메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data

Author keywords

Bimodality; Cellular detection rate; Co expression; Empirical Bayes; Gene set enrichment analysis; Generalized linear model

Indexed keywords

DNA TRANSCRIPTION; EXPERIMENTAL THERAPY; GENE EXPRESSION; HUMAN; MODEL; RNA SEQUENCE; STATISTICAL MODEL; STOCHASTIC MODEL; TRANSCRIPTION REGULATION; TRANSCRIPTOMICS; ANIMAL; DENDRITIC CELL; GENE EXPRESSION PROFILING; GENETIC VARIATION; METABOLISM; MOUSE; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; STATISTICAL ANALYSIS;

EID: 84951574149     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-015-0844-5     Document Type: Article
Times cited : (1659)

References (35)
  • 2
    • 53349161901 scopus 로고    scopus 로고
    • Imaging individual mRNA molecules using multiple singly labeled probes
    • Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5:877-9.
    • (2008) Nat Methods , vol.5 , pp. 877-879
    • Raj, A.1    Bogaard, P.2    Rifkin, S.A.3    Oudenaarden, A.4    Tyagi, S.5
  • 3
    • 84889242115 scopus 로고    scopus 로고
    • Genetic determinants and cellular constraints in noisy gene expression
    • Sanchez A, Golding I. Genetic determinants and cellular constraints in noisy gene expression. Science. 2013;342:1188-93.
    • (2013) Science , vol.342 , pp. 1188-1193
    • Sanchez, A.1    Golding, I.2
  • 4
    • 84874321000 scopus 로고    scopus 로고
    • Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments
    • McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS, et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 2013;29:461-7.
    • (2013) Bioinformatics , vol.29 , pp. 461-467
    • McDavid, A.1    Finak, G.2    Chattopadyay, P.K.3    Dominguez, M.4    Lamoreaux, L.5    Ma, S.S.6
  • 5
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:263-9.
    • (2014) Nature , vol.510 , pp. 263-269
    • Shalek, A.K.1    Satija, R.2    Shuga, J.3    Trombetta, J.J.4    Gennert, D.5    Lu, D.6
  • 6
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 7
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 8
    • 34047262163 scopus 로고    scopus 로고
    • Stochastic gene expression: from single molecules to the proteome
    • Kaufmann BB, van Oudenaarden A. Stochastic gene expression: from single molecules to the proteome. Curr Opin Genet Dev. 2007;17:107-12.
    • (2007) Curr Opin Genet Dev , vol.17 , pp. 107-112
    • Kaufmann, B.B.1    Oudenaarden, A.2
  • 9
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496-510.
    • (2014) Genome Res , vol.24 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3    Schroth, G.P.4    Gertz, J.5    Myers, R.M.6
  • 10
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell. 2012;151:671-83.
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4    Aebersold, R.5    Bähler, J.6
  • 11
    • 84928214314 scopus 로고    scopus 로고
    • Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms
    • Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell. 2015;58:339-52.
    • (2015) Mol Cell , vol.58 , pp. 339-352
    • Padovan-Merhar, O.1    Nair, G.P.2    Biaesch, A.G.3    Mayer, A.4    Scarfone, S.5    Foley, S.W.6
  • 12
    • 84896735766 scopus 로고    scopus 로고
    • voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 13
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 14
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 15
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 16
    • 84866911829 scopus 로고    scopus 로고
    • Camera: a competitive gene set test accounting for inter-gene correlation
    • Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40, e133.
    • (2012) Nucleic Acids Res , vol.40
    • Wu, D.1    Smyth, G.K.2
  • 17
    • 84925226706 scopus 로고    scopus 로고
    • svaseq: removing batch effects and other unwanted noise from sequencing data
    • Leek JT. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 2014;42:e161-1.
    • (2014) Nucleic Acids Res , vol.42 , pp. e161-e161
    • Leek, J.T.1
  • 18
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896-902.
    • (2014) Nat Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 19
    • 84875807707 scopus 로고    scopus 로고
    • Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner
    • Chu T, Tyznik AJ, Roepke S, Berkley AM, Woodward-Davis A, Pattacini L, et al. Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Rep. 2013;3:701-8.
    • (2013) Cell Rep , vol.3 , pp. 701-708
    • Chu, T.1    Tyznik, A.J.2    Roepke, S.3    Berkley, A.M.4    Woodward-Davis, A.5    Pattacini, L.6
