메뉴 건너뛰기




Volumn 34, Issue 7, 2016, Pages 575-587

Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit

Author keywords

Archaea; Bacteria; Cas9; CRISPR Cas; Genome editing; Recombineering

Indexed keywords

BACTERIA; ESCHERICHIA COLI; GENES; MICROORGANISMS; PRODUCTION PLATFORMS; YEAST;

EID: 84977839343     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.02.004     Document Type: Review
Times cited : (103)

References (63)
  • 1
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 2
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321:960-964.
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.J.1
  • 3
    • 68249102788 scopus 로고    scopus 로고
    • CRISPR-based adaptive and heritable immunity in prokaryotes
    • van der Oost J., et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 2009, 34:401-407.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 401-407
    • van der Oost, J.1
  • 4
    • 84902533278 scopus 로고    scopus 로고
    • Unravelling the structural and mechanistic basis of CRISPR-Cas systems
    • van der Oost J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 2014, 12:479-492.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 479-492
    • van der Oost, J.1
  • 5
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471:602-607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 6
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 7
    • 84930085853 scopus 로고    scopus 로고
    • Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
    • Samai P., et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 2015, 161:1164-1174.
    • (2015) Cell , vol.161 , pp. 1164-1174
    • Samai, P.1
  • 8
    • 84912096635 scopus 로고    scopus 로고
    • Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
    • Tamulaitis G., et al. Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol. Cell 2014, 56:506-517.
    • (2014) Mol. Cell , vol.56 , pp. 506-517
    • Tamulaitis, G.1
  • 9
    • 84861996069 scopus 로고    scopus 로고
    • CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
    • Westra E.R., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 2012, 46:595-605.
    • (2012) Mol. Cell , vol.46 , pp. 595-605
    • Westra, E.R.1
  • 10
    • 84929623462 scopus 로고    scopus 로고
    • Annotation and classification of CRISPR-Cas systems
    • Makarova K.S., Koonin E.V. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 2015, 1311:47-75.
    • (2015) Methods Mol. Biol. , vol.1311 , pp. 47-75
    • Makarova, K.S.1    Koonin, E.V.2
  • 11
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13:722-736.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 12
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
    • Shmakov S., et al. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 2015, 60:385-397.
    • (2015) Mol. Cell , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 13
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
    • Deveau H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190:1390-1400.
    • (2008) J. Bacteriol. , vol.190 , pp. 1390-1400
    • Deveau, H.1
  • 14
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica F.J.M., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155:733-740.
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.M.1
  • 15
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31:233-239.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 233-239
    • Jiang, W.1
  • 16
    • 84876567971 scopus 로고    scopus 로고
    • RNA-programmed genome editing in human cells
    • Jinek M., et al. RNA-programmed genome editing in human cells. Elife 2013, 2:e00471.
    • (2013) Elife , vol.2
    • Jinek, M.1
  • 17
    • 84901834420 scopus 로고    scopus 로고
    • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    • Kim S., et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24:1012-1019.
    • (2014) Genome Res. , vol.24 , pp. 1012-1019
    • Kim, S.1
  • 18
    • 84884856342 scopus 로고    scopus 로고
    • Cas9 as a versatile tool for engineering biology
    • Mali P., et al. Cas9 as a versatile tool for engineering biology. Nat. Methods 2013, 10:957-963.
    • (2013) Nat. Methods , vol.10 , pp. 957-963
    • Mali, P.1
  • 19
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 20
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater R., Doherty A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2006, 2:e8.
    • (2006) PLoS Genet. , vol.2
    • Bowater, R.1    Doherty, A.J.2
  • 21
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh J-H., van Pijkeren J-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014, 42:e131.
    • (2014) Nucleic Acids Res. , vol.42
    • Oh, J.-H.1    van Pijkeren, J.-P.2
  • 22
    • 84877158197 scopus 로고    scopus 로고
    • Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing
    • Boyle N.R., et al. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol. J. 2013, 8:515-522.
    • (2013) Biotechnol. J. , vol.8 , pp. 515-522
    • Boyle, N.R.1
  • 23
    • 84939563369 scopus 로고    scopus 로고
    • Bacterial recombineering: genome engineering via phage-based homologous recombination
    • Pines G., et al. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 2015, 4:1176-1185.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1176-1185
