-
1
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
2
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
3
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
-
4
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
-
5
-
-
84929903016
-
Compromised autophagy and neurodegenerative diseases
-
Menzies F.M., et al. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 2015, 16:345-357.
-
(2015)
Nat. Rev. Neurosci.
, vol.16
, pp. 345-357
-
-
Menzies, F.M.1
-
6
-
-
79955949858
-
The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration
-
Yamamoto A., Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol. Dis. 2011, 43:17-28.
-
(2011)
Neurobiol. Dis.
, vol.43
, pp. 17-28
-
-
Yamamoto, A.1
Simonsen, A.2
-
7
-
-
84863923855
-
PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
Tsunemi T., et al. PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 2012, 4:142ra197.
-
(2012)
Sci. Transl. Med.
, vol.4
, pp. 142ra197
-
-
Tsunemi, T.1
-
8
-
-
84877351078
-
TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity
-
Decressac M., et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1817-E1826.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E1817-E1826
-
-
Decressac, M.1
-
9
-
-
84904354536
-
Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis
-
Xiao Q., et al. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 2014, 34:9607-9620.
-
(2014)
J. Neurosci.
, vol.34
, pp. 9607-9620
-
-
Xiao, Q.1
-
10
-
-
84916928995
-
Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB
-
Polito V.A., et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 2014, 6:1142-1160.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 1142-1160
-
-
Polito, V.A.1
-
11
-
-
84940937112
-
Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis
-
Xiao Q., et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J. Neurosci. 2015, 35:12137-12151.
-
(2015)
J. Neurosci.
, vol.35
, pp. 12137-12151
-
-
Xiao, Q.1
-
12
-
-
80052729465
-
Transcriptional activation of lysosomal exocytosis promotes cellular clearance
-
Medina D.L., et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011, 21:421-430.
-
(2011)
Dev. Cell
, vol.21
, pp. 421-430
-
-
Medina, D.L.1
-
13
-
-
84906674973
-
Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
-
Cortes C.J., et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 2014, 17:1180-1189.
-
(2014)
Nat. Neurosci.
, vol.17
, pp. 1180-1189
-
-
Cortes, C.J.1
-
14
-
-
84877601173
-
Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
-
Spampanato C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 2013, 5:691-706.
-
(2013)
EMBO Mol. Med.
, vol.5
, pp. 691-706
-
-
Spampanato, C.1
-
15
-
-
84877011421
-
TFEB regulates lysosomal proteostasis
-
Song W., et al. TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 2013, 22:1994-2009.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 1994-2009
-
-
Song, W.1
-
16
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
17
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
-
18
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B., et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12:747-757.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
-
19
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey D.W., et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141:656-667.
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
-
20
-
-
77957669416
-
The Golgi as a potential membrane source for autophagy
-
Geng J., Klionsky D.J. The Golgi as a potential membrane source for autophagy. Autophagy 2010, 6:950-951.
-
(2010)
Autophagy
, vol.6
, pp. 950-951
-
-
Geng, J.1
Klionsky, D.J.2
-
21
-
-
84859736977
-
Aggrephagy: selective disposal of protein aggregates by macroautophagy
-
Lamark T., Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 2012:736905.
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 736905
-
-
Lamark, T.1
Johansen, T.2
-
22
-
-
79952319773
-
Mitochondria removal by autophagy
-
Wang K., Klionsky D.J. Mitochondria removal by autophagy. Autophagy 2011, 7:297-300.
-
(2011)
Autophagy
, vol.7
, pp. 297-300
-
-
Wang, K.1
Klionsky, D.J.2
-
23
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 2014, 53:167-178.
-
(2014)
Mol. Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
-
24
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
25
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524:309-314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
26
-
-
84864318195
-
Chaperone-mediated autophagy: a unique way to enter the lysosome world
-
Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012, 22:407-417.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
27
-
-
84866992578
-
Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos
-
Kawamura N., et al. Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos. Nat. Commun. 2012, 3:1071.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1071
-
-
Kawamura, N.1
-
28
-
-
79952501324
-
Microautophagy of cytosolic proteins by late endosomes
-
Sahu R., et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 2011, 20:131-139.
-
(2011)
Dev. Cell
, vol.20
, pp. 131-139
-
-
Sahu, R.1
-
29
-
-
0033557439
-
Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members
-
Rehli M., et al. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 1999, 56:111-120.
-
(1999)
Genomics
, vol.56
, pp. 111-120
-
-
Rehli, M.1
-
30
-
-
0042309581
-
Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution
-
Kuiper R.P., et al. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 2003, 12:1661-1669.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 1661-1669
-
-
Kuiper, R.P.1
-
31
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri M., et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20:3852-3866.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
-
32
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
33
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
-
34
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
-
35
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
Pena-Llopis S., et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 2011, 30:3242-3258.
