-
1
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
2
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321:960-964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
-
3
-
-
68249102788
-
CRISPR-based adaptive and heritable immunity in prokaryotes
-
van der Oost J., et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 2009, 34:401-407.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 401-407
-
-
van der Oost, J.1
-
4
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 2014, 12:479-492.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
-
5
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
6
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
7
-
-
84930085853
-
Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
-
Samai P., et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 2015, 161:1164-1174.
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
-
8
-
-
84912096635
-
Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
-
Tamulaitis G., et al. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell 2014, 56:506-517.
-
(2014)
Mol. Cell
, vol.56
, pp. 506-517
-
-
Tamulaitis, G.1
-
9
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra E.R., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 2012, 46:595-605.
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
-
10
-
-
84929623462
-
Annotation and classification of CRISPR-Cas systems
-
Makarova K.S., Koonin E.V. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 2015, 1311:47-75.
-
(2015)
Methods Mol. Biol.
, vol.1311
, pp. 47-75
-
-
Makarova, K.S.1
Koonin, E.V.2
-
11
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13:722-736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
12
-
-
84947736727
-
Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
-
Shmakov S., et al. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 2015, 60:385-397.
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
-
13
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190:1390-1400.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
-
14
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica F.J.M., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155:733-740.
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.M.1
-
15
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31:233-239.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
-
16
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M., et al. RNA-programmed genome editing in human cells. Elife 2013, 2:e00471.
-
(2013)
Elife
, vol.2
-
-
Jinek, M.1
-
17
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S., et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24:1012-1019.
-
(2014)
Genome Res.
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
-
18
-
-
84884856342
-
Cas9 as a versatile tool for engineering biology
-
Mali P., et al. Cas9 as a versatile tool for engineering biology. Nat. Methods 2013, 10:957-963.
-
(2013)
Nat. Methods
, vol.10
, pp. 957-963
-
-
Mali, P.1
-
19
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
20
-
-
33645781346
-
Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
-
Bowater R., Doherty A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2006, 2:e8.
-
(2006)
PLoS Genet.
, vol.2
-
-
Bowater, R.1
Doherty, A.J.2
-
21
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh J-H., van Pijkeren J-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014, 42:e131.
-
(2014)
Nucleic Acids Res.
, vol.42
-
-
Oh, J.-H.1
van Pijkeren, J.-P.2
-
22
-
-
84877158197
-
Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing
-
Boyle N.R., et al. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol. J. 2013, 8:515-522.
-
(2013)
Biotechnol. J.
, vol.8
, pp. 515-522
-
-
Boyle, N.R.1
-
23
-
-
84939563369
-
Bacterial recombineering: genome engineering via phage-based homologous recombination
-
Pines G., et al. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 2015, 4:1176-1185.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1176-1185
-
-
Pines, G.1
-
24
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne M.E., et al. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 2015, 81:5103-5114.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
-
25
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li Y., et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 2015, 31:13-21.
-
(2015)
Metab. Eng.
, vol.31
, pp. 13-21
-
-
Li, Y.1
-
26
-
-
84944320385
-
The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
-
Reisch C.R., Prather K.L.J. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci. Rep. 2015, 5:15096.
-
(2015)
Sci. Rep.
, vol.5
, pp. 15096
-
-
Reisch, C.R.1
Prather, K.L.J.2
-
28
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y., et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015, 81:2506-2514.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
-
29
-
-
84953635026
-
Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering
-
Xia J., et al. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering. Biotechnol. Lett. 2016, 38:117-122.
-
(2016)
Biotechnol. Lett.
, vol.38
, pp. 117-122
-
-
Xia, J.1
-
30
-
-
84929593887
-
Codon compression algorithms for saturation mutagenesis
-
Pines G., et al. Codon compression algorithms for saturation mutagenesis. ACS Synth. Biol. 2015, 4:604-614.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 604-614
-
-
Pines, G.1
-
31
-
-
84947999145
-
Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
-
Standage-Beier K., et al. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth. Biol. 2015, 4:1217-1225.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1217-1225
-
-
Standage-Beier, K.1
-
32
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2579-E2586.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
-
33
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y., et al. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J. Biotechnol. 2015, 200:1-5.
-
(2015)
J. Biotechnol.
, vol.200
, pp. 1-5
-
-
Wang, Y.1
-
34
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu T., et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 2015, 81:4423-4431.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
-
35
-
-
84938916402
-
Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum
-
Ravachol J., et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Biotechnol. Biofuels 2015, 8:114.