    • Pines, G.1
  • 24
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne M.E., et al. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 2015, 81:5103-5114.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 5103-5114
    • Pyne, M.E.1
  • 25
    • 84937538704 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
    • Li Y., et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 2015, 31:13-21.
    • (2015) Metab. Eng. , vol.31 , pp. 13-21
    • Li, Y.1
  • 26
    • 84944320385 scopus 로고    scopus 로고
    • The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
    • Reisch C.R., Prather K.L.J. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci. Rep. 2015, 5:15096.
    • (2015) Sci. Rep. , vol.5 , pp. 15096
    • Reisch, C.R.1    Prather, K.L.J.2
  • 27
    • 84857498858 scopus 로고    scopus 로고
    • High efficiency recombineering in lactic acid bacteria
    • van Pijkeren J-P., Britton R.A. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 2012, 40:e76.
    • (2012) Nucleic Acids Res. , vol.40
    • van Pijkeren, J.-P.1    Britton, R.A.2
  • 28
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang Y., et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015, 81:2506-2514.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 2506-2514
    • Jiang, Y.1
  • 29
    • 84953635026 scopus 로고    scopus 로고
    • Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering
    • Xia J., et al. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/Cas9-coupled lambda Red recombineering. Biotechnol. Lett. 2016, 38:117-122.
    • (2016) Biotechnol. Lett. , vol.38 , pp. 117-122
    • Xia, J.1
  • 30
    • 84929593887 scopus 로고    scopus 로고
    • Codon compression algorithms for saturation mutagenesis
    • Pines G., et al. Codon compression algorithms for saturation mutagenesis. ACS Synth. Biol. 2015, 4:604-614.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 604-614
    • Pines, G.1
  • 31
    • 84947999145 scopus 로고    scopus 로고
    • Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
    • Standage-Beier K., et al. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth. Biol. 2015, 4:1217-1225.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1217-1225
    • Standage-Beier, K.1
  • 32
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2579-E2586.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1
  • 33
    • 84924425397 scopus 로고    scopus 로고
    • Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
    • Wang Y., et al. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J. Biotechnol. 2015, 200:1-5.
    • (2015) J. Biotechnol. , vol.200 , pp. 1-5
    • Wang, Y.1
  • 34
    • 84930787559 scopus 로고    scopus 로고
    • Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
    • Xu T., et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 2015, 81:4423-4431.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 4423-4431
    • Xu, T.1
  • 35
    • 84938916402 scopus 로고    scopus 로고
    • Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum
    • Ravachol J., et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Biotechnol. Biofuels 2015, 8:114.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 114
    • Ravachol, J.1
  • 36
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb R.E., et al. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 2014, 4:723-728.
    • (2014) ACS Synth. Biol. , vol.4 , pp. 723-728
    • Cobb, R.E.1
  • 37
    • 84926466507 scopus 로고    scopus 로고
    • One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang H., et al. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 2015, 47:231-243.
    • (2015) Acta Biochim. Biophys. Sin. , vol.47 , pp. 231-243
    • Huang, H.1
  • 38
    • 84948382257 scopus 로고    scopus 로고
    • Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system
    • Zeng H., et al. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 2015, 99:10575-10585.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 10575-10585
    • Zeng, H.1
  • 39
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes
    • Tong Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 2015, 4:1020-1029.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1020-1029
    • Tong, Y.1
  • 40
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard D., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013, 41:7429-7437.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7429-7437
    • Bikard, D.1
  • 41
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152:1173-1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 42
    • 84919634760 scopus 로고    scopus 로고
    • Specific gene repression by CRISPRi system transferred through bacterial conjugation
    • Ji W., et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 2014, 3:929-931.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 929-931
    • Ji, W.1
  • 43
    • 84938323503 scopus 로고    scopus 로고
    • Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota
    • Mimee M., et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2015, 1:62-71.
    • (2015) Cell Syst. , vol.1 , pp. 62-71
    • Mimee, M.1
  • 44
    • 84983208863 scopus 로고    scopus 로고
    • Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
