메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Pooling across cells to normalize single-cell RNA sequencing data with many zero counts

Author keywords

Differential expression; Normalization; Single cell RNA seq

Indexed keywords

BEHAVIOR; RNA SEQUENCE; ALGORITHM; ANIMAL; CALIBRATION; GENE EXPRESSION PROFILING; HUMAN; PROCEDURES; SEQUENCE ANALYSIS; SIGNAL NOISE RATIO; SINGLE CELL ANALYSIS; STANDARDS;

EID: 84964556059     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-0947-7     Document Type: Article
Times cited : (780)

References (24)
  • 1
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-45.
    • (2015) Nat Rev Genet , vol.16 , Issue.3 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 2
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-6.
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    La Manno, G.4    Zajac, P.5    Kasper, M.6
  • 3
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):106.
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. 106
    • Anders, S.1    Huber, W.2
  • 4
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):25.
    • (2010) Genome Biol , vol.11 , Issue.3 , pp. 25
    • Robinson, M.D.1    Oshlack, A.2
  • 5
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-201.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 6
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202-14.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 7
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3):496-510.
    • (2014) Genome Res , vol.24 , Issue.3 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3    Schroth, G.P.4    Gertz, J.5    Myers, R.M.6
  • 8
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015; 163(4):799-810.
    • (2015) Cell , vol.163 , Issue.4 , pp. 799-810
    • Grun, D.1    van Oudenaarden, A.2
  • 9
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32(9):896-902.
    • (2014) Nat Biotechnol , vol.32 , Issue.9 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 11
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 12
    • 84950239737 scopus 로고    scopus 로고
    • Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq
    • Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep. 2015; 5:18178.
    • (2015) Sci Rep , vol.5 , pp. 18178
    • Saraiva, L.R.1    Ibarra-Soria, X.2    Khan, M.3    Omura, M.4    Scialdone, A.5    Mombaerts, P.6
  • 14
    • 84941008542 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury
    • Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015; 17(3):329-40.
    • (2015) Cell Stem Cell , vol.17 , Issue.3 , pp. 329-340
    • Llorens-Bobadilla, E.1    Zhao, S.2    Baser, A.3    Saiz-Castro, G.4    Zwadlo, K.5    Martin-Villalba, A.6
  • 15
    • 84957432156 scopus 로고    scopus 로고
    • Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types
    • Li J, Klughammer J, Farlik M, Penz T, Spittler A, Barbieux C, et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 2016; 17(2):178-87.
    • (2016) EMBO Rep , vol.17 , Issue.2 , pp. 178-187
    • Li, J.1    Klughammer, J.2    Farlik, M.3    Penz, T.4    Spittler, A.5    Barbieux, C.6
  • 16
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343(6167):193-6.
    • (2014) Science , vol.343 , Issue.6167 , pp. 193-196
    • Deng, Q.1    Ramskold, D.2    Reinius, B.3    Sandberg, R.4
  • 17
    • 84944909911 scopus 로고    scopus 로고
    • Single-cell RNA-seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming
    • Freeman BT, Jung JP, Ogle BM. Single-cell RNA-seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS ONE. 2015; 10(9):0136199.
    • (2015) PLoS ONE , vol.10 , Issue.9 , pp. 0136199
    • Freeman, B.T.1    Jung, J.P.2    Ogle, B.M.3
  • 18
    • 76249128666 scopus 로고    scopus 로고
    • limSolve: solving linear inverse models
    • R package 1.5.1
    • Soetaert K, den Meersche KV, van Oevelen D. limSolve: solving linear inverse models. 2009. R package 1.5.1. https://cran.r-project.org/web/packages/limSolve/citation.html.
    • (2009)
    • Soetaert, K.1    den Meersche, K.V.2    van Oevelen, D.3
  • 19
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42.
    • (2015) Science , vol.347 , Issue.6226 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3    Lönnerberg, P.4    La Manno, G.5    Juréus, A.6
  • 20
    • 84155170296 scopus 로고    scopus 로고
    • topGO: enrichment analysis for gene ontology
    • R package version 2.22.0.
    • Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. 2010. R package version 2.22.0. http://bioconductor.org/packages/release/bioc/html/topGO.html.
    • (2010)
    • Alexa, A.1    Rahnenfuhrer, J.2
  • 21
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 22
    • 84930003332 scopus 로고    scopus 로고
    • Differential expression analysis of complex RNA-seq experiments using edger
    • Statistical analysis of next generation sequencing data. New York: Springer
    • Chen Y, Lun AT, Smyth GK. Differential expression analysis of complex RNA-seq experiments using edger. In: Statistical analysis of next generation sequencing data. New York: Springer: 2014. p. 51-74.
    • (2014) , pp. 51-74
    • Chen, Y.1    Lun, A.T.2    Smyth, G.K.3
  • 23
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97.
    • (2012) Nucleic Acids Res , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 24
    • 62549109118 scopus 로고    scopus 로고
    • Testing significance relative to a fold-change threshold is a TREAT
    • McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009; 25(6):765-71.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 765-771
    • McCarthy, D.J.1    Smyth, G.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.