-
1
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-45.
-
(2015)
Nat Rev Genet
, vol.16
, Issue.3
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
2
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-6.
-
(2014)
Nat Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
La Manno, G.4
Zajac, P.5
Kasper, M.6
-
3
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):106.
-
(2010)
Genome Biol
, vol.11
, Issue.10
, pp. 106
-
-
Anders, S.1
Huber, W.2
-
4
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):25.
-
(2010)
Genome Biol
, vol.11
, Issue.3
, pp. 25
-
-
Robinson, M.D.1
Oshlack, A.2
-
5
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-201.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
-
6
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202-14.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
Nemesh, J.4
Shekhar, K.5
Goldman, M.6
-
7
-
-
84895562012
-
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
-
Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3):496-510.
-
(2014)
Genome Res
, vol.24
, Issue.3
, pp. 496-510
-
-
Marinov, G.K.1
Williams, B.A.2
McCue, K.3
Schroth, G.P.4
Gertz, J.5
Myers, R.M.6
-
8
-
-
84946226911
-
Design and analysis of single-cell sequencing experiments
-
Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015; 163(4):799-810.
-
(2015)
Cell
, vol.163
, Issue.4
, pp. 799-810
-
-
Grun, D.1
van Oudenaarden, A.2
-
9
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32(9):896-902.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.9
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
10
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013; 10(11):1093-5.
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Kolodziejczyk, A.A.4
Zhang, X.5
Proserpio, V.6
-
11
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
12
-
-
84950239737
-
Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq
-
Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep. 2015; 5:18178.
-
(2015)
Sci Rep
, vol.5
, pp. 18178
-
-
Saraiva, L.R.1
Ibarra-Soria, X.2
Khan, M.3
Omura, M.4
Scialdone, A.5
Mombaerts, P.6
-
13
-
-
84947748539
-
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
-
Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 2015; 17(4):471-85.
-
(2015)
Cell Stem Cell
, vol.17
, Issue.4
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Tsang, J.C.3
Ilicic, T.4
Henriksson, J.5
Natarajan, K.N.6
-
14
-
-
84941008542
-
Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury
-
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015; 17(3):329-40.
-
(2015)
Cell Stem Cell
, vol.17
, Issue.3
, pp. 329-340
-
-
Llorens-Bobadilla, E.1
Zhao, S.2
Baser, A.3
Saiz-Castro, G.4
Zwadlo, K.5
Martin-Villalba, A.6
-
15
-
-
84957432156
-
Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types
-
Li J, Klughammer J, Farlik M, Penz T, Spittler A, Barbieux C, et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 2016; 17(2):178-87.
-
(2016)
EMBO Rep
, vol.17
, Issue.2
, pp. 178-187
-
-
Li, J.1
Klughammer, J.2
Farlik, M.3
Penz, T.4
Spittler, A.5
Barbieux, C.6
-
16
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramskold D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343(6167):193-6.
-
(2014)
Science
, vol.343
, Issue.6167
, pp. 193-196
-
-
Deng, Q.1
Ramskold, D.2
Reinius, B.3
Sandberg, R.4
-
17
-
-
84944909911
-
Single-cell RNA-seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming
-
Freeman BT, Jung JP, Ogle BM. Single-cell RNA-seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS ONE. 2015; 10(9):0136199.
-
(2015)
PLoS ONE
, vol.10
, Issue.9
, pp. 0136199
-
-
Freeman, B.T.1
Jung, J.P.2
Ogle, B.M.3
-
18
-
-
76249128666
-
limSolve: solving linear inverse models
-
R package 1.5.1
-
Soetaert K, den Meersche KV, van Oevelen D. limSolve: solving linear inverse models. 2009. R package 1.5.1. https://cran.r-project.org/web/packages/limSolve/citation.html.
-
(2009)
-
-
Soetaert, K.1
den Meersche, K.V.2
van Oevelen, D.3
-
19
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42.
-
(2015)
Science
, vol.347
, Issue.6226
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
Lönnerberg, P.4
La Manno, G.5
Juréus, A.6
-
20
-
-
84155170296
-
topGO: enrichment analysis for gene ontology
-
R package version 2.22.0.
-
Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. 2010. R package version 2.22.0. http://bioconductor.org/packages/release/bioc/html/topGO.html.
-
(2010)
-
-
Alexa, A.1
Rahnenfuhrer, J.2
-
21
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
-
(2014)
Genome Biol
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
22
-
-
84930003332
-
Differential expression analysis of complex RNA-seq experiments using edger
-
Statistical analysis of next generation sequencing data. New York: Springer
-
Chen Y, Lun AT, Smyth GK. Differential expression analysis of complex RNA-seq experiments using edger. In: Statistical analysis of next generation sequencing data. New York: Springer: 2014. p. 51-74.
-
(2014)
, pp. 51-74
-
-
Chen, Y.1
Lun, A.T.2
Smyth, G.K.3
-
23
-
-
84858041341
-
Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
-
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
24
-
-
62549109118
-
Testing significance relative to a fold-change threshold is a TREAT
-
McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009; 25(6):765-71.
-
(2009)
Bioinformatics
, vol.25
, Issue.6
, pp. 765-771
-
-
McCarthy, D.J.1
Smyth, G.K.2
|