-
1
-
-
84882455458
-
Single-cell sequencing-based technologies will revolutionize whole-organism science
-
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013; 14(9):618-30.
-
(2013)
Nat Rev Genet
, vol.14
, Issue.9
, pp. 618-630
-
-
Shapiro, E.1
Biezuner, T.2
Linnarsson, S.3
-
2
-
-
84894624480
-
Dissecting genomic diversity, one cell at a time
-
Blainey PC, Quake SR. Dissecting genomic diversity, one cell at a time. Nat Methods. 2014; 11(1):19-21.
-
(2014)
Nat Methods
, vol.11
, Issue.1
, pp. 19-21
-
-
Blainey, P.C.1
Quake, S.R.2
-
3
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-160.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
Proserpio, V.4
Scialdone, A.5
Theis, F.J.6
-
4
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
-
Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014; 509(7500):371-5.
-
(2014)
Nature
, vol.509
, Issue.7500
, pp. 371-375
-
-
Treutlein, B.1
Brownfield, D.G.2
Wu, A.R.3
Neff, N.F.4
Mantalas, G.L.5
Espinoza, F.H.6
-
5
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381-386.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
6
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190):1396-401.
-
(2014)
Science
, vol.344
, Issue.6190
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
-
7
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2.
-
(2014)
Nat Methods
, vol.11
, Issue.7
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
8
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015; 33(5):495-502.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.5
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
10
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-6.
-
(2014)
Nat Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
La Manno, G.4
Zajac, P.5
Kasper, M.6
-
11
-
-
57249084011
-
Visualizing data using t-SNE
-
Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9(2579-2605):85.
-
(2008)
J Mach Learn Res
, vol.9
, Issue.2579-2605
, pp. 85
-
-
Van der Maaten, L.1
Hinton, G.2
-
12
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000; 290(5500):2319-23.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
13
-
-
0041654220
-
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
-
Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964; 29(1):1-27.
-
(1964)
Psychometrika
, vol.29
, Issue.1
, pp. 1-27
-
-
Kruskal, J.B.1
-
14
-
-
84903185013
-
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
-
Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014; 510(7505):363-369. doi:10.1038/nature13437.
-
(2014)
Nature
, vol.510
, Issue.7505
, pp. 363-369
-
-
Shalek, A.K.1
Satija, R.2
Shuga, J.3
Trombetta, J.J.4
Gennert, D.5
Lu, D.6
-
15
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014; 32(10):1053-1058.
-
(2014)
Nat Biotechnol
, vol.32
, Issue.10
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
Wang, X.4
Leyrat, A.A.5
Lui, J.H.6
-
16
-
-
84921466417
-
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
-
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015; 18(1):145-53.
-
(2015)
Nat Neurosci
, vol.18
, Issue.1
, pp. 145-153
-
-
Usoskin, D.1
Furlan, A.2
Islam, S.3
Abdo, H.4
Lönnerberg, P.5
Lou, D.6
-
17
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Lawrence N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J Mach Learn Res. 2005; 6:1783-816.
-
(2005)
J Mach Learn Res
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.1
|