메뉴 건너뛰기




Volumn 22, Issue 6, 2016, Pages 839-851

How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?

Author keywords

Benchmarking; Differential expression; Experimental design; Replication; RNA seq; Statistical power; Yeast

Indexed keywords

RNA; FUNGAL RNA;

EID: 84970949920     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.053959.115     Document Type: Article
Times cited : (558)

References (71)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11: R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, HuberW. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166-169.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 3
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer PL, Doerge RW. 2010. Statistical design and analysis of RNA sequencing data. Genetics 185: 405-416.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 4
    • 0035997356 scopus 로고    scopus 로고
    • ATP-dependent nucleosome remodeling
    • Becker PB, Horz W. 2002. ATP-dependent nucleosome remodeling.Annu Rev Biochem 71: 247-273.
    • (2002) Annu Rev Biochem , vol.71 , pp. 247-273
    • Becker, P.B.1    Horz, W.2
  • 5
    • 77955477933 scopus 로고    scopus 로고
    • Normal approximations to the distributions of the Wilcoxon statistics: Accurate to what N? Graphical insights
    • Bellera CA, Julien M, Hanley JA. 2010. Normal approximations to the distributions of the Wilcoxon statistics: accurate to what N? Graphical insights. J Stat Educ 18.
    • (2010) J Stat Educ , vol.18
    • Bellera, C.A.1    Julien, M.2    Hanley, J.A.3
  • 6
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57: 289-300.
    • (1995) J R Stat Soc B (Methodol) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 8
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 9
    • 84907700231 scopus 로고    scopus 로고
    • Error estimates for the analysis of differential expression from RNA-seq count data
    • Burden C, Qureshi S, Wilson SR. 2014. Error estimates for the analysis of differential expression from RNA-seq count data. PeerJ 2: e576.
    • (2014) PeerJ , vol.2 , pp. e576
    • Burden, C.1    Qureshi, S.2    Wilson, S.R.3
  • 10
    • 84874698718 scopus 로고    scopus 로고
    • Scotty: A web tool for designing RNA-Seq experiments to measure differential gene expression
    • Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. 2013. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29: 656-657.
    • (2013) Bioinformatics , vol.29 , pp. 656-657
    • Busby, M.A.1    Stewart, C.2    Miller, C.A.3    Grzeda, K.R.4    Marth, G.T.5
  • 11
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061-1068.
    • (2008) Nature , vol.455 , pp. 1061-1068
    • The Cancer Genome Atlas Research Network1
  • 13
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA. 2002. Fundamentals of experimental design for cDNA microarrays. Nat Genet 32: 490-495.
    • (2002) Nat Genet , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 15
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA. 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6: 59-75.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 21
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee AC, Langmead B, Leek JT. 2011. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12: 449.
    • (2011) BMC Bioinformatics , vol.12 , pp. 449
    • Frazee, A.C.1    Langmead, B.2    Leek, J.T.3
  • 25
    • 84889664774 scopus 로고    scopus 로고
    • Evaluation of read count based RNAseq analysis methods
    • Guo Y, Li CI, Ye F, Shyr Y. 2013. Evaluation of read count based RNAseq analysis methods. BMC Genomics 14: S2.
    • (2013) BMC Genomics , vol.14 , pp. S2
    • Guo, Y.1    Li, C.I.2    Ye, F.3    Shyr, Y.4
  • 26
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen KD, Wu Z, Irizarry RA, Leek JT. 2011. Sequencing technology does not eliminate biological variability. Nat Biotechnol 29: 572-573.
    • (2011) Nat Biotechnol , vol.29 , pp. 572-573
    • Hansen, K.D.1    Wu, Z.2    Irizarry, R.A.3    Leek, J.T.4
  • 27
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 28
    • 0027068143 scopus 로고
    • Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
    • Hirschhorn JN, Brown SA, Clark CD, Winston F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6: 2288-2298.
    • (1992) Genes Dev , vol.6 , pp. 2288-2298
    • Hirschhorn, J.N.1    Brown, S.A.2    Clark, C.D.3    Winston, F.4
  • 30
    • 79959524146 scopus 로고    scopus 로고
    • A haplotype map of the human genome
    • The International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299-1320.
    • (2005) Nature , vol.437 , pp. 1299-1320
    • The International HapMap Consortium1
  • 33
    • 0026087180 scopus 로고
    • Preparation of high molecular weight RNA
    • Kohrer K, Domdey H. 1991. Preparation of high molecular weight RNA.Methods Enzymol 194: 398-405.
    • (1991) Methods Enzymol , vol.194 , pp. 398-405
    • Kohrer, K.1    Domdey, H.2
  • 34
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
    • Kvam VM, Liu P, Si Y. 2012. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99: 248-256.
    • (2012) Am J Bot , vol.99 , pp. 248-256
    • Kvam, V.M.1    Liu, P.2    Si, Y.3
  • 35
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • LawCW, Chen Y, ShiW, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15: R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 37
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R. 2013. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data.Stat Methods Med Res 22: 519-536.
    • (2013) Stat Methods Med Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 38
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, Tibshirani R. 2012. Normalization, testing, and false discovery rate estimation for RNA-sequencing data.Biostatistics 13: 523-538.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 39
    • 84893242996 scopus 로고    scopus 로고
    • RNA-seq differential expression studies: More sequence or more replication?
