-
1
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11: R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
2
-
-
84928987900
-
HTSeq-a Python framework to work with high-throughput sequencing data
-
Anders S, Pyl PT, HuberW. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166-169.
-
(2015)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
3
-
-
77955504378
-
Statistical design and analysis of RNA sequencing data
-
Auer PL, Doerge RW. 2010. Statistical design and analysis of RNA sequencing data. Genetics 185: 405-416.
-
(2010)
Genetics
, vol.185
, pp. 405-416
-
-
Auer, P.L.1
Doerge, R.W.2
-
4
-
-
0035997356
-
ATP-dependent nucleosome remodeling
-
Becker PB, Horz W. 2002. ATP-dependent nucleosome remodeling.Annu Rev Biochem 71: 247-273.
-
(2002)
Annu Rev Biochem
, vol.71
, pp. 247-273
-
-
Becker, P.B.1
Horz, W.2
-
5
-
-
77955477933
-
Normal approximations to the distributions of the Wilcoxon statistics: Accurate to what N? Graphical insights
-
Bellera CA, Julien M, Hanley JA. 2010. Normal approximations to the distributions of the Wilcoxon statistics: accurate to what N? Graphical insights. J Stat Educ 18.
-
(2010)
J Stat Educ
, vol.18
-
-
Bellera, C.A.1
Julien, M.2
Hanley, J.A.3
-
6
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57: 289-300.
-
(1995)
J R Stat Soc B (Methodol)
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
7
-
-
79953034289
-
Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
-
Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R. 2011.Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One 6: e17820.
-
(2011)
PLoS One
, vol.6
, pp. e17820
-
-
Bottomly, D.1
Walter, N.A.2
Hunter, J.E.3
Darakjian, P.4
Kawane, S.5
Buck, K.J.6
Searles, R.P.7
Mooney, M.8
McWeeney, S.K.9
Hitzemann, R.10
-
8
-
-
77949481052
-
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
-
Bullard JH, Purdom E, Hansen KD, Dudoit S. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 94
-
-
Bullard, J.H.1
Purdom, E.2
Hansen, K.D.3
Dudoit, S.4
-
9
-
-
84907700231
-
Error estimates for the analysis of differential expression from RNA-seq count data
-
Burden C, Qureshi S, Wilson SR. 2014. Error estimates for the analysis of differential expression from RNA-seq count data. PeerJ 2: e576.
-
(2014)
PeerJ
, vol.2
, pp. e576
-
-
Burden, C.1
Qureshi, S.2
Wilson, S.R.3
-
10
-
-
84874698718
-
Scotty: A web tool for designing RNA-Seq experiments to measure differential gene expression
-
Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. 2013. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 29: 656-657.
-
(2013)
Bioinformatics
, vol.29
, pp. 656-657
-
-
Busby, M.A.1
Stewart, C.2
Miller, C.A.3
Grzeda, K.R.4
Marth, G.T.5
-
11
-
-
54549108740
-
Comprehensive genomic characterization defines human glioblastoma genes and core pathways
-
The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061-1068.
-
(2008)
Nature
, vol.455
, pp. 1061-1068
-
-
The Cancer Genome Atlas Research Network1
-
12
-
-
77957920003
-
Polymorphic cis- and trans-regulation of human gene expression
-
Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M, Spielman RS. 2010. Polymorphic cis- and trans-regulation of human gene expression. PLoS Biol 8.
-
(2010)
PLoS Biol
, vol.8
-
-
Cheung, V.G.1
Nayak, R.R.2
Wang, I.X.3
Elwyn, S.4
Cousins, S.M.5
Morley, M.6
Spielman, R.S.7
-
13
-
-
0036900895
-
Fundamentals of experimental design for cDNA microarrays
-
Churchill GA. 2002. Fundamentals of experimental design for cDNA microarrays. Nat Genet 32: 490-495.
-
(2002)
Nat Genet
, vol.32
, pp. 490-495
-
-
Churchill, G.A.1
-
15
-
-
24144445705
-
Improved statistical tests for differential gene expression by shrinking variance components estimates
-
Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA. 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6: 59-75.
