메뉴 건너뛰기




Volumn 24, Issue 10, 2016, Pages 811-820

On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals

Author keywords

gene disruption; gene replacement; gene therapy; genetic modification; genome editing nucleases; homologous recombination

Indexed keywords

CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN;

EID: 84990851668     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2016.06.005     Document Type: Review
Times cited : (134)

References (106)
  • 1
    • 0024542052 scopus 로고
    • Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes
    • 1 Gossler, A., et al. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244 (1989), 463–465.
    • (1989) Science , vol.244 , pp. 463-465
    • Gossler, A.1
  • 2
    • 0026720075 scopus 로고
    • Tight control of gene expression in mammalian cells by tetracycline-responsive promoters
    • 2 Gossen, M., Bujard, H., Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 5547–5551.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 5547-5551
    • Gossen, M.1    Bujard, H.2
  • 3
    • 0028059099 scopus 로고
    • Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting
    • 3 Gu, H., et al. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265 (1994), 103–106.
    • (1994) Science , vol.265 , pp. 103-106
    • Gu, H.1
  • 5
    • 0142226586 scopus 로고    scopus 로고
    • Application of transgenesis in livestock for agriculture and biomedicine
    • 5 Niemann, H., Kues, W.A., Application of transgenesis in livestock for agriculture and biomedicine. Anim. Reprod. Sci. 79 (2003), 291–317.
    • (2003) Anim. Reprod. Sci. , vol.79 , pp. 291-317
    • Niemann, H.1    Kues, W.A.2
  • 6
    • 0030476241 scopus 로고    scopus 로고
    • Chromosomal insertion of foreign DNA
    • 6 Bishop, J.O., Chromosomal insertion of foreign DNA. Reprod. Nutr. Dev. 36 (1996), 607–618.
    • (1996) Reprod. Nutr. Dev. , vol.36 , pp. 607-618
    • Bishop, J.O.1
  • 7
    • 0036239163 scopus 로고    scopus 로고
    • Gene transfer strategies in animal transgenesis
    • 7 Montoliu, L., Gene transfer strategies in animal transgenesis. Cloning Stem Cells 4 (2002), 39–46.
    • (2002) Cloning Stem Cells , vol.4 , pp. 39-46
    • Montoliu, L.1
  • 8
    • 19544371373 scopus 로고    scopus 로고
    • Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century
    • 8 Capecchi, M.R., Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6 (2005), 507–512.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 507-512
    • Capecchi, M.R.1
  • 10
    • 0034729804 scopus 로고    scopus 로고
    • Production of gene-targeted sheep by nuclear transfer from cultured somatic cells
    • 10 McCreath, K.J., et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405 (2000), 1066–1069.
    • (2000) Nature , vol.405 , pp. 1066-1069
    • McCreath, K.J.1
  • 11
    • 77952243144 scopus 로고    scopus 로고
    • Zinc-finger nucleases: a powerful tool for genetic engineering of animals
    • 11 Rémy, S., et al. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 19 (2010), 363–371.
    • (2010) Transgenic Res. , vol.19 , pp. 363-371
    • Rémy, S.1
  • 12
    • 84925534204 scopus 로고    scopus 로고
    • TALEN-mediated genome engineering to generate targeted mice
    • 12 Sommer, D., et al. TALEN-mediated genome engineering to generate targeted mice. Chromosome Res. 23 (2015), 43–55.
    • (2015) Chromosome Res. , vol.23 , pp. 43-55
    • Sommer, D.1
  • 13
    • 84929133780 scopus 로고    scopus 로고
    • The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals
    • 13 Seruggia, D., Montoliu, L., The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 23 (2014), 707–716.
    • (2014) Transgenic Res. , vol.23 , pp. 707-716
    • Seruggia, D.1    Montoliu, L.2
  • 14
    • 0023600057 scopus 로고
    • Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
    • 14 Ishino, Y., et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 (1987), 5429–5433.