    • Liu Y, Zhou J, White KP. 2014. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30: 301-304.
    • (2014) Bioinformatics , vol.30 , pp. 301-304
    • Liu, Y.1    Zhou, J.2    White, K.P.3
  • 40
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 42
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
    • Lund SP, Nettleton D, McCarthy DJ, Smyth GK. 2012. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol 11 doi: 10.1515/1544-6115.1826.
    • (2012) Stat Appl Genet Mol Biol , vol.11
    • Lund, S.P.1    Nettleton, D.2    McCarthy, D.J.3    Smyth, G.K.4
  • 43
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann HB, Whitney DR. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18: 50-60.
    • (1947) Ann Math Stat , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 44
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18: 1509-1517.
    • (2008) Genome Res , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 46
    • 84945184668 scopus 로고    scopus 로고
    • Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns
    • Moulos P, Hatzis P. 2015. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns.Nucleic Acids Res 43: e25.
    • (2015) Nucleic Acids Res , vol.43 , pp. e25
    • Moulos, P.1    Hatzis, P.2
  • 47
    • 0021715020 scopus 로고
    • Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae
    • Neigeborn L, Carlson M. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae.Genetics 108: 845-858.
    • (1984) Genetics , vol.108 , pp. 845-858
    • Neigeborn, L.1    Carlson, M.2
  • 48
    • 27244442710 scopus 로고    scopus 로고
    • Confidence intervals for the mean of log-normal distribution
    • Olsson U. 2005. Confidence intervals for the mean of log-normal distribution.J Stat Educ 13.
    • (2005) J Stat Educ , vol.13
    • Olsson, U.1
  • 49
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • research0022
    • PanW, Lin J, Le CT. 2002. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol 3: research0022.
    • (2002) Genome Biol , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 50
    • 0026584855 scopus 로고
    • Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription
    • Peterson CL, Herskowitz I. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription.Cell 68: 573-583.
    • (1992) Cell , vol.68 , pp. 573-583
    • Peterson, C.L.1    Herskowitz, I.2
  • 51
    • 0026021355 scopus 로고
    • A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1
    • Peterson CL, KrugerW, Herskowitz I. 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135-1143.
    • (1991) Cell , vol.64 , pp. 1135-1143
    • Peterson, C.L.1    Kruger, W.2    Herskowitz, I.3
  • 54
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 55
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 56
    • 80053570354 scopus 로고    scopus 로고
    • Snf2-family proteins: Chromatin remodellers for any occasion
    • Ryan DP, Owen-Hughes T. 2011. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol 15: 649-656.
    • (2011) Curr Opin Chem Biol , vol.15 , pp. 649-656
    • Ryan, D.P.1    Owen-Hughes, T.2
  • 58
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium. 2014. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32: 903-914.
    • (2014) Nat Biotechnol , vol.32 , pp. 903-914
    • SEQC/MAQC-III Consortium1
  • 59
    • 84928199480 scopus 로고    scopus 로고
    • Comparison of software packages for detecting differential expression in RNA-seq studies
    • Seyednasrollah F, Laiho A, Elo LL. 2013. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16: 59-70.
    • (2013) Brief Bioinform , vol.16 , pp. 59-70
    • Seyednasrollah, F.1    Laiho, A.2    Elo, L.L.3
  • 61
    • 84907021033 scopus 로고    scopus 로고
    • CompcodeR-an R package for benchmarking differential expression methods for RNA-seq data
    • Soneson C. 2014. compcodeR-an R package for benchmarking differential expression methods for RNA-seq data. Bioinformatics 30: 2517-2518.
    • (2014) Bioinformatics , vol.30 , pp. 2517-2518
    • Soneson, C.1
  • 62
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M. 2013. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14: 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 63
    • 0021659727 scopus 로고
    • Five SWI genes are required for expression of the HO gene in yeast
    • Stern M, Jensen R, Herskowitz I. 1984. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853-868.
    • (1984) J Mol Biol , vol.178 , pp. 853-868
    • Stern, M.1    Jensen, R.2    Herskowitz, I.3
  • 64
    • 0034724394 scopus 로고    scopus 로고
    • Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae
    • Sudarsanam P, Iyer VR, Brown PO, Winston F. 2000. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae.Proc Natl Acad Sci 97: 3364-3369.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 3364-3369
    • Sudarsanam, P.1    Iyer, V.R.2    Brown, P.O.3    Winston, F.4
  • 65
    • 33745612095 scopus 로고    scopus 로고
    • Pvclust: An R package for assessing the uncertainty in hierarchical clustering
    • Suzuki R, Shimodaira H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540-1542.
    • (2006) Bioinformatics , vol.22 , pp. 1540-1542
    • Suzuki, R.1    Shimodaira, H.2
  • 67
    • 66149192669 scopus 로고    scopus 로고
    • How to map billions of short reads onto genomes
    • Trapnell C, Salzberg SL. 2009. How to map billions of short reads onto genomes. Nat Biotechnol 27: 455-457.
    • (2009) Nat Biotechnol , vol.27 , pp. 455-457
    • Trapnell, C.1    Salzberg, S.L.2
  • 68
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 71
    • 75249095274 scopus 로고    scopus 로고
    • DEGseq: An R package for identifying differentially expressed genes from RNA-seq data
    • Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data.Bioinformatics 26: 136-138.
    • (2010) Bioinformatics , vol.26 , pp. 136-138
    • Wang, L.1    Feng, Z.2    Wang, X.3    Wang, X.4    Zhang, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.