    • Citorik R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32:1141-1145.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1141-1145
    • Citorik, R.J.1
  • 45
    • 84923869859 scopus 로고    scopus 로고
    • Gene silencing by CRISPR interference in mycobacteria
    • Choudhary E., et al. Gene silencing by CRISPR interference in mycobacteria. Nat. Commun. 2015, 6:6267.
    • (2015) Nat. Commun. , vol.6 , pp. 6267
    • Choudhary, E.1
  • 46
    • 84926645319 scopus 로고    scopus 로고
    • Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
    • Lv L., et al. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab. Eng. 2015, 29:160-168.
    • (2015) Metab. Eng. , vol.29 , pp. 160-168
    • Lv, L.1
  • 47
    • 84960485961 scopus 로고    scopus 로고
    • Harnessing type I and type III CRISPR-Cas systems for genome editing
    • Published online October 13, 2015
    • Li Y., et al. Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res. 2015, Published online October 13, 2015. 10.1093/nar/gkv1044.
    • (2015) Nucleic Acids Res.
    • Li, Y.1
  • 48
    • 84941084492 scopus 로고    scopus 로고
    • Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
    • Luo M.L., et al. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 2015, 43:674-681.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 674-681
    • Luo, M.L.1
  • 49
    • 84941084368 scopus 로고    scopus 로고
    • Efficient programmable gene silencing by Cascade
    • Rath D., et al. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 2015, 43:237-246.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 237-246
    • Rath, D.1
  • 50
    • 84903362877 scopus 로고    scopus 로고
    • Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
    • e00928-e00913
    • Gomaa A.A., et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 2014, 5. e00928-00913.
    • (2014) MBio , vol.5
    • Gomaa, A.A.1
  • 51
    • 84876845227 scopus 로고    scopus 로고
    • Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
    • Vercoe R.B., et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013, 9:e1003454.
    • (2013) PLoS Genet. , vol.9
    • Vercoe, R.B.1
  • 52
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind L., Koonin E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 2001, 11:1365-1374.
    • (2001) Genome Res. , vol.11 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 53
    • 33645097172 scopus 로고    scopus 로고
    • The forespore line of gene expression in Bacillus subtilis
    • Wang S.T., et al. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 2006, 358:16-37.
    • (2006) J. Mol. Biol. , vol.358 , pp. 16-37
    • Wang, S.T.1
  • 54
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by non-homologous end joining
    • Shuman S., Glickman M.S. Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol. 2007, 5:852-861.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 55
    • 84983142945 scopus 로고    scopus 로고
    • Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    • Bikard D., et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32:1146-1150.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1146-1150
    • Bikard, D.1
  • 56
    • 84860828333 scopus 로고    scopus 로고
    • Membrane protein expression triggers chromosomal locus repositioning in bacteria
    • Libby E.A., et al. Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:7445-7450.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 7445-7450
    • Libby, E.A.1
  • 57
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
    • Zetsche B., et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 2015, 163:759-771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 58
    • 79953779608 scopus 로고    scopus 로고
    • Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
    • Sinkunas T., et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011, 30:1335-1342.
    • (2011) EMBO J. , vol.30 , pp. 1335-1342
    • Sinkunas, T.1
  • 59
    • 84902095351 scopus 로고    scopus 로고
    • Classification and evolution of type II CRISPR-Cas systems
    • Chylinski K., et al. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 2014, 42:6091-6105.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 6091-6105
    • Chylinski, K.1
  • 60
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186-191.
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 61
    • 84947730555 scopus 로고    scopus 로고
    • Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
    • Karvelis T., et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015, 16:253.
    • (2015) Genome Biol. , vol.16 , pp. 253
    • Karvelis, T.1
  • 62
    • 84887104139 scopus 로고    scopus 로고
    • Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
    • Esvelt K.M., et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 2013, 10:1116-1121.
    • (2013) Nat. Methods , vol.10 , pp. 1116-1121
    • Esvelt, K.M.1
  • 63
    • 84898878580 scopus 로고    scopus 로고
    • A versatile framework for microbial engineering using synthetic non-coding RNAs
    • Qi L.S., Arkin A.P. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat. Rev. Microbiol. 2014, 12:341-354.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 341-354
    • Qi, L.S.1    Arkin, A.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.