-
(2005)
Biostatistics
, vol.6
, pp. 59-75
-
-
Cui, X.1
Hwang, J.T.2
Qiu, J.3
Blades, N.J.4
Churchill, G.A.5
-
16
-
-
77649152218
-
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
-
De Hertogh B, De Meulder B, Berger F, Pierre M, Bareke E, Gaigneaux A, Depiereux E. 2010. A benchmark for statistical microarray data analysis that preserves actual biological and technical variance. BMC Bioinformatics 11: 17.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 17
-
-
De Hertogh, B.1
De Meulder, B.2
Berger, F.3
Pierre, M.4
Bareke, E.5
Gaigneaux, A.6
Depiereux, E.7
-
17
-
-
84887791432
-
A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis
-
Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, et al. 2013. A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis. Brief Bioinform 14: 671-683.
-
(2013)
Brief Bioinform
, vol.14
, pp. 671-683
-
-
Dillies, M.A.1
Rau, A.2
Aubert, J.3
Hennequet-Antier, C.4
Jeanmougin, M.5
Servant, N.6
Keime, C.7
Marot, G.8
Castel, D.9
Estelle, J.10
-
20
-
-
78651289449
-
Ensembl 2011
-
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al. 2011. Ensembl 2011.Nucleic Acids Res 39: D800-D806.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D800-D806
-
-
Flicek, P.1
Amode, M.R.2
Barrell, D.3
Beal, K.4
Brent, S.5
Chen, Y.6
Clapham, P.7
Coates, G.8
Fairley, S.9
Fitzgerald, S.10
-
21
-
-
81055124271
-
ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
-
Frazee AC, Langmead B, Leek JT. 2011. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12: 449.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 449
-
-
Frazee, A.C.1
Langmead, B.2
Leek, J.T.3
-
22
-
-
84902690266
-
Differential expression analysis of RNA-seq data at single-base resolution
-
Frazee AC, Sabunciyan S, Hansen KD, Irizarry RA, Leek JT. 2014.Differential expression analysis of RNA-seq data at single-base resolution.Biostatistics 15: 413-426.
-
(2014)
Biostatistics
, vol.15
, pp. 413-426
-
-
Frazee, A.C.1
Sabunciyan, S.2
Hansen, K.D.3
Irizarry, R.A.4
Leek, J.T.5
-
23
-
-
84947809158
-
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment
-
Gierliń ski M, Blaxter M, Cole C, Gharbi K, Owen-Hughes T, Schofield P, Schurch NJ, Sherstnev A, Singh V, Wrobel N, et al.2015. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment. Bioinformatics 31: 3625-3630.
-
(2015)
Bioinformatics
, vol.31
, pp. 3625-3630
-
-
Gierliński, M.1
Blaxter Cole M, C.2
Gharbi, K.3
Owen-Hughes, T.4
Schofield, P.5
Schurch, N.J.6
Sherstnev, A.7
Singh, V.8
Wrobel, N.9
-
24
-
-
80053140931
-
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization
-
Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, Workman JL, Barton GJ, Owen-Hughes T. 2011. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.Science 333: 1758-1760.
-
(2011)
Science
, vol.333
, pp. 1758-1760
-
-
Gkikopoulos, T.1
Schofield, P.2
Singh, V.3
Pinskaya, M.4
Mellor, J.5
Smolle, M.6
Workman, J.L.7
Barton, G.J.8
Owen-Hughes, T.9
-
25
-
-
84889664774
-
Evaluation of read count based RNAseq analysis methods
-
Guo Y, Li CI, Ye F, Shyr Y. 2013. Evaluation of read count based RNAseq analysis methods. BMC Genomics 14: S2.
-
(2013)
BMC Genomics
, vol.14
, pp. S2
-
-
Guo, Y.1
Li, C.I.2
Ye, F.3
Shyr, Y.4
-
26
-
-
79960208246
-
Sequencing technology does not eliminate biological variability
-
Hansen KD, Wu Z, Irizarry RA, Leek JT. 2011. Sequencing technology does not eliminate biological variability. Nat Biotechnol 29: 572-573.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 572-573
-
-
Hansen, K.D.1
Wu, Z.2
Irizarry, R.A.3
Leek, J.T.4
-
27
-
-
77955298482
-
BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
-
Hardcastle TJ, Kelly KA. 2010. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 422
-
-
Hardcastle, T.J.1
Kelly, K.A.2
-
28
-
-
0027068143
-
Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
-
Hirschhorn JN, Brown SA, Clark CD, Winston F. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6: 2288-2298.