-
(2011)
EMBO J.
, vol.30
, pp. 3242-3258
-
-
Pena-Llopis, S.1
-
36
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
37
-
-
80555143078
-
+-ATPase
-
+-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
38
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
39
-
-
84923820926
-
Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
-
Medina D.L., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015, 17:288-299.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 288-299
-
-
Medina, D.L.1
-
40
-
-
84923789937
-
Huntingtin functions as a scaffold for selective macroautophagy
-
Rui Y.N., et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 2015, 17:262-275.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 262-275
-
-
Rui, Y.N.1
-
41
-
-
84912100068
-
Potential function for the Huntingtin protein as a scaffold for selective autophagy
-
Ochaba J., et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16889-16894.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16889-16894
-
-
Ochaba, J.1
-
42
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 2010, 13:567-576.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
-
43
-
-
72149124383
-
IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
-
Thompson L.M., et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol. 2009, 187:1083-1099.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 1083-1099
-
-
Thompson, L.M.1
-
44
-
-
84867427022
-
The role of chaperone-mediated autophagy in huntingtin degradation
-
Qi L., et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE 2012, 7:e46834.
-
(2012)
PLoS ONE
, vol.7
, pp. e46834
-
-
Qi, L.1
-
45
-
-
33744916798
-
Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
-
Shibata M., et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 2006, 281:14474-14485.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 14474-14485
-
-
Shibata, M.1
-
46
-
-
2642586352
-
Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
-
Ravikumar B., et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 2004, 36:585-595.
-
(2004)
Nat. Genet.
, vol.36
, pp. 585-595
-
-
Ravikumar, B.1
-
47
-
-
77953486943
-
Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease
-
Rose C., et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet. 2010, 19:2144-2153.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 2144-2153
-
-
Rose, C.1
-
48
-
-
1642633757
-
Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease
-
Tanaka M., et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 2004, 10:148-154.
-
(2004)
Nat. Med.
, vol.10
, pp. 148-154
-
-
Tanaka, M.1
-
49
-
-
77957189194
-
α-Synuclein impairs macroautophagy: implications for Parkinson's disease
-
Winslow A.R., et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 2010, 190:1023-1037.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 1023-1037
-
-
Winslow, A.R.1
-
50
-
-
58149215720
-
Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy
-
Yang Q., et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323:124-127.
-
(2009)
Science
, vol.323
, pp. 124-127
-
-
Yang, Q.1
-
51
-
-
46049112735
-
Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset
-
Gan-Or Z., et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 2008, 70:2277-2283.
-
(2008)
Neurology
, vol.70
, pp. 2277-2283
-
-
Gan-Or, Z.1
-
52
-
-
84878911804
-
The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease
-
Gan-Or Z., et al. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology 2013, 80:1606-1610.
-
(2013)
Neurology
, vol.80
, pp. 1606-1610
-
-
Gan-Or, Z.1
-
53
-
-
79960009804
-
Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies
-
Mazzulli J.R., et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011, 146:37-52.
-
(2011)
Cell
, vol.146
, pp. 37-52
-
-
Mazzulli, J.R.1
-
54
-
-
79961083395
-
CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy
-
Sardi S.P., et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12101-12106.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12101-12106
-
-
Sardi, S.P.1
-
55
-
-
84874487118
-
Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies
-
Sardi S.P., et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3537-3542.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 3537-3542
-
-
Sardi, S.P.1
-
56
-
-
77956855813
-
Pathogenic lysosomal depletion in Parkinson's disease
-
Dehay B., et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 2010, 30:12535-12544.
-
(2010)
J. Neurosci.
, vol.30
, pp. 12535-12544
-
-
Dehay, B.1
-
57
-
-
84925597891
-
Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein
-
Kilpatrick K., et al. Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein. PLoS ONE 2015, 10:e0120819.
-
(2015)
PLoS ONE
, vol.10
, pp. e0120819
-
-
Kilpatrick, K.1
-
58
-
-
84898073840
-
2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy
-
Song W., et al. 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J. Biol. Chem. 2014, 289:10211-10222.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 10211-10222
-
-
Song, W.1
-
59
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell A.M., Youle R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015, 85:257-273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
60
-
-
84882754147
-
A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1
-
Hertz N.T., et al. A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell 2013, 154:737-747.
-
(2013)
Cell
, vol.154
, pp. 737-747
-
-
Hertz, N.T.1
-
61
-
-
84939820927
-
MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
-
Nezich C.L., et al. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 2015, 210:435-450.
