-
1
-
-
0024542052
-
Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes
-
1 Gossler, A., et al. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244 (1989), 463–465.
-
(1989)
Science
, vol.244
, pp. 463-465
-
-
Gossler, A.1
-
2
-
-
0026720075
-
Tight control of gene expression in mammalian cells by tetracycline-responsive promoters
-
2 Gossen, M., Bujard, H., Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89 (1992), 5547–5551.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 5547-5551
-
-
Gossen, M.1
Bujard, H.2
-
3
-
-
0028059099
-
Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting
-
3 Gu, H., et al. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265 (1994), 103–106.
-
(1994)
Science
, vol.265
, pp. 103-106
-
-
Gu, H.1
-
5
-
-
0142226586
-
Application of transgenesis in livestock for agriculture and biomedicine
-
5 Niemann, H., Kues, W.A., Application of transgenesis in livestock for agriculture and biomedicine. Anim. Reprod. Sci. 79 (2003), 291–317.
-
(2003)
Anim. Reprod. Sci.
, vol.79
, pp. 291-317
-
-
Niemann, H.1
Kues, W.A.2
-
6
-
-
0030476241
-
Chromosomal insertion of foreign DNA
-
6 Bishop, J.O., Chromosomal insertion of foreign DNA. Reprod. Nutr. Dev. 36 (1996), 607–618.
-
(1996)
Reprod. Nutr. Dev.
, vol.36
, pp. 607-618
-
-
Bishop, J.O.1
-
7
-
-
0036239163
-
Gene transfer strategies in animal transgenesis
-
7 Montoliu, L., Gene transfer strategies in animal transgenesis. Cloning Stem Cells 4 (2002), 39–46.
-
(2002)
Cloning Stem Cells
, vol.4
, pp. 39-46
-
-
Montoliu, L.1
-
8
-
-
19544371373
-
Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century
-
8 Capecchi, M.R., Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6 (2005), 507–512.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 507-512
-
-
Capecchi, M.R.1
-
10
-
-
0034729804
-
Production of gene-targeted sheep by nuclear transfer from cultured somatic cells
-
10 McCreath, K.J., et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405 (2000), 1066–1069.
-
(2000)
Nature
, vol.405
, pp. 1066-1069
-
-
McCreath, K.J.1
-
11
-
-
77952243144
-
Zinc-finger nucleases: a powerful tool for genetic engineering of animals
-
11 Rémy, S., et al. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 19 (2010), 363–371.
-
(2010)
Transgenic Res.
, vol.19
, pp. 363-371
-
-
Rémy, S.1
-
12
-
-
84925534204
-
TALEN-mediated genome engineering to generate targeted mice
-
12 Sommer, D., et al. TALEN-mediated genome engineering to generate targeted mice. Chromosome Res. 23 (2015), 43–55.
-
(2015)
Chromosome Res.
, vol.23
, pp. 43-55
-
-
Sommer, D.1
-
13
-
-
84929133780
-
The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals
-
13 Seruggia, D., Montoliu, L., The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 23 (2014), 707–716.
-
(2014)
Transgenic Res.
, vol.23
, pp. 707-716
-
-
Seruggia, D.1
Montoliu, L.2
-
14
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
14 Ishino, Y., et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169 (1987), 5429–5433.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
-
15
-
-
0024362982
-
Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome
-
15 Nakata, A., et al. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171 (1989), 3553–3556.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 3553-3556
-
-
Nakata, A.1
-
16
-
-
0025826178
-
Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains
-
16 Hermans, P.W., et al. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59 (1991), 2695–2705.
-
(1991)
Infect. Immun.
, vol.59
, pp. 2695-2705
-
-
Hermans, P.W.1
-
17
-
-
0025986943
-
Minisatellite repeat coding as a digital approach to DNA typing
-
17 Jeffreys, A.J., et al. Minisatellite repeat coding as a digital approach to DNA typing. Nature 354 (1991), 204–209.
-
(1991)
Nature
, vol.354
, pp. 204-209
-
-
Jeffreys, A.J.1
-
18
-
-
0027724480
-
Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method
-
18 Groenen, P.M., et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10 (1993), 1057–1065.
-
(1993)
Mol. Microbiol.
, vol.10
, pp. 1057-1065
-
-
Groenen, P.M.1
-
19
-
-
84911919404
-
Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex
-
19 Botelho, A., et al. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex. Methods Mol. Biol. 1247 (2015), 373–389.
-
(2015)
Methods Mol. Biol.