    • (1987) J. Bacteriol. , vol.169 , pp. 5429-5433
    • Ishino, Y.1
  • 15
    • 0024362982 scopus 로고
    • Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome
    • 15 Nakata, A., et al. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171 (1989), 3553–3556.
    • (1989) J. Bacteriol. , vol.171 , pp. 3553-3556
    • Nakata, A.1
  • 16
    • 0025826178 scopus 로고
    • Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains
    • 16 Hermans, P.W., et al. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59 (1991), 2695–2705.
    • (1991) Infect. Immun. , vol.59 , pp. 2695-2705
    • Hermans, P.W.1
  • 17
    • 0025986943 scopus 로고
    • Minisatellite repeat coding as a digital approach to DNA typing
    • 17 Jeffreys, A.J., et al. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354 (1991), 204–209.
    • (1991) Nature , vol.354 , pp. 204-209
    • Jeffreys, A.J.1
  • 18
    • 0027724480 scopus 로고
    • Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method
    • 18 Groenen, P.M., et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10 (1993), 1057–1065.
    • (1993) Mol. Microbiol. , vol.10 , pp. 1057-1065
    • Groenen, P.M.1
  • 19
    • 84911919404 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex
    • 19 Botelho, A., et al. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex. Methods Mol. Biol. 1247 (2015), 373–389.
    • (2015) Methods Mol. Biol. , vol.1247 , pp. 373-389
    • Botelho, A.1
  • 20
    • 0027237167 scopus 로고
    • Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites
    • 20 Mojica, F.J., et al. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 9 (1993), 613–621.
    • (1993) Mol. Microbiol. , vol.9 , pp. 613-621
    • Mojica, F.J.1
  • 21
    • 0029166294 scopus 로고
    • Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning
    • 21 Mojica, F.J., et al. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17 (1995), 85–93.
    • (1995) Mol. Microbiol. , vol.17 , pp. 85-93
    • Mojica, F.J.1
  • 22
    • 0034034401 scopus 로고    scopus 로고
    • Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
    • 22 Mojica, F.J., et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36 (2000), 244–246.
    • (2000) Mol. Microbiol. , vol.36 , pp. 244-246
    • Mojica, F.J.1
  • 23
    • 0036267740 scopus 로고    scopus 로고
    • Identification of genes that are associated with DNA repeats in prokaryotes
    • 23 Jansen, R., et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43 (2002), 1565–1575.
    • (2002) Mol. Microbiol. , vol.43 , pp. 1565-1575
    • Jansen, R.1
  • 24
    • 16444385662 scopus 로고    scopus 로고
    • Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
    • 24 Mojica, F.J., et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60 (2005), 174–182.
    • (2005) J. Mol. Evol. , vol.60 , pp. 174-182
    • Mojica, F.J.1
  • 25
    • 15844390228 scopus 로고    scopus 로고
    • CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
    • 25 Pourcel, C., et al. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151 (2005), 653–663.
    • (2005) Microbiology , vol.151 , pp. 653-663
    • Pourcel, C.1
  • 26
    • 23844505202 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    • 26 Bolotin, A., et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151 (2005), 2551–2561.
    • (2005) Microbiology , vol.151 , pp. 2551-2561
    • Bolotin, A.1
  • 27
    • 0037188531 scopus 로고    scopus 로고
    • Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus
    • 27 Tang, T.H., et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 7536–7541.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 7536-7541
    • Tang, T.H.1
  • 28
    • 34248374277 scopus 로고    scopus 로고
    • A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
    • 28 Makarova, K.S., et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 2006, 7.
    • (2006) Biology Direct , vol.1 , pp. 7
    • Makarova, K.S.1
  • 29
    • 38949214103 scopus 로고    scopus 로고
    • Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
    • 29 Horvath, P., et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1401–1412.
    • (2008) J. Bacteriol. , vol.190 , pp. 1401-1412
    • Horvath, P.1
  • 30
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • 30 Mojica, F.J., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733–740.