-
(2015)
J. Cell Biol.
, vol.210
, pp. 435-450
-
-
Nezich, C.L.1
-
62
-
-
84941795152
-
Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin
-
Siddiqui A., et al. Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin. J. Neurosci. 2015, 35:12833-12844.
-
(2015)
J. Neurosci.
, vol.35
, pp. 12833-12844
-
-
Siddiqui, A.1
-
63
-
-
77953913051
-
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
-
Lee J.H., et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141:1146-1158.
-
(2010)
Cell
, vol.141
, pp. 1146-1158
-
-
Lee, J.H.1
-
64
-
-
84940796652
-
2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification
-
2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep. 2015, 12:1430-1444.
-
(2015)
Cell Rep.
, vol.12
, pp. 1430-1444
-
-
Lee, J.H.1
-
65
-
-
84865086929
-
Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells
-
Coen K., et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 2012, 198:23-35.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 23-35
-
-
Coen, K.1
-
66
-
-
14844303381
-
Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study
-
Nixon R.A., et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 2005, 64:113-122.
-
(2005)
J. Neuropathol. Exp. Neurol.
, vol.64
, pp. 113-122
-
-
Nixon, R.A.1
-
67
-
-
45749114895
-
The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice
-
Pickford F., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 2008, 118:2190-2199.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2190-2199
-
-
Pickford, F.1
-
68
-
-
79955964504
-
Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain
-
Rohn T.T., et al. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiol. Dis. 2011, 43:68-78.
-
(2011)
Neurobiol. Dis.
, vol.43
, pp. 68-78
-
-
Rohn, T.T.1
-
69
-
-
78650716872
-
Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits
-
Yang D.S., et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 2011, 134:258-277.
-
(2011)
Brain
, vol.134
, pp. 258-277
-
-
Yang, D.S.1
-
70
-
-
70349987102
-
Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing
-
Wang Y., et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 2009, 18:4153-4170.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 4153-4170
-
-
Wang, Y.1
-
71
-
-
84862285881
-
Autophagic degradation of tau in primary neurons and its enhancement by trehalose
-
Kruger U., et al. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol. Aging 2012, 33:2291-2305.
-
(2012)
Neurobiol. Aging
, vol.33
, pp. 2291-2305
-
-
Kruger, U.1
-
72
-
-
84863210676
-
Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy
-
Schaeffer V., et al. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012, 135:2169-2177.
-
(2012)
Brain
, vol.135
, pp. 2169-2177
-
-
Schaeffer, V.1
-
73
-
-
84877803859
-
MTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies
-
Caccamo A., et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell 2013, 12:370-380.
-
(2013)
Aging Cell
, vol.12
, pp. 370-380
-
-
Caccamo, A.1
-
74
-
-
84877109118
-
Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice
-
Ozcelik S., et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS ONE 2013, 8:e62459.
-
(2013)
PLoS ONE
, vol.8
, pp. e62459
-
-
Ozcelik, S.1
-
75
-
-
84868687820
-
Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein
-
Parr C., et al. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol. Cell. Biol. 2012, 32:4410-4418.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4410-4418
-
-
Parr, C.1
-
76
-
-
33847203593
-
Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus
-
Lukiw W.J. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007, 18:297-300.
-
(2007)
Neuroreport
, vol.18
, pp. 297-300
-
-
Lukiw, W.J.1
-
77
-
-
84887243168
-
MiR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease
-
Tiribuzi R., et al. miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol. Aging 2014, 35:345-356.
-
(2014)
Neurobiol. Aging
, vol.35
, pp. 345-356
-
-
Tiribuzi, R.1
-
78
-
-
84896730305
-
Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP
-
Coffey E.E., et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 2014, 263:111-124.
-
(2014)
Neuroscience
, vol.263
, pp. 111-124
-
-
Coffey, E.E.1
-
79
-
-
84862883617
-
A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2
-
Zhang X., et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 2012, 32:8633-8648.
-
(2012)
J. Neurosci.
, vol.32
, pp. 8633-8648
-
-
Zhang, X.1
-
80
-
-
84907173621
-
Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease
-
Landel V., et al. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol. Neurodegener. 2014, 9:33.
-
(2014)
Mol. Neurodegener.
, vol.9
, pp. 33
-
-
Landel, V.1
-
81
-
-
4544224048
-
Antiprion immunotherapy: to suppress or to stimulate?
-
Aguzzi A., Sigurdson C.J. Antiprion immunotherapy: to suppress or to stimulate?. Nat. Rev. Immunol. 2004, 4:725-736.