, vol.1247
, pp. 373-389
-
-
Botelho, A.1
-
20
-
-
0027237167
-
Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites
-
20 Mojica, F.J., et al. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 9 (1993), 613–621.
-
(1993)
Mol. Microbiol.
, vol.9
, pp. 613-621
-
-
Mojica, F.J.1
-
21
-
-
0029166294
-
Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning
-
21 Mojica, F.J., et al. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17 (1995), 85–93.
-
(1995)
Mol. Microbiol.
, vol.17
, pp. 85-93
-
-
Mojica, F.J.1
-
22
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
-
22 Mojica, F.J., et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36 (2000), 244–246.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
-
23
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
23 Jansen, R., et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43 (2002), 1565–1575.
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
-
24
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
24 Mojica, F.J., et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60 (2005), 174–182.
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
-
25
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
25 Pourcel, C., et al. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151 (2005), 653–663.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
-
26
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
26 Bolotin, A., et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151 (2005), 2551–2561.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
-
27
-
-
0037188531
-
Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus
-
27 Tang, T.H., et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 7536–7541.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 7536-7541
-
-
Tang, T.H.1
-
28
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
28 Makarova, K.S., et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 2006, 7.
-
(2006)
Biology Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
-
29
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
29 Horvath, P., et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1401–1412.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
-
30
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
30 Mojica, F.J., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733–740.
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
-
31
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
31 Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
32
-
-
33748096466
-
A putative viral defence mechanism in archaeal cells
-
32 Lillestøl, R.K., et al. A putative viral defence mechanism in archaeal cells. Archaea 2 (2006), 59–72.
-
(2006)
Archaea
, vol.2
, pp. 59-72
-
-
Lillestøl, R.K.1
-
33
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
33 Brouns, S.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
-
34
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
34 Marraffini, L.A., Sontheimer, E.J., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322 (2008), 1843–1845.
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
35
-
-
44449133775
-
Virus population dynamics and acquired virus resistance in natural microbial communities
-
35 Andersson, A.F., Banfield, J.F., Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320 (2008), 1047–1050.
-
(2008)
Science
, vol.320
, pp. 1047-1050
-
-
Andersson, A.F.1
Banfield, J.F.2
-
36
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
36 Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature 526 (2015), 55–61.
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
37
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
37 Deveau, H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1390–1400.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
-
38
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
38 Garneau, J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
-
39
-
-
70449753811
-
RNA-Guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
39 Hale, C.R., et al. RNA-Guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139 (2009), 945–956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
-
40
-
-
84856792673
-
Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
-
40 Hale, C.R., et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45 (2012), 292–302.
-
(2012)
Mol. Cell
, vol.45
, pp. 292-302
-
-
Hale, C.R.1
-
41
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
41 Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
42
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
42 Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
43
-
-
34248400310
-
A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
-
43 Haft, D.H., et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol., 1, 2005, e60.
-
(2005)
PLoS Comput. Biol.
, vol.1
, pp. e60
-
-
Haft, D.H.1
-
44
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
44 Horvath, P., Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea. Science 327 (2010), 167–170.
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
45
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
45 Makarova, K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9 (2011), 467–477.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
-
46
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
46 Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
47
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
47 van der Oost, J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 (2014), 479–492.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
-
48
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
48 Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), E2579–E2586.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
-
49
-
-
84954285537
-
The Heroes of CRISPR
-
49 Lander, E.S., The Heroes of CRISPR. Cell 164 (2016), 18–28.
-
(2016)
Cell
, vol.164
, pp. 18-28
-
-
Lander, E.S.1
-
50
-
-
84866138092
-
RNA-mediated programmable DNA cleavage
-
50 Barrangou, R., RNA-mediated programmable DNA cleavage. Nat. Biotechnol. 30 (2012), 836–838.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 836-838
-
-
Barrangou, R.1
-
51
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
51 Jiang, W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31 (2013), 233–239.
-
(2013)
Nat Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
-
52
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
52 Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
53
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
53 Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
54
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
54 Jinek, M., et al. RNA-programmed genome editing in human cells. Elife, 2, 2013, e00471.
-
(2013)
Elife
, vol.2
, pp. e00471
-
-
Jinek, M.1
-
55
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
55 Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
56
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
56 Hsu, P.D., et al. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157 (2014), 1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
-
57
-
-
84887018028
-
RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
-
57 Gasiunas, G., Siksnys, V., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?. Trends Microbiol. 21 (2013), 562–567.