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1
  • 31
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • 31 Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 32
    • 33748096466 scopus 로고    scopus 로고
    • A putative viral defence mechanism in archaeal cells
    • 32 Lillestøl, R.K., et al. A putative viral defence mechanism in archaeal cells. Archaea 2 (2006), 59–72.
    • (2006) Archaea , vol.2 , pp. 59-72
    • Lillestøl, R.K.1
  • 33
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • 33 Brouns, S.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 34
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • 34 Marraffini, L.A., Sontheimer, E.J., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322 (2008), 1843–1845.
    • (2008) Science , vol.322 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 35
    • 44449133775 scopus 로고    scopus 로고
    • Virus population dynamics and acquired virus resistance in natural microbial communities
    • 35 Andersson, A.F., Banfield, J.F., Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320 (2008), 1047–1050.
    • (2008) Science , vol.320 , pp. 1047-1050
    • Andersson, A.F.1    Banfield, J.F.2
  • 36
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • 36 Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature 526 (2015), 55–61.
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 37
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
    • 37 Deveau, H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1390–1400.
    • (2008) J. Bacteriol. , vol.190 , pp. 1390-1400
    • Deveau, H.1
  • 38
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • 38 Garneau, J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71.
    • (2010) Nature , vol.468 , pp. 67-71
    • Garneau, J.E.1
  • 39
    • 70449753811 scopus 로고    scopus 로고
    • RNA-Guided RNA cleavage by a CRISPR RNA-Cas protein complex
    • 39 Hale, C.R., et al. RNA-Guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139 (2009), 945–956.
    • (2009) Cell , vol.139 , pp. 945-956
    • Hale, C.R.1
  • 40
    • 84856792673 scopus 로고    scopus 로고
    • Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
    • 40 Hale, C.R., et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45 (2012), 292–302.
    • (2012) Mol. Cell , vol.45 , pp. 292-302
    • Hale, C.R.1
  • 41
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • 41 Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 42
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • 42 Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 43
    • 34248400310 scopus 로고    scopus 로고
    • A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
    • 43 Haft, D.H., et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol., 1, 2005, e60.
    • (2005) PLoS Comput. Biol. , vol.1 , pp. e60
    • Haft, D.H.1
  • 44
    • 74249095519 scopus 로고    scopus 로고
    • CRISPR/Cas, the immune system of bacteria and archaea
    • 44 Horvath, P., Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea. Science 327 (2010), 167–170.
    • (2010) Science , vol.327 , pp. 167-170
    • Horvath, P.1    Barrangou, R.2
  • 45
    • 79956157571 scopus 로고    scopus 로고
    • Evolution and classification of the CRISPR-Cas systems
    • 45 Makarova, K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9 (2011), 467–477.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 467-477
    • Makarova, K.S.1
  • 46
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • 46 Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 47
    • 84902533278 scopus 로고    scopus 로고
    • Unravelling the structural and mechanistic basis of CRISPR-Cas systems
    • 47 van der Oost, J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 (2014), 479–492.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 479-492
    • van der Oost, J.1
  • 48
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • 48 Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), E2579–E2586.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1
  • 49
    • 84954285537 scopus 로고    scopus 로고
    • The Heroes of CRISPR
    • 49 Lander, E.S., The Heroes of CRISPR. Cell 164 (2016), 18–28.
    • (2016) Cell , vol.164 , pp. 18-28
    • Lander, E.S.1
  • 50
    • 84866138092 scopus 로고    scopus 로고
    • RNA-mediated programmable DNA cleavage
    • 50 Barrangou, R., RNA-mediated programmable DNA cleavage. Nat. Biotechnol. 30 (2012), 836–838.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 836-838
    • Barrangou, R.1
  • 51
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • 51 Jiang, W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31 (2013), 233–239.