-
(2004)
Nat. Rev. Immunol.
, vol.4
, pp. 725-736
-
-
Aguzzi, A.1
Sigurdson, C.J.2
-
82
-
-
84863595757
-
Purified and synthetic Alzheimer's amyloid beta (Abeta) prions
-
Stohr J., et al. Purified and synthetic Alzheimer's amyloid beta (Abeta) prions. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11025-11030.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11025-11030
-
-
Stohr, J.1
-
83
-
-
84902486430
-
Distinct tau prion strains propagate in cells and mice and define different tauopathies
-
Sanders D.W., et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 2014, 82:1271-1288.
-
(2014)
Neuron
, vol.82
, pp. 1271-1288
-
-
Sanders, D.W.1
-
84
-
-
84872346089
-
Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy
-
Iba M., et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 2013, 33:1024-1037.
-
(2013)
J. Neurosci.
, vol.33
, pp. 1024-1037
-
-
Iba, M.1
-
85
-
-
67650077008
-
Transmission and spreading of tauopathy in transgenic mouse brain
-
Clavaguera F., et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 2009, 11:909-913.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 909-913
-
-
Clavaguera, F.1
-
86
-
-
84869109864
-
Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
-
Luk K.C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012, 338:949-953.
-
(2012)
Science
, vol.338
, pp. 949-953
-
-
Luk, K.C.1
-
87
-
-
84941198850
-
Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy
-
Jaunmuktane Z., et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 2015, 525:247-250.
-
(2015)
Nature
, vol.525
, pp. 247-250
-
-
Jaunmuktane, Z.1
-
88
-
-
84869475871
-
Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases
-
Xu Y., et al. Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 2012, 8:1604-1620.
-
(2012)
Autophagy
, vol.8
, pp. 1604-1620
-
-
Xu, Y.1
-
89
-
-
84893472608
-
De novo prion aggregates trigger autophagy in skeletal muscle
-
Joshi-Barr S., et al. De novo prion aggregates trigger autophagy in skeletal muscle. J. Virol. 2014, 88:2071-2082.
-
(2014)
J. Virol.
, vol.88
, pp. 2071-2082
-
-
Joshi-Barr, S.1
-
90
-
-
84865749298
-
Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease
-
Cortes C.J., et al. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J. Neurosci. 2012, 32:12396-12405.
-
(2012)
J. Neurosci.
, vol.32
, pp. 12396-12405
-
-
Cortes, C.J.1
-
91
-
-
65249103439
-
Autophagy induction by trehalose counteracts cellular prion infection
-
Aguib Y., et al. Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 2009, 5:361-369.
-
(2009)
Autophagy
, vol.5
, pp. 361-369
-
-
Aguib, Y.1
-
92
-
-
0034001444
-
Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation
-
Doh-Ura K., et al. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 2000, 74:4894-4897.
-
(2000)
J. Virol.
, vol.74
, pp. 4894-4897
-
-
Doh-Ura, K.1
-
93
-
-
84892418749
-
Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease
-
Geschwind M.D., et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 2013, 81:2015-2023.
-
(2013)
Neurology
, vol.81
, pp. 2015-2023
-
-
Geschwind, M.D.1
-
94
-
-
17444413067
-
In vitro generation of infectious scrapie prions
-
Castilla J., et al. In vitro generation of infectious scrapie prions. Cell 2005, 121:195-206.
-
(2005)
Cell
, vol.121
, pp. 195-206
-
-
Castilla, J.1
-
95
-
-
0003986552
-
Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease
-
Wischik C.M., et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:4506-4510.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 4506-4510
-
-
Wischik, C.M.1
-
96
-
-
34548341065
-
The effect of truncated human alpha-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease
-
Michell A.W., et al. The effect of truncated human alpha-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease. Cell Transplant. 2007, 16:461-474.
-
(2007)
Cell Transplant.
, vol.16
, pp. 461-474
-
-
Michell, A.W.1
-
97
-
-
0025876226
-
N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state
-
Caughey B., et al. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 1991, 65:6597-6603.
-
(1991)
J. Virol.
, vol.65
, pp. 6597-6603
-
-
Caughey, B.1
-
98
-
-
26444587508
-
Macroautophagy - a novel beta-amyloid peptide-generating pathway activated in Alzheimer's disease
-
Yu W.H., et al. Macroautophagy - a novel beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 2005, 171:87-98.
-
(2005)
J. Cell Biol.
, vol.171
, pp. 87-98
-
-
Yu, W.H.1
-
99
-
-
51549106105
-
Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species
-
Sevlever D., et al. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008, 47:9678-9687.