-
(1992)
Genes Dev
, vol.6
, pp. 2288-2298
-
-
Hirschhorn, J.N.1
Brown, S.A.2
Clark, C.D.3
Winston, F.4
-
29
-
-
0032567081
-
Dissecting the regulatory circuitry of a eukaryotic genome
-
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728.
-
(1998)
Cell
, vol.95
, pp. 717-728
-
-
Holstege, F.C.1
Jennings, E.G.2
Wyrick, J.J.3
Lee, T.I.4
Hengartner, C.J.5
Green, M.R.6
Golub, T.R.7
Lander, E.S.8
Young, R.A.9
-
30
-
-
79959524146
-
A haplotype map of the human genome
-
The International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437: 1299-1320.
-
(2005)
Nature
, vol.437
, pp. 1299-1320
-
-
The International HapMap Consortium1
-
31
-
-
80052521697
-
Synthetic spike-in standards for RNA-seq experiments
-
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B. 2011. Synthetic spike-in standards for RNA-seq experiments.Genome Res 21: 1543-1551.
-
(2011)
Genome Res
, vol.21
, pp. 1543-1551
-
-
Jiang, L.1
Schlesinger, F.2
Davis, C.A.3
Zhang, Y.4
Li, R.5
Salit, M.6
Gingeras, T.R.7
Oliver, B.8
-
33
-
-
0026087180
-
Preparation of high molecular weight RNA
-
Kohrer K, Domdey H. 1991. Preparation of high molecular weight RNA.Methods Enzymol 194: 398-405.
-
(1991)
Methods Enzymol
, vol.194
, pp. 398-405
-
-
Kohrer, K.1
Domdey, H.2
-
34
-
-
84858606519
-
A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
-
Kvam VM, Liu P, Si Y. 2012. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99: 248-256.
-
(2012)
Am J Bot
, vol.99
, pp. 248-256
-
-
Kvam, V.M.1
Liu, P.2
Si, Y.3
-
35
-
-
84896735766
-
Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
LawCW, Chen Y, ShiW, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15: R29.
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
36
-
-
84876263777
-
EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments
-
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C. 2013. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.Bioinformatics 29: 1035-1043.
-
(2013)
Bioinformatics
, vol.29
, pp. 1035-1043
-
-
Leng, N.1
Dawson, J.A.2
Thomson, J.A.3
Ruotti, V.4
Rissman, A.I.5
Smits, B.M.6
Haag, J.D.7
Gould, M.N.8
Stewart, R.M.9
Kendziorski, C.10
-
37
-
-
84886557480
-
Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
-
Li J, Tibshirani R. 2013. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data.Stat Methods Med Res 22: 519-536.
-
(2013)
Stat Methods Med Res
, vol.22
, pp. 519-536
-
-
Li, J.1
Tibshirani, R.2
-
38
-
-
84863562292
-
Normalization, testing, and false discovery rate estimation for RNA-sequencing data
-
Li J, Witten DM, Johnstone IM, Tibshirani R. 2012. Normalization, testing, and false discovery rate estimation for RNA-sequencing data.Biostatistics 13: 523-538.
-
(2012)
Biostatistics
, vol.13
, pp. 523-538
-
-
Li, J.1
Witten, D.M.2
Johnstone, I.M.3
Tibshirani, R.4
-
39
-
-
84893242996
-
RNA-seq differential expression studies: More sequence or more replication?
-
Liu Y, Zhou J, White KP. 2014. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30: 301-304.
-
(2014)
Bioinformatics
, vol.30
, pp. 301-304
-
-
Liu, Y.1
Zhou, J.2
White, K.P.3
-
40
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
41
-
-
84868010349
-
Revisiting global gene expression analysis
-
Loven J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, Levens DL, Lee TI, Young RA. 2012. Revisiting global gene expression analysis. Cell 151: 476-482.
-
(2012)
Cell
, vol.151
, pp. 476-482
-
-
Loven, J.1
Orlando, D.A.2
Sigova, A.A.3
Lin, C.Y.4
Rahl, P.B.5
Burge, C.B.6
Levens, D.L.7
Lee, T.I.8
Young, R.A.9
-
42
-
-
84879198972
-
Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
-
Lund SP, Nettleton D, McCarthy DJ, Smyth GK. 2012. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol 11 doi: 10.1515/1544-6115.1826.
-
(2012)
Stat Appl Genet Mol Biol
, vol.11
-
-
Lund, S.P.1
Nettleton, D.2
McCarthy, D.J.3
Smyth, G.K.4
-
43
-
-
0002322469
-
On a test of whether one of two random variables is stochastically larger than the other
-
Mann HB, Whitney DR. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18: 50-60.