    • (2013) Nat Biotechnol. , vol.31 , pp. 233-239
    • Jiang, W.1
  • 52
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • 52 Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 53
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • 53 Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 54
    • 84876567971 scopus 로고    scopus 로고
    • RNA-programmed genome editing in human cells
    • 54 Jinek, M., et al. RNA-programmed genome editing in human cells. Elife, 2, 2013, e00471.
    • (2013) Elife , vol.2 , pp. e00471
    • Jinek, M.1
  • 55
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • 55 Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 56
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • 56 Hsu, P.D., et al. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157 (2014), 1262–1278.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1
  • 57
    • 84887018028 scopus 로고    scopus 로고
    • RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
    • 57 Gasiunas, G., Siksnys, V., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?. Trends Microbiol. 21 (2013), 562–567.
    • (2013) Trends Microbiol. , vol.21 , pp. 562-567
    • Gasiunas, G.1    Siksnys, V.2
  • 58
    • 84925876620 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas systems for bacterial genome editing
    • 58 Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23 (2015), 225–232.
    • (2015) Trends Microbiol. , vol.23 , pp. 225-232
    • Selle, K.1    Barrangou, R.2
  • 59
    • 84877103949 scopus 로고    scopus 로고
    • Generation of gene-modified mice via Cas9/RNA-mediated gene targeting
    • 59 Shen, B., et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 23 (2013), 720–723.
    • (2013) Cell Res. , vol.23 , pp. 720-723
    • Shen, B.1
  • 60
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • 60 Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 61
    • 84884289608 scopus 로고    scopus 로고
    • One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
    • 61 Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154 (2013), 1370–1379.
    • (2013) Cell , vol.154 , pp. 1370-1379
    • Yang, H.1
  • 62
    • 84947740923 scopus 로고    scopus 로고
    • Accelerating research through reagent repositories: the genome editing example
    • 62 Joung, J.K., et al. Accelerating research through reagent repositories: the genome editing example. Genome Biol., 16, 2015, 255.
    • (2015) Genome Biol. , vol.16 , pp. 255
    • Joung, J.K.1
  • 63
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • 63 Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 (2014), 347–355.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 65
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
    • 65 Shmakov, S., et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell. 60 (2015), 385–397.
    • (2015) Mol. Cell. , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 66
    • 84977839343 scopus 로고    scopus 로고
    • Next generation prokaryotic engineering: the CRISPR-Cas toolkit
    • Published online March 1, 2016
    • 66 Mougiakos, I., et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol., 2016, 10.1016/j.tibtech.2016.02.004 Published online March 1, 2016.
    • (2016) Trends Biotechnol.
    • Mougiakos, I.1
  • 67
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • 67 Ran, F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520 (2015), 186–191.
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 68
    • 84947730555 scopus 로고    scopus 로고
    • Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
    • 68 Karvelis, T., et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol., 16, 2015, 253.
    • (2015) Genome Biol. , vol.16 , pp. 253
    • Karvelis, T.1
  • 69
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • 69 Zetsche, B., et al. Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 70
    • 84937908208 scopus 로고    scopus 로고
    • Engineered CRISPR-Cas9 nucleases with altered PAM specificities
    • 70 Kleinstiver, B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
    • (2015) Nature , vol.523 , pp. 481-485
    • Kleinstiver, B.P.1
  • 71
    • 84952943845 scopus 로고    scopus 로고
    • Rationally engineered Cas9 nucleases with improved specificity
    • 71 Slaymaker, I.M., et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2016), 84–88.
    • (2016) Science , vol.351 , pp. 84-88
    • Slaymaker, I.M.1
  • 72
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    • 72 Kleinstiver, B.P., et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495.
    • (2016) Nature , vol.529 , pp. 490-495
    • Kleinstiver, B.P.1
  • 73
    • 84962514403 scopus 로고    scopus 로고
    • Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
    • 73 Anders, C., et al. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902.
