiang, L.4
Tao, R.5
-
75
-
-
82255164629
-
SirT1 regulates adipose tissue inflammation
-
Gillum, M. P., Kotas, M. E., Erion, D. M., Kursawe, R., Chatterjee, P., et al. (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235-3245.
-
(2011)
Diabetes
, vol.60
, pp. 3235-3245
-
-
Gillum, M.P.1
Kotas, M.E.2
Erion, D.M.3
Kursawe, R.4
Chatterjee, P.5
-
76
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
-
Qiang, L., Wang, L., Kon, N., Zhao, W., Lee, S., et al. (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
Wang, L.2
Kon, N.3
Zhao, W.4
Lee, S.5
-
77
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Shi, T., Wang, F., Stieren, E., and, Tong, Q., (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560-13567.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
78
-
-
34547397081
-
SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
-
Jing, E., Gesta, S., and, Kahn, C. R., (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105-114.
-
(2007)
Cell Metab.
, vol.6
, pp. 105-114
-
-
Jing, E.1
Gesta, S.2
Kahn, C.R.3
-
79
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ
-
Wang, F., and, Tong, Q., (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ. Mol. Biol. Cell 20, 801-808.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
80
-
-
77949506721
-
Hypothalamic Sirt1 regulates food intake in a rodent model system
-
Çakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., et al. (2009) Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE 4, e8322.
-
(2009)
PLoS ONE
, vol.4
-
-
Çakir, I.1
Perello, M.2
Lansari, O.3
Messier, N.J.4
Vaslet, C.A.5
-
81
-
-
77956644726
-
SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
-
Ramadori, G., Fujikawa, T., Fukuda, M., Anderson, J., Morgan, D. A., et al. (2010) SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78-87.
-
(2010)
Cell Metab.
, vol.12
, pp. 78-87
-
-
Ramadori, G.1
Fujikawa, T.2
Fukuda, M.3
Anderson, J.4
Morgan, D.A.5
-
82
-
-
79959726080
-
Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function
-
Wu, D., Qiu, Y., Gao, X., Yuan, X.-B., and, Zhai, Q., (2011) Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. PLoS ONE 6, e21759.
-
(2011)
PLoS ONE
, vol.6
-
-
Wu, D.1
Qiu, Y.2
Gao, X.3
Yuan, X.-B.4
Zhai, Q.5
-
83
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
Gerhart-Hines, Z., Rodgers, J. T., Bare, O., Lerin, C., Kim, S.-H., et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913-1923.
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
-
84
-
-
36348975290
-
SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription
-
Amat, R., Solanes, G., Giralt, M., and, Villarroya, F., (2007) SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. J. Biol. Chem. 282, 34066-34076.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34066-34076
-
-
Amat, R.1
Solanes, G.2
Giralt, M.3
Villarroya, F.4
-
85
-
-
84866289380
-
Sirtuin 1 regulates SREBP-1c expression in a LXR-dependent manner in skeletal muscle
-
Defour, A., Dessalle, K., Castro Perez, A., Poyot, T., Castells, J., et al. (2012) Sirtuin 1 regulates SREBP-1c expression in a LXR-dependent manner in skeletal muscle. PLoS ONE 7, e43490.
-
(2012)
PLoS ONE
, vol.7
-
-
Defour, A.1
Dessalle, K.2
Castro Perez, A.3
Poyot, T.4
Castells, J.5
-
86
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle
-
Palacios, O., Carmona, J., Michan, S., Chen, K., Manabe, Y., et al. (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Ageing 1, 771-783.
-
(2009)
Ageing
, vol.1
, pp. 771-783
-
-
Palacios, O.1
Carmona, J.2
Michan, S.3
Chen, K.4
Manabe, Y.5
-
87
-
-
55749086379
-
Association of SIRT1 gene variation with visceral obesity
-
Peeters, A., Beckers, S., Verrijken, A., Mertens, I., Roevens, P., et al. (2008) Association of SIRT1 gene variation with visceral obesity. Hum. Genet. 124, 431-436.
-
(2008)
Hum. Genet.
, vol.124
, pp. 431-436
-
-
Peeters, A.1
Beckers, S.2
Verrijken, A.3
Mertens, I.4
Roevens, P.5
-
88
-
-
84874749777
-
SIRT1 polymorphism, long-term survival and glucose tolerance in the general population
-
Figarska, S. M., Vonk, J. M., and, Boezen, H. M., (2013) SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS ONE 8, e58636.
-
(2013)
PLoS ONE
, vol.8
-
-
Figarska, S.M.1
Vonk, J.M.2
Boezen, H.M.3
-
89
-
-
73249152036
-
SIRT1 genetic variation is related to BMI and risk of obesity
-
Zillikens, M. C., van Meurs, J. B. J., Rivadeneira, F., Amin, N., Hofman, A., et al. (2009) SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 58, 2828-2834.
-
(2009)
Diabetes
, vol.58
, pp. 2828-2834
-
-
Zillikens, M.C.1
Van Meurs, J.B.J.2
Rivadeneira, F.3
Amin, N.4
Hofman, A.5
-
90
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
-
91
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
-
92
-
-
77950348878
-
AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol
-
Um, J.-H., Park, S.-J., Kang, H., Yang, S., Foretz, M., et al. (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554-563.
-
(2010)
Diabetes
, vol.59
, pp. 554-563
-
-
Um, J.-H.1
Park, S.-J.2
Kang, H.3
Yang, S.4
Foretz, M.5
-
93
-
-
84867702707
-
Sirtuin activators and inhibitors
-
Villalba, J. M., and, Alcaín, F.J., (2012) Sirtuin activators and inhibitors. BioFactors 38, 349-359.
-
(2012)
BioFactors
, vol.38
, pp. 349-359
-
-
Villalba, J.M.1
Alcaín, F.J.2
-
94
-
-
70350452395
-
Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice
-
Yamazaki, Y., Usui, I., Kanatani, Y., Matsuya, Y., Tsuneyama, K., et al. (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am. J. Physiol. Endocrinol. Metab. 297, E1179-E1186.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
-
-
Yamazaki, Y.1
Usui, I.2
Kanatani, Y.3
Matsuya, Y.4
Tsuneyama, K.5
-
95
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige, J. N., Lagouge, M., Canto, C., Strehle, A., Houten, S. M., et al. (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358.
-
(2008)
Cell Metab.
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
Strehle, A.4
Houten, S.M.5
-
96
-
-
79959866409
-
Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network
-
Audrito, V., Vaisitti, T., Rossi, D., Gottardi, D., D'Arena, G., et al. (2011) Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 71, 4473-4483.
-
(2011)
Cancer Res.
, vol.71
, pp. 4473-4483
-
-
Audrito, V.1
Vaisitti, T.2
Rossi, D.3
Gottardi, D.4
D'Arena, G.5
-
97
-
-
84884225041
-
Screen of pseudopeptidic inhibitors of human sirtuins 1-3: Two lead compounds with antiproliferative effects in cancer cells
-
Mellini, P., Kokkola, T., Suuronen, T., Salo, H. S., Tolvanen, L., et al. (2013) Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells. J. Med. Chem. 56, 6681-6695.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 6681-6695
-
-
Mellini, P.1
Kokkola, T.2
Suuronen, T.3
Salo, H.S.4
Tolvanen, L.5
|