-
(2013)
Trends Microbiol.
, vol.21
, pp. 562-567
-
-
Gasiunas, G.1
Siksnys, V.2
-
58
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
58 Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23 (2015), 225–232.
-
(2015)
Trends Microbiol.
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
59
-
-
84877103949
-
Generation of gene-modified mice via Cas9/RNA-mediated gene targeting
-
59 Shen, B., et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 23 (2013), 720–723.
-
(2013)
Cell Res.
, vol.23
, pp. 720-723
-
-
Shen, B.1
-
60
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
60 Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
-
61
-
-
84884289608
-
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
-
61 Yang, H., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154 (2013), 1370–1379.
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
-
62
-
-
84947740923
-
Accelerating research through reagent repositories: the genome editing example
-
62 Joung, J.K., et al. Accelerating research through reagent repositories: the genome editing example. Genome Biol., 16, 2015, 255.
-
(2015)
Genome Biol.
, vol.16
, pp. 255
-
-
Joung, J.K.1
-
63
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
63 Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 (2014), 347–355.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
65
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
65 Shmakov, S., et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell. 60 (2015), 385–397.
-
(2015)
Mol. Cell.
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
-
66
-
-
84977839343
-
Next generation prokaryotic engineering: the CRISPR-Cas toolkit
-
Published online March 1, 2016
-
66 Mougiakos, I., et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol., 2016, 10.1016/j.tibtech.2016.02.004 Published online March 1, 2016.
-
(2016)
Trends Biotechnol.
-
-
Mougiakos, I.1
-
67
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
67 Ran, F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520 (2015), 186–191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
68
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
68 Karvelis, T., et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol., 16, 2015, 253.
-
(2015)
Genome Biol.
, vol.16
, pp. 253
-
-
Karvelis, T.1
-
69
-
-
84975678715
-
Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
69 Zetsche, B., et al. Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
70
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
70 Kleinstiver, B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
71
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
71 Slaymaker, I.M., et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2016), 84–88.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
72
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
72 Kleinstiver, B.P., et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
73
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
-
73 Anders, C., et al. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902.
-
(2016)
Mol. Cell
, vol.61
, pp. 895-902
-
-
Anders, C.1
-
74
-
-
84959440451
-
Structure and engineering of Francisella novicida Cas9
-
74 Hirano, H., et al. Structure and engineering of Francisella novicida Cas9. Cell 164 (2016), 950–961.
-
(2016)
Cell
, vol.164
, pp. 950-961
-
-
Hirano, H.1
-
75
-
-
84896316351
-
DNA-guided DNA interference by a prokaryotic Argonaute
-
75 Swarts, D.C., et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507 (2016), 258–261.
-
(2016)
Nature
, vol.507
, pp. 258-261
-
-
Swarts, D.C.1
-
76
-
-
84978438340
-
DNA-guided genome editing using the Natronobacterium gregoryi Argonaute
-
Published online May 2, 2016
-
76 Gao, F., et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat. Biotechnol, 2016, 10.1038/nbt.3547 Published online May 2, 2016.
-
(2016)
Nat. Biotechnol
-
-
Gao, F.1
-
77
-
-
67749106611
-
Knockout rats via embryo microinjection of zinc-finger nucleases
-
77 Geurts, A.M., et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325, 2009, 433.
-
(2009)
Science
, vol.325
, pp. 433
-
-
Geurts, A.M.1
-
78
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
78 Miller, J.C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29 (2011), 143–148.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
-
79
-
-
84934904398
-
Mouse genome editing using the CRISPR/Cas system
-
15 7.1-15.7.27
-
79 Harms, D.W., et al. Mouse genome editing using the CRISPR/Cas system. Curr. Protoc. Hum. Genet., 83, 2014 15 7.1-15.7.27.
-
(2014)
Curr. Protoc. Hum. Genet.
, vol.83
-
-
Harms, D.W.1
-
80
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
80 Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39 (2011), 9275–9282.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
-
81
-
-
80052628623
-
Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies
-
81 Segata, N., Huttenhower, C., Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS ONE, 6, 2011, e24704.
-
(2011)
PLoS ONE
, vol.6
, pp. e24704
-
-
Segata, N.1
Huttenhower, C.2
-
82
-
-
84930009075
-
Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity
-
82 Kachroo, A.H., et al. Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348 (2015), 921–925.
-
(2015)
Science
, vol.348
, pp. 921-925
-
-
Kachroo, A.H.1
-
83
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
-
83 Shen, B., et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11 (2014), 399–402.
-
(2014)
Nat. Methods
, vol.11
, pp. 399-402
-
-
Shen, B.1
-
84
-
-
84905029498
-
Generating genetically modified mice using CRISPR/Cas-mediated genome engineering
-
84 Yang, H., et al. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9 (2014), 1956–1968.
-
(2014)
Nat. Protoc.