    • (2016) Mol. Cell , vol.61 , pp. 895-902
    • Anders, C.1
  • 74
    • 84959440451 scopus 로고    scopus 로고
    • Structure and engineering of Francisella novicida Cas9
    • 74 Hirano, H., et al. Structure and engineering of Francisella novicida Cas9. Cell 164 (2016), 950–961.
    • (2016) Cell , vol.164 , pp. 950-961
    • Hirano, H.1
  • 75
    • 84896316351 scopus 로고    scopus 로고
    • DNA-guided DNA interference by a prokaryotic Argonaute
    • 75 Swarts, D.C., et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507 (2016), 258–261.
    • (2016) Nature , vol.507 , pp. 258-261
    • Swarts, D.C.1
  • 76
    • 84978438340 scopus 로고    scopus 로고
    • DNA-guided genome editing using the Natronobacterium gregoryi Argonaute
    • Published online May 2, 2016
    • 76 Gao, F., et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat. Biotechnol, 2016, 10.1038/nbt.3547 Published online May 2, 2016.
    • (2016) Nat. Biotechnol
    • Gao, F.1
  • 77
    • 67749106611 scopus 로고    scopus 로고
    • Knockout rats via embryo microinjection of zinc-finger nucleases
    • 77 Geurts, A.M., et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325, 2009, 433.
    • (2009) Science , vol.325 , pp. 433
    • Geurts, A.M.1
  • 78
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • 78 Miller, J.C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 (2011), 143–148.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 143-148
    • Miller, J.C.1
  • 79
    • 84934904398 scopus 로고    scopus 로고
    • Mouse genome editing using the CRISPR/Cas system
    • 15 7.1-15.7.27
    • 79 Harms, D.W., et al. Mouse genome editing using the CRISPR/Cas system. Curr. Protoc. Hum. Genet., 83, 2014 15 7.1-15.7.27.
    • (2014) Curr. Protoc. Hum. Genet. , vol.83
    • Harms, D.W.1
  • 80
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • 80 Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39 (2011), 9275–9282.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1
  • 81
    • 80052628623 scopus 로고    scopus 로고
    • Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies
    • 81 Segata, N., Huttenhower, C., Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS ONE, 6, 2011, e24704.
    • (2011) PLoS ONE , vol.6 , pp. e24704
    • Segata, N.1    Huttenhower, C.2
  • 82
    • 84930009075 scopus 로고    scopus 로고
    • Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity
    • 82 Kachroo, A.H., et al. Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348 (2015), 921–925.
    • (2015) Science , vol.348 , pp. 921-925
    • Kachroo, A.H.1
  • 83
    • 84897954175 scopus 로고    scopus 로고
    • Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
    • 83 Shen, B., et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11 (2014), 399–402.
    • (2014) Nat. Methods , vol.11 , pp. 399-402
    • Shen, B.1
  • 84
    • 84905029498 scopus 로고    scopus 로고
    • Generating genetically modified mice using CRISPR/Cas-mediated genome engineering
    • 84 Yang, H., et al. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9 (2014), 1956–1968.
    • (2014) Nat. Protoc. , vol.9 , pp. 1956-1968
    • Yang, H.1
  • 85
    • 84931291783 scopus 로고    scopus 로고
    • Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis
    • 85 Seruggia, D., et al. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 43 (2015), 4855–4867.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 4855-4867
    • Seruggia, D.1
  • 86
    • 84939246295 scopus 로고    scopus 로고
    • CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
    • 86 Guo, Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162 (2015), 900–910.
    • (2015) Cell , vol.162 , pp. 900-910
    • Guo, Y.1
  • 87
    • 84894081986 scopus 로고    scopus 로고
    • Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
    • 87 Niu, Y., et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156 (2014), 836–843.
    • (2014) Cell , vol.156 , pp. 836-843
    • Niu, Y.1
  • 88
    • 84930618439 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    • 88 Liang, P., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6 (2015), 363–372.
