메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

GiniClust: Detecting rare cell types from single-cell gene expression data with Gini index

Author keywords

Clustering; Gini index; QPCR; Rare cell type; RNA seq; Single cell analysis

Indexed keywords

HEMOGLOBIN; RNA;

EID: 84976875133     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-1010-4     Document Type: Article
Times cited : (216)

References (28)
  • 3
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
    • (2015) Nat Rev Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 4
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42.
    • (2015) Science. , vol.347 , pp. 1138-1142
    • Zeisel, A.1    Munoz-Manchado, A.B.2    Codeluppi, S.3    Lonnerberg, P.4    Manno, G.5    Jureus, A.6
  • 5
    • 84940446838 scopus 로고    scopus 로고
    • Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
    • Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015;16:712-24.
    • (2015) Cell Stem Cell. , vol.16 , pp. 712-724
    • Wilson, N.K.1    Kent, D.G.2    Buettner, F.3    Shehata, M.4    Macaulay, I.C.5    Calero-Nieto, F.J.6
  • 8
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-5.
    • (2015) Nature. , vol.525 , pp. 251-255
    • Grun, D.1    Lyubimova, A.2    Kester, L.3    Wiebrands, K.4    Basak, O.5    Sasaki, N.6
  • 9
    • 84885172419 scopus 로고    scopus 로고
    • Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire
    • Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell. 2013;13:492-505.
    • (2013) Cell Stem Cell. , vol.13 , pp. 492-505
    • Guo, G.1    Luc, S.2    Marco, E.3    Lin, T.W.4    Peng, C.5    Kerenyi, M.A.6
  • 10
    • 84965186343 scopus 로고    scopus 로고
    • Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis
    • Saadatpour A, Guo G, Orkin SH, Yuan GC. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 2014;15:525.
    • (2014) Genome Biol. , vol.15 , pp. 525
    • Saadatpour, A.1    Guo, G.2    Orkin, S.H.3    Yuan, G.C.4
  • 11
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631-44.
    • (2008) Cell. , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 12
    • 84896125494 scopus 로고    scopus 로고
    • Evolution of the cancer stem cell model
    • Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275-91.
    • (2014) Cell Stem Cell. , vol.14 , pp. 275-291
    • Kreso, A.1    Dick, J.E.2
  • 13
    • 84883818940 scopus 로고    scopus 로고
    • Cancer. Circulating tumor cells
    • Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science. 2013;341:1186-8.
    • (2013) Science , vol.341 , pp. 1186-1188
    • Plaks, V.1    Koopman, C.D.2    Werb, Z.3
  • 14
    • 85091232873 scopus 로고    scopus 로고
    • RNA-Seq workflow: gene-level exploratory analysis and differential expression
    • Love MI, Anders S, Kim V, Huber W. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000 Res. 2015;4:1070.
    • (2015) F1000 Res , vol.4 , pp. 1070
    • Love, M.I.1    Anders, S.2    Kim, V.3    Huber, W.4
  • 15
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grun D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
    • (2014) Nat Methods. , vol.11 , pp. 637-640
    • Grun, D.1    Kester, L.2    Oudenaarden, A.3
  • 16
    • 0342503346 scopus 로고
    • Variabilità e mutabilità
    • In: Pizetti E, Salvemini T, editors. Rome: Libreria Eredi Virgilio Veschi
    • Gini C. Variabilità e mutabilità. In: Pizetti E, Salvemini T, editors. Memorie di metodologica statistica. Rome: Libreria Eredi Virgilio Veschi, 1912.
    • (1912) Memorie di metodologica statistica
    • Gini, C.1
  • 17
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Second Int Conf Knowl Discov Data Min. 1996;226-231.
    • (1996) Second Int Conf Knowl Discov Data Min , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 18
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.
    • (2008) J Mach Learn Res. , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2
  • 19
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell. , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 20
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods. , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 21
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 27
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinform. 2015;31:166-9.
    • (2015) Bioinform. , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 28
    • 84901838628 scopus 로고    scopus 로고
    • Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts
    • Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014;24:999-1011.
    • (2014) Genome Res. , vol.24 , pp. 999-1011
    • Ay, F.1    Bailey, T.L.2    Noble, W.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.