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 114
-
-
Ravachol, J.1
-
36
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb R.E., et al. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 2014, 4:723-728.
-
(2014)
ACS Synth. Biol.
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
-
37
-
-
84926466507
-
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang H., et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 2015, 47:231-243.
-
(2015)
Acta Biochim. Biophys. Sin.
, vol.47
, pp. 231-243
-
-
Huang, H.1
-
38
-
-
84948382257
-
Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system
-
Zeng H., et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 2015, 99:10575-10585.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 10575-10585
-
-
Zeng, H.1
-
39
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 2015, 4:1020-1029.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
-
40
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013, 41:7429-7437.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
-
41
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
42
-
-
84919634760
-
Specific gene repression by CRISPRi system transferred through bacterial conjugation
-
Ji W., et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 2014, 3:929-931.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 929-931
-
-
Ji, W.1
-
43
-
-
84938323503
-
Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota
-
Mimee M., et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2015, 1:62-71.
-
(2015)
Cell Syst.
, vol.1
, pp. 62-71
-
-
Mimee, M.1
-
44
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32:1141-1145.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
-
45
-
-
84923869859
-
Gene silencing by CRISPR interference in mycobacteria
-
Choudhary E., et al. Gene silencing by CRISPR interference in mycobacteria. Nat. Commun. 2015, 6:6267.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6267
-
-
Choudhary, E.1
-
46
-
-
84926645319
-
Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
-
Lv L., et al. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 2015, 29:160-168.
-
(2015)
Metab. Eng.
, vol.29
, pp. 160-168
-
-
Lv, L.1
-
47
-
-
84960485961
-
Harnessing type I and type III CRISPR-Cas systems for genome editing
-
Published online October 13, 2015
-
Li Y., et al. Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 2015, Published online October 13, 2015. 10.1093/nar/gkv1044.
-
(2015)
Nucleic Acids Res.
-
-
Li, Y.1
-
48
-
-
84941084492
-
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
-
Luo M.L., et al. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 2015, 43:674-681.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
-
49
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath D., et al. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 2015, 43:237-246.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 237-246
-
-
Rath, D.1
-
50
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
e00928-e00913
-
Gomaa A.A., et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 2014, 5. e00928-00913.
-
(2014)
MBio
, vol.5
-
-
Gomaa, A.A.1
-
51
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe R.B., et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013, 9:e1003454.
-
(2013)
PLoS Genet.
, vol.9
-
-
Vercoe, R.B.1
-
52
-
-
0034889360
-
Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
-
Aravind L., Koonin E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 2001, 11:1365-1374.
-
(2001)
Genome Res.
, vol.11
, pp. 1365-1374
-
-
Aravind, L.1
Koonin, E.V.2
-
53
-
-
33645097172
-
The forespore line of gene expression in Bacillus subtilis
-
Wang S.T., et al. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 2006, 358:16-37.
-
(2006)
J. Mol. Biol.
, vol.358
, pp. 16-37
-
-
Wang, S.T.1
-
54
-
-
35348890199
-
Bacterial DNA repair by non-homologous end joining
-
Shuman S., Glickman M.S. Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol. 2007, 5:852-861.
-
(2007)
Nat. Rev. Microbiol.
, vol.5
, pp. 852-861
-
-
Shuman, S.1
Glickman, M.S.2
-
55
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D., et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32:1146-1150.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
-
56
-
-
84860828333
-
Membrane protein expression triggers chromosomal locus repositioning in bacteria
-
Libby E.A., et al. Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7445-7450.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 7445-7450
-
-
Libby, E.A.1
-
57
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
-
Zetsche B., et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 2015, 163:759-771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
58
-
-
79953779608
-
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
-
Sinkunas T., et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011, 30:1335-1342.
-
(2011)
EMBO J.
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
-
59
-
-
84902095351
-
Classification and evolution of type II CRISPR-Cas systems
-
Chylinski K., et al. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 2014, 42:6091-6105.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6091-6105
-
-
Chylinski, K.1
-
60
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186-191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
61
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
Karvelis T., et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015, 16:253.
-
(2015)
Genome Biol.
, vol.16
, pp. 253
-
-
Karvelis, T.1
-
62
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt K.M., et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 2013, 10:1116-1121.
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
-
63
-
-
84898878580
-
A versatile framework for microbial engineering using synthetic non-coding RNAs
-
Qi L.S., Arkin A.P. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat. Rev. Microbiol. 2014, 12:341-354.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 341-354
-
-
Qi, L.S.1
Arkin, A.P.2
|