-
(2008)
Biochemistry
, vol.47
, pp. 9678-9687
-
-
Sevlever, D.1
-
100
-
-
84908518328
-
Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous alpha-synuclein fibrils
-
Tsujimura A., et al. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous alpha-synuclein fibrils. Neurobiol. Dis. 2014, 73C:244-253.
-
(2014)
Neurobiol. Dis.
, vol.73C
, pp. 244-253
-
-
Tsujimura, A.1
-
101
-
-
84939787271
-
Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
-
Perera R.M., et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015, 524:361-365.
-
(2015)
Nature
, vol.524
, pp. 361-365
-
-
Perera, R.M.1
-
102
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
103
-
-
79956358522
-
Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
-
Fan W., et al. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7769-7774.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7769-7774
-
-
Fan, W.1
-
104
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
Pattingre S., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005, 122:927-939.
-
(2005)
Cell
, vol.122
, pp. 927-939
-
-
Pattingre, S.1
-
105
-
-
53549100450
-
Dynamics and function of PtdIns(3)P in autophagy
-
Obara K., Ohsumi Y. Dynamics and function of PtdIns(3)P in autophagy. Autophagy 2008, 4:952-954.
-
(2008)
Autophagy
, vol.4
, pp. 952-954
-
-
Obara, K.1
Ohsumi, Y.2
-
106
-
-
33846207543
-
Stimulation of ATG12-ATG5 conjugation by ribonucleic acid
-
Shao Y., et al. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 2007, 3:10-16.
-
(2007)
Autophagy
, vol.3
, pp. 10-16
-
-
Shao, Y.1
-
107
-
-
74049140368
-
Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy
-
Fujioka Y., et al. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 2010, 285:1508-1515.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 1508-1515
-
-
Fujioka, Y.1
-
108
-
-
65649136884
-
The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
-
Satoo K., et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009, 28:1341-1350.
-
(2009)
EMBO J.
, vol.28
, pp. 1341-1350
-
-
Satoo, K.1
-
109
-
-
84897008751
-
Structural insights into E2-E3 interaction for LC3 lipidation
-
Metlagel Z., et al. Structural insights into E2-E3 interaction for LC3 lipidation. Autophagy 2014, 10:522-523.
-
(2014)
Autophagy
, vol.10
, pp. 522-523
-
-
Metlagel, Z.1
-
110
-
-
84899844485
-
Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3
-
Nath S., et al. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014, 16:415-424.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 415-424
-
-
Nath, S.1
-
111
-
-
22844436451
-
Dynein mutations impair autophagic clearance of aggregate-prone proteins
-
Ravikumar B., et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 2005, 37:771-776.
-
(2005)
Nat. Genet.
, vol.37
, pp. 771-776
-
-
Ravikumar, B.1
-
112
-
-
0032559260
-
Kinesin and dynein superfamily proteins and the mechanism of organelle transport
-
Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998, 279:519-526.
-
(1998)
Science
, vol.279
, pp. 519-526
-
-
Hirokawa, N.1
-
113
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151:1256-1269.
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
-
114
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
-
115
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
-
116
-
-
84866431363
-
Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L., et al. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
-
117
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335:1638-1643.
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
-
118
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
-
119
-
-
80052970809
-
FoxO transcription factors; regulation by AKT and 14-3-3 proteins
-
Tzivion G., et al. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 2011, 1813:1938-1945.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1938-1945
-
-
Tzivion, G.1
-
120
-
-
84937520970
-
Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy
-
Arias E., et al. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 2015, 59:270-284.
-
(2015)
Mol. Cell
, vol.59
, pp. 270-284
-
-
Arias, E.1
-
121
-
-
0028062014
-
Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family
-
Hemesath T.J., et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994, 8:2770-2780.
-
(1994)
Genes Dev.
, vol.8
, pp. 2770-2780
-
-
Hemesath, T.J.1
-
122
-
-
84870508533
-
Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF
-
Pogenberg V., et al. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev. 2012, 26:2647-2658.
-
(2012)
Genes Dev.
, vol.26
, pp. 2647-2658
-
-
Pogenberg, V.1
-
123
-
-
84893055506
-
The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
Martina J.A., et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 2014, 7:ra9.
-
(2014)
Sci. Signal.
, vol.7
, pp. ra9
-
-
Martina, J.A.1
-
124
-
-
84922311449
-
MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
-
Ploper D., et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E420-E429.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E420-E429
-
-
Ploper, D.1
-
125
-
-
84906901689
-
An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
-
Zhang Y., et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34:11929-11947.
-
(2014)
J. Neurosci.
, vol.34
, pp. 11929-11947
-
-
Zhang, Y.1
|