  • 20
    • 84898645155 scopus 로고    scopus 로고
    • Distinct requirements for activation of NKT and NK cells during viral infection
    • Tyznik AJ, Verma S, Wang Q, Kronenberg M, Benedict CA. Distinct requirements for activation of NKT and NK cells during viral infection. J Immunol. 2014;192:3676-85.
    • (2014) J Immunol , vol.192 , pp. 3676-3685
    • Tyznik, A.J.1    Verma, S.2    Wang, Q.3    Kronenberg, M.4    Benedict, C.A.5
  • 21
    • 34247166747 scopus 로고    scopus 로고
    • Profound enhancement of the IL-12/IL-18 pathway of IFN-gamma secretion in human CD8+ memory T cell subsets via IL-15
    • Smeltz RB. Profound enhancement of the IL-12/IL-18 pathway of IFN-gamma secretion in human CD8+ memory T cell subsets via IL-15. J Immunol. 2007;178:4786-92.
    • (2007) J Immunol , vol.178 , pp. 4786-4792
    • Smeltz, R.B.1
  • 22
    • 84896345445 scopus 로고    scopus 로고
    • Molecular signatures of antibody responses derived from a systems biology study of five human vaccines
    • Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15:195-204.
    • (2014) Nat Immunol , vol.15 , pp. 195-204
    • Li, S.1    Rouphael, N.2    Duraisingham, S.3    Romero-Steiner, S.4    Presnell, S.5    Davis, C.6
  • 23
    • 0029913451 scopus 로고    scopus 로고
    • Interferon-gamma modulates the lipopolysaccharide-induced expression of AP-1 and NF-kappa B at the mRNA and protein level in human monocytes
    • de Wit H, Hoogstraten D, Halie RM, Vellenga E. Interferon-gamma modulates the lipopolysaccharide-induced expression of AP-1 and NF-kappa B at the mRNA and protein level in human monocytes. Exp Hematol. 1996;24:228-35.
    • (1996) Exp Hematol , vol.24 , pp. 228-235
    • Wit, H.1    Hoogstraten, D.2    Halie, R.M.3    Vellenga, E.4
  • 24
    • 84883499436 scopus 로고    scopus 로고
    • Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity
    • Miah MA, Byeon SE, Ahmed MS, Yoon C-H, Ha S-J, Bae Y-S. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity. Eur J Immunol. 2013;43:2484-96.
    • (2013) Eur J Immunol , vol.43 , pp. 2484-2496
    • Miah, M.A.1    Byeon, S.E.2    Ahmed, M.S.3    Yoon, C.-H.4    Ha, S.-J.5    Bae, Y.-S.6
  • 26
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155-60.
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 27
    • 84961169621 scopus 로고    scopus 로고
    • On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data
    • Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data. bioRxiv. 2015:025528.
    • (2015) bioRxiv.
    • Hicks, S.C.1    Teng, M.2    Irizarry, R.A.3
  • 28
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 30
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman A, Jakulin A, Pittau MG, Su Y-S. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008;2:1360-83.
    • (2008) Ann Appl Stat , vol.2 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 31
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57:289-300.
    • (1995) J R Stat Soc Series B Methodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 32
    • 84865330557 scopus 로고    scopus 로고
    • Annotated bibliography of some papers on combining significances or p-values
    • arXiv.org
    • Cousins RD. Annotated bibliography of some papers on combining significances or p-values. arXiv.org. 2007.
    • (2007)
    • Cousins, R.D.1
  • 33
    • 0034577724 scopus 로고    scopus 로고
    • Combining independent p values: extensions of the Stouffer and binomial methods
    • Darlington RB, Hayes AF. Combining independent p values: extensions of the Stouffer and binomial methods. Psychol Methods. 2000;5:496-515.
    • (2000) Psychol Methods , vol.5 , pp. 496-515
    • Darlington, R.B.1    Hayes, A.F.2
  • 34
    • 78651286166 scopus 로고    scopus 로고
    • The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics
    • Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Group MGD. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res. 2011;39(Database issue):D842-8.
    • (2011) Nucleic Acids Res , vol.39 , Issue.DATABASE ISSUE , pp. D842-D848
    • Blake, J.A.1    Bult, C.J.2    Kadin, J.A.3    Richardson, J.E.4    Eppig, J.T.5    Group, M.G.D.6
  • 35
    • 60849139395 scopus 로고    scopus 로고
    • GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
    • Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.
    • (2009) BMC Bioinformatics , vol.10 , pp. 48
    • Eden, E.1    Navon, R.2    Steinfeld, I.3    Lipson, D.4    Yakhini, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.