, vol.9
, pp. 1956-1968
-
-
Yang, H.1
-
85
-
-
84931291783
-
Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis
-
85 Seruggia, D., et al. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 43 (2015), 4855–4867.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 4855-4867
-
-
Seruggia, D.1
-
86
-
-
84939246295
-
CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
-
86 Guo, Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162 (2015), 900–910.
-
(2015)
Cell
, vol.162
, pp. 900-910
-
-
Guo, Y.1
-
87
-
-
84894081986
-
Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
-
87 Niu, Y., et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156 (2014), 836–843.
-
(2014)
Cell
, vol.156
, pp. 836-843
-
-
Niu, Y.1
-
88
-
-
84930618439
-
CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
-
88 Liang, P., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6 (2015), 363–372.
-
(2015)
Protein Cell
, vol.6
, pp. 363-372
-
-
Liang, P.1
-
89
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
89 Hilton, I.B., et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33 (2015), 510–517.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
-
90
-
-
84946925919
-
Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes
-
90 Peng, J., et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci. Rep., 5, 2015, 16705.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16705
-
-
Peng, J.1
-
91
-
-
84942887576
-
Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
-
91 Crispo, M., et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 10, 2015, e0136690.
-
(2015)
PLoS ONE
, vol.10
, pp. e0136690
-
-
Crispo, M.1
-
92
-
-
84948447883
-
Genome-wide inactivation of porcine endogenous retroviruses (PERVs)
-
92 Yang, L., et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350 (2015), 1101–1104.
-
(2015)
Science
, vol.350
, pp. 1101-1104
-
-
Yang, L.1
-
93
-
-
84941186492
-
Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting
-
93 Chang, C.W., et al. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12 (2015), 1668–1677.
-
(2015)
Cell Rep.
, vol.12
, pp. 1668-1677
-
-
Chang, C.W.1
-
94
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
94 Wang, T., et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343 (2014), 80–84.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
-
95
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
95 Shalem, O., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343 (2014), 84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
-
96
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
96 Konermann, S., et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517 (2015), 583–588.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
-
97
-
-
84901951241
-
Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system
-
97 Torres, R., et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 5, 2014, 3964.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3964
-
-
Torres, R.1
-
98
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
98 Maddalo, D., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516 (2014), 423–427.
-
(2014)
Nature
, vol.516
, pp. 423-427
-
-
Maddalo, D.1
-
99
-
-
84923118778
-
Rapid modelling of cooperating genetic events in cancer through somatic genome editing
-
99 Sánchez-Rivera, F.J., et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516 (2014), 428–431.
-
(2014)
Nature
, vol.516
, pp. 428-431
-
-
Sánchez-Rivera, F.J.1
-
100
-
-
84928577551
-
Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation
-
100 Huang, X., et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33 (2015), 1470–1479.
-
(2015)
Stem Cells
, vol.33
, pp. 1470-1479
-
-
Huang, X.1
-
101
-
-
84938751866
-
Functional correction of large factor viii gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9
-
101 Park, C.Y., et al. Functional correction of large factor viii gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17 (2015), 213–220.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 213-220
-
-
Park, C.Y.1
-
102
-
-
84961291537
-
Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
-
102 Long, C., et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351 (2016), 400–403.
-
(2016)
Science
, vol.351
, pp. 400-403
-
-
Long, C.1
-
103
-
-
84963940775
-
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
-
103 Nelson, C.E., et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351 (2016), 403–407.
-
(2016)
Science
, vol.351
, pp. 403-407
-
-
Nelson, C.E.1
-
104
-
-
84963985350
-
In vivo gene editing in dystrophic mouse muscle and muscle stem cells
-
104 Tabebordbar, M., et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351 (2016), 407–411.
-
(2016)
Science
, vol.351
, pp. 407-411
-
-
Tabebordbar, M.1
-
105
-
-
84960882884
-
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
-
105 Yin, H., et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34 (2016), 328–333.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 328-333
-
-
Yin, H.1
-
106
-
-
84960863986
-
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
-
106 Yang, Y., et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34 (2016), 334–338.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 334-338
-
-
Yang, Y.1
|