    • (2015) Protein Cell , vol.6 , pp. 363-372
    • Liang, P.1
  • 89
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • 89 Hilton, I.B., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 510-517
    • Hilton, I.B.1
  • 90
    • 84946925919 scopus 로고    scopus 로고
    • Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes
    • 90 Peng, J., et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci. Rep., 5, 2015, 16705.
    • (2015) Sci. Rep. , vol.5 , pp. 16705
    • Peng, J.1
  • 91
    • 84942887576 scopus 로고    scopus 로고
    • Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
    • 91 Crispo, M., et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 10, 2015, e0136690.
    • (2015) PLoS ONE , vol.10 , pp. e0136690
    • Crispo, M.1
  • 92
    • 84948447883 scopus 로고    scopus 로고
    • Genome-wide inactivation of porcine endogenous retroviruses (PERVs)
    • 92 Yang, L., et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350 (2015), 1101–1104.
    • (2015) Science , vol.350 , pp. 1101-1104
    • Yang, L.1
  • 93
    • 84941186492 scopus 로고    scopus 로고
    • Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting
    • 93 Chang, C.W., et al. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12 (2015), 1668–1677.
    • (2015) Cell Rep. , vol.12 , pp. 1668-1677
    • Chang, C.W.1
  • 94
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • 94 Wang, T., et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343 (2014), 80–84.
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1
  • 95
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • 95 Shalem, O., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1
  • 96
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • 96 Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1
  • 97
    • 84901951241 scopus 로고    scopus 로고
    • Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system
    • 97 Torres, R., et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 5, 2014, 3964.
    • (2014) Nat. Commun. , vol.5 , pp. 3964
    • Torres, R.1
  • 98
    • 84922735816 scopus 로고    scopus 로고
    • In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
    • 98 Maddalo, D., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516 (2014), 423–427.
    • (2014) Nature , vol.516 , pp. 423-427
    • Maddalo, D.1
  • 99
    • 84923118778 scopus 로고    scopus 로고
    • Rapid modelling of cooperating genetic events in cancer through somatic genome editing
    • 99 Sánchez-Rivera, F.J., et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516 (2014), 428–431.
    • (2014) Nature , vol.516 , pp. 428-431
    • Sánchez-Rivera, F.J.1
  • 100
    • 84928577551 scopus 로고    scopus 로고
    • Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation
    • 100 Huang, X., et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33 (2015), 1470–1479.
    • (2015) Stem Cells , vol.33 , pp. 1470-1479
    • Huang, X.1
  • 101
    • 84938751866 scopus 로고    scopus 로고
    • Functional correction of large factor viii gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9
    • 101 Park, C.Y., et al. Functional correction of large factor viii gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17 (2015), 213–220.
    • (2015) Cell Stem Cell , vol.17 , pp. 213-220
    • Park, C.Y.1
  • 102
    • 84961291537 scopus 로고    scopus 로고
    • Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
    • 102 Long, C., et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351 (2016), 400–403.
    • (2016) Science , vol.351 , pp. 400-403
    • Long, C.1
  • 103
    • 84963940775 scopus 로고    scopus 로고
    • In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
    • 103 Nelson, C.E., et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351 (2016), 403–407.
    • (2016) Science , vol.351 , pp. 403-407
    • Nelson, C.E.1
  • 104
    • 84963985350 scopus 로고    scopus 로고
    • In vivo gene editing in dystrophic mouse muscle and muscle stem cells
    • 104 Tabebordbar, M., et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351 (2016), 407–411.
    • (2016) Science , vol.351 , pp. 407-411
    • Tabebordbar, M.1
  • 105
    • 84960882884 scopus 로고    scopus 로고
    • Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
    • 105 Yin, H., et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34 (2016), 328–333.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 328-333
    • Yin, H.1
  • 106
    • 84960863986 scopus 로고    scopus 로고
    • A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
    • 106 Yang, Y., et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34 (2016), 334–338.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 334-338
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.