메뉴 건너뛰기




Volumn 32, Issue 14, 2016, Pages 2128-2135

Beta-Poisson model for single-cell RNA-seq data analyses

Author keywords

[No Author keywords available]

Indexed keywords

RNA;

EID: 84984845042     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw202     Document Type: Article
Times cited : (119)

References (22)
  • 1
    • 84883364264 scopus 로고    scopus 로고
    • Count-based differential expression analysis of RNA sequencing data using R and Bioconductor
    • Anders, S. et al. (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc., 8, 1765-1786.
    • (2013) Nat. Protoc. , vol.8 , pp. 1765-1786
    • Anders, S.1
  • 2
    • 84928987900 scopus 로고    scopus 로고
    • HTSeqa Python framework to work with high-throughput sequencing data
    • Anders, S. et al. (2015) HTSeqa Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166-169.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1
  • 3
    • 84891753483 scopus 로고    scopus 로고
    • The Reactome pathway knowledgebase
    • Croft, D. et al. (2014) The Reactome pathway knowledgebase. Nucleic Acids Res., 42, D472-D477.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D472-D477
    • Croft, D.1
  • 4
    • 84946189382 scopus 로고    scopus 로고
    • Inferring single-cell gene expression mechanisms using stochastic simulation
    • Daigle, B.J. et al. (2015) Inferring single-cell gene expression mechanisms using stochastic simulation. Bioinformatics, btv007.
    • (2015) Bioinformatics, btv007
    • Daigle, B.J.1
  • 5
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol., 16, 278.
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1
  • 7
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V. et al. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740-742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1
  • 8
    • 84861872213 scopus 로고    scopus 로고
    • Distinct perturbation of the translatome by the antidiabetic drug metformin
    • Larsson, O. et al. (2012) Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl. Acad. Sci. USA, 109, 8977-8982.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 8977-8982
    • Larsson, O.1
  • 9
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C.W. et al. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29.
    • (2014) Genome Biol. , vol.15 , pp. R29
    • Law, C.W.1
  • 10
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy, D.J. et al. (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 4288-4297.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1
  • 11
    • 84902587407 scopus 로고    scopus 로고
    • Peroxiredoxin proteins protect MCF-7 breast cancer cells from doxorubicin-induced toxicity
    • McDonald, C. et al. (2014) Peroxiredoxin proteins protect MCF-7 breast cancer cells from doxorubicin-induced toxicity. Int. J. Oncol., 45, 219-226.
    • (2014) Int. J. Oncol. , vol.45 , pp. 219-226
    • McDonald, C.1
  • 12
    • 84900328038 scopus 로고    scopus 로고
    • Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
    • Patro, R. et al. (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32, 462-464.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 462-464
    • Patro, R.1
  • 14
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size for microarray studies
    • Pawitan, Y. et al. (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 3017-3024.
    • (2005) Bioinformatics , vol.21 , pp. 3017-3024
    • Pawitan, Y.1
  • 15
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D. et al. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 16
    • 84881543294 scopus 로고    scopus 로고
    • Stochastic models of transcription: From single molecules to single cells
    • Sanchez, A. et al. (2013) Stochastic models of transcription: from single molecules to single cells. Methods, 62, 13-25.
    • (2013) Methods , vol.62 , pp. 13-25
    • Sanchez, A.1
  • 17
    • 56249130793 scopus 로고    scopus 로고
    • Analytical distributions for stochastic gene expression
    • Shahrezaei, V. and Swain, P.S. (2008) Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA, 105, 17256-17261.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17256-17261
    • Shahrezaei, V.1    Swain, P.S.2
  • 18
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek, A.K. et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236-240.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 19
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C. et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511-515.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 20
    • 84934324840 scopus 로고    scopus 로고
    • Single-cell polyadenylation site mapping reveals 3 isoform choice variability
    • Velten, L. et al. (2015) Single-cell polyadenylation site mapping reveals 3 isoform choice variability. Mol. Syst. Biol., 11, 812.
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 812
    • Velten, L.1
  • 21
    • 84882582801 scopus 로고    scopus 로고
    • Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments
    • Wills, Q.F. et al. (2013) Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol., 31, 748-752.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 748-752
    • Wills, Q.F.1
  • 22
    • 84893910301 scopus 로고    scopus 로고
    • Quantitative assessment of single-cell RNA-sequencing methods
    • Wu, A.R. et al. (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods, 11, 41-46.
    • (2014) Nat. Methods , vol.11 , pp. 41-46
    • Wu, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.