-
(1947)
Ann Math Stat
, vol.18
, pp. 50-60
-
-
Mann, H.B.1
Whitney, D.R.2
-
44
-
-
50649089207
-
RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
-
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18: 1509-1517.
-
(2008)
Genome Res
, vol.18
, pp. 1509-1517
-
-
Marioni, J.C.1
Mason, C.E.2
Mane, S.M.3
Stephens, M.4
Gilad, Y.5
-
45
-
-
77950458649
-
Transcriptome genetics using second generation sequencing in a Caucasian population
-
Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET. 2010. Transcriptome genetics using second generation sequencing in a Caucasian population.Nature 464: 773-777.
-
(2010)
Nature
, vol.464
, pp. 773-777
-
-
Montgomery, S.B.1
Sammeth, M.2
Gutierrez-Arcelus, M.3
Lach, R.P.4
Ingle, C.5
Nisbett, J.6
Guigo, R.7
Dermitzakis, E.T.8
-
46
-
-
84945184668
-
Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns
-
Moulos P, Hatzis P. 2015. Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns.Nucleic Acids Res 43: e25.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. e25
-
-
Moulos, P.1
Hatzis, P.2
-
47
-
-
0021715020
-
Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae
-
Neigeborn L, Carlson M. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae.Genetics 108: 845-858.
-
(1984)
Genetics
, vol.108
, pp. 845-858
-
-
Neigeborn, L.1
Carlson, M.2
-
48
-
-
27244442710
-
Confidence intervals for the mean of log-normal distribution
-
Olsson U. 2005. Confidence intervals for the mean of log-normal distribution.J Stat Educ 13.
-
(2005)
J Stat Educ
, vol.13
-
-
Olsson, U.1
-
49
-
-
0036051492
-
How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
-
research0022
-
PanW, Lin J, Le CT. 2002. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol 3: research0022.
-
(2002)
Genome Biol
, vol.3
-
-
Pan, W.1
Lin, J.2
Le, C.T.3
-
50
-
-
0026584855
-
Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription
-
Peterson CL, Herskowitz I. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription.Cell 68: 573-583.
-
(1992)
Cell
, vol.68
, pp. 573-583
-
-
Peterson, C.L.1
Herskowitz, I.2
-
51
-
-
0026021355
-
A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1
-
Peterson CL, KrugerW, Herskowitz I. 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135-1143.
-
(1991)
Cell
, vol.64
, pp. 1135-1143
-
-
Peterson, C.L.1
Kruger, W.2
Herskowitz, I.3
-
52
-
-
77950460661
-
Understanding mechanisms underlying human gene expression variation with RNA sequencing
-
Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. 2010.Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768-772.
-
(2010)
Nature
, vol.464
, pp. 768-772
-
-
Pickrell, J.K.1
Marioni, J.C.2
Pai, A.A.3
Degner, J.F.4
Engelhardt, B.E.5
Nkadori, E.6
Veyrieras, J.B.7
Stephens, M.8
Gilad, Y.9
Pritchard, J.K.10
-
53
-
-
84883644707
-
Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
-
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D. 2013. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14: R95.
-
(2013)
Genome Biol
, vol.14
, pp. R95
-
-
Rapaport, F.1
Khanin, R.2
Liang, Y.3
Pirun, M.4
Krek, A.5
Zumbo, P.6
Mason, C.E.7
Socci, N.D.8
Betel, D.9
-
54
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25.
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
55
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
56
-
-
80053570354
-
Snf2-family proteins: Chromatin remodellers for any occasion
-
Ryan DP, Owen-Hughes T. 2011. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol 15: 649-656.
-
(2011)
Curr Opin Chem Biol
, vol.15
, pp. 649-656
-
-
Ryan, D.P.1
Owen-Hughes, T.2
-
57
-
-
84899551699
-
Improved annotation of 3′ untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs
-
Schurch NJ, Cole C, Sherstnev A, Song J, Duc C, Storey KG, McLean WH, Brown SJ, Simpson GG, Barton GJ. 2014. Improved annotation of 3′ untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs.PLoS One 9: e94270.
-
(2014)
PLoS One
, vol.9
, pp. e94270
-
-
Schurch, N.J.1
Cole, C.2
Sherstnev, A.3
Song, J.4
Duc, C.5
Storey, K.G.6
McLean, W.H.7
Brown, S.J.8
Simpson, G.G.9
Barton, G.J.10
-
58
-
-
84920550975
-
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
-
SEQC/MAQC-III Consortium. 2014. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32: 903-914.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 903-914
-
-
SEQC/MAQC-III Consortium1
-
59
-
-
84928199480
-
Comparison of software packages for detecting differential expression in RNA-seq studies
-
Seyednasrollah F, Laiho A, Elo LL. 2013. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16: 59-70.
-
(2013)
Brief Bioinform
, vol.16
, pp. 59-70
-
-
Seyednasrollah, F.1
Laiho, A.2
Elo, L.L.3
-
61
-
-
84907021033
-
CompcodeR-an R package for benchmarking differential expression methods for RNA-seq data
-
Soneson C. 2014. compcodeR-an R package for benchmarking differential expression methods for RNA-seq data. Bioinformatics 30: 2517-2518.
-
(2014)
Bioinformatics
, vol.30
, pp. 2517-2518
-
-
Soneson, C.1
-
62
-
-
84874677498
-
A comparison of methods for differential expression analysis of RNA-seq data
-
Soneson C, Delorenzi M. 2013. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14: 91.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 91
-
-
Soneson, C.1
Delorenzi, M.2
-
63
-
-
0021659727
-
Five SWI genes are required for expression of the HO gene in yeast
-
Stern M, Jensen R, Herskowitz I. 1984. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 853-868.
-
(1984)
J Mol Biol
, vol.178
, pp. 853-868
-
-
Stern, M.1
Jensen, R.2
Herskowitz, I.3
-
64
-
-
0034724394
-
Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae
-
Sudarsanam P, Iyer VR, Brown PO, Winston F. 2000. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae.Proc Natl Acad Sci 97: 3364-3369.
-
(2000)
Proc Natl Acad Sci
, vol.97
, pp. 3364-3369
-
-
Sudarsanam, P.1
Iyer, V.R.2
Brown, P.O.3
Winston, F.4
-
65
-
-
33745612095
-
Pvclust: An R package for assessing the uncertainty in hierarchical clustering
-
Suzuki R, Shimodaira H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540-1542.
-
(2006)
Bioinformatics
, vol.22
, pp. 1540-1542
-
-
Suzuki, R.1
Shimodaira, H.2
-
66
-
-
83055192078
-
Differential expression in RNA-seq: A matter of depth
-
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011.Differential expression in RNA-seq: a matter of depth. Genome Res 21: 2213-2223.
-
(2011)
Genome Res
, vol.21
, pp. 2213-2223
-
-
Tarazona, S.1
Garcia-Alcalde, F.2
Dopazo, J.3
Ferrer, A.4
Conesa, A.5
-
67
-
-
66149192669
-
How to map billions of short reads onto genomes
-
Trapnell C, Salzberg SL. 2009. How to map billions of short reads onto genomes. Nat Biotechnol 27: 455-457.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 455-457
-
-
Trapnell, C.1
Salzberg, S.L.2
-
68
-
-
65449136284
-
TopHat: Discovering splice junctions with RNA-Seq
-
Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105-1111.
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
69
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
-
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562-578.
-
(2012)
Nat Protoc
, vol.7
, pp. 562-578
-
-
Trapnell, C.1
Roberts, A.2
Goff, L.3
Pertea, G.4
Kim, D.5
Kelley, D.R.6
Pimentel, H.7
Salzberg, S.L.8
Rinn, J.L.9
Pachter, L.10
-
70
-
-
56549101959
-
Alternative isoform regulation in human tissue transcriptomes
-
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456: 470-476.
-
(2008)
Nature
, vol.456
, pp. 470-476
-
-
Wang, E.T.1
Sandberg, R.2
Luo, S.3
Khrebtukova, I.4
Zhang, L.5
Mayr, C.6
Kingsmore, S.F.7
Schroth, G.P.8
Burge, C.B.9
-
71
-
-
75249095274
-
DEGseq: An R package for identifying differentially expressed genes from RNA-seq data
-
Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data.Bioinformatics 26: 136-138.
-
(2010)
Bioinformatics
, vol.26
, pp. 136-138
-
-
Wang, L.1
Feng, Z.2
Wang, X.3
Wang, X.4
Zhang, X.5
|