메뉴 건너뛰기




Volumn 39, Issue 4, 2016, Pages 221-234

The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective

Author keywords

Autophagy lysosomal pathway; Neurodegenerative disease; Prion disease; TFEB

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR EB; UNCLASSIFIED DRUG; BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; TFEB PROTEIN, HUMAN;

EID: 84959904698     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2016.02.002     Document Type: Review
Times cited : (332)

References (125)
  • 1
    • 67749122634 scopus 로고    scopus 로고
    • A gene network regulating lysosomal biogenesis and function
    • Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
    • (2009) Science , vol.325 , pp. 473-477
    • Sardiello, M.1
  • 2
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 3
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1
  • 4
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
    • (2006) Nature , vol.441 , pp. 885-889
    • Hara, T.1
  • 5
    • 84929903016 scopus 로고    scopus 로고
    • Compromised autophagy and neurodegenerative diseases
    • Menzies F.M., et al. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 2015, 16:345-357.
    • (2015) Nat. Rev. Neurosci. , vol.16 , pp. 345-357
    • Menzies, F.M.1
  • 6
    • 79955949858 scopus 로고    scopus 로고
    • The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration
    • Yamamoto A., Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol. Dis. 2011, 43:17-28.
    • (2011) Neurobiol. Dis. , vol.43 , pp. 17-28
    • Yamamoto, A.1    Simonsen, A.2
  • 7
    • 84863923855 scopus 로고    scopus 로고
    • PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
    • Tsunemi T., et al. PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 2012, 4:142ra197.
    • (2012) Sci. Transl. Med. , vol.4 , pp. 142ra197
    • Tsunemi, T.1
  • 8
    • 84877351078 scopus 로고    scopus 로고
    • TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity
    • Decressac M., et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1817-E1826.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E1817-E1826
    • Decressac, M.1
  • 9
    • 84904354536 scopus 로고    scopus 로고
    • Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis
    • Xiao Q., et al. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 2014, 34:9607-9620.
    • (2014) J. Neurosci. , vol.34 , pp. 9607-9620
    • Xiao, Q.1
  • 10
    • 84916928995 scopus 로고    scopus 로고
    • Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB
    • Polito V.A., et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 2014, 6:1142-1160.
    • (2014) EMBO Mol. Med. , vol.6 , pp. 1142-1160
    • Polito, V.A.1
  • 11
    • 84940937112 scopus 로고    scopus 로고
    • Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis
    • Xiao Q., et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J. Neurosci. 2015, 35:12137-12151.
    • (2015) J. Neurosci. , vol.35 , pp. 12137-12151
    • Xiao, Q.1
  • 12
    • 80052729465 scopus 로고    scopus 로고
    • Transcriptional activation of lysosomal exocytosis promotes cellular clearance
    • Medina D.L., et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011, 21:421-430.
    • (2011) Dev. Cell , vol.21 , pp. 421-430
    • Medina, D.L.1
  • 13
    • 84906674973 scopus 로고    scopus 로고
    • Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA
    • Cortes C.J., et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat. Neurosci. 2014, 17:1180-1189.
    • (2014) Nat. Neurosci. , vol.17 , pp. 1180-1189
    • Cortes, C.J.1
  • 14
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 2013, 5:691-706.
    • (2013) EMBO Mol. Med. , vol.5 , pp. 691-706
    • Spampanato, C.1
  • 15
    • 84877011421 scopus 로고    scopus 로고
    • TFEB regulates lysosomal proteostasis
    • Song W., et al. TFEB regulates lysosomal proteostasis. Hum. Mol. Genet. 2013, 22:1994-2009.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 1994-2009
    • Song, W.1
  • 16
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 17
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495:389-393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 18
    • 77955131007 scopus 로고    scopus 로고
    • Plasma membrane contributes to the formation of pre-autophagosomal structures
    • Ravikumar B., et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12:747-757.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 747-757
    • Ravikumar, B.1
  • 19
    • 77952495224 scopus 로고    scopus 로고
    • Mitochondria supply membranes for autophagosome biogenesis during starvation
    • Hailey D.W., et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141:656-667.
    • (2010) Cell , vol.141 , pp. 656-667
    • Hailey, D.W.1
  • 20
    • 77957669416 scopus 로고    scopus 로고
    • The Golgi as a potential membrane source for autophagy
    • Geng J., Klionsky D.J. The Golgi as a potential membrane source for autophagy. Autophagy 2010, 6:950-951.
    • (2010) Autophagy , vol.6 , pp. 950-951
    • Geng, J.1    Klionsky, D.J.2
  • 21
    • 84859736977 scopus 로고    scopus 로고
    • Aggrephagy: selective disposal of protein aggregates by macroautophagy
    • Lamark T., Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 2012:736905.
    • (2012) Int. J. Cell Biol. , vol.2012 , pp. 736905
    • Lamark, T.1    Johansen, T.2
  • 22
    • 79952319773 scopus 로고    scopus 로고
    • Mitochondria removal by autophagy
    • Wang K., Klionsky D.J. Mitochondria removal by autophagy. Autophagy 2011, 7:297-300.
    • (2011) Autophagy , vol.7 , pp. 297-300
    • Wang, K.1    Klionsky, D.J.2
  • 23
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 2014, 53:167-178.
    • (2014) Mol. Cell , vol.53 , pp. 167-178
    • Rogov, V.1
  • 24
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 25
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524:309-314.
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 26
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: a unique way to enter the lysosome world
    • Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012, 22:407-417.
    • (2012) Trends Cell Biol. , vol.22 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 27
    • 84866992578 scopus 로고    scopus 로고
    • Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos
    • Kawamura N., et al. Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos. Nat. Commun. 2012, 3:1071.
    • (2012) Nat. Commun. , vol.3 , pp. 1071
    • Kawamura, N.1
  • 28
    • 79952501324 scopus 로고    scopus 로고
    • Microautophagy of cytosolic proteins by late endosomes
    • Sahu R., et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 2011, 20:131-139.
    • (2011) Dev. Cell , vol.20 , pp. 131-139
    • Sahu, R.1
  • 29
    • 0033557439 scopus 로고    scopus 로고
    • Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members
    • Rehli M., et al. Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics 1999, 56:111-120.
    • (1999) Genomics , vol.56 , pp. 111-120
    • Rehli, M.1
  • 30
    • 0042309581 scopus 로고    scopus 로고
    • Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution
    • Kuiper R.P., et al. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 2003, 12:1661-1669.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1661-1669
    • Kuiper, R.P.1
  • 31
    • 80052716148 scopus 로고    scopus 로고
    • Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
    • Palmieri M., et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20:3852-3866.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3852-3866
    • Palmieri, M.1
  • 32
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 33
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1
  • 34
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
    • (2012) Sci. Signal. , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 35
    • 80052841665 scopus 로고    scopus 로고
    • Regulation of TFEB and V-ATPases by mTORC1
    • Pena-Llopis S., et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 2011, 30:3242-3258.
    • (2011) EMBO J. , vol.30 , pp. 3242-3258
    • Pena-Llopis, S.1
  • 36
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 37
    • 80555143078 scopus 로고    scopus 로고
    • +-ATPase
    • +-ATPase. Science 2011, 334:678-683.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 38
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 39
    • 84923820926 scopus 로고    scopus 로고
    • Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
    • Medina D.L., et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015, 17:288-299.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 288-299
    • Medina, D.L.1
  • 40
    • 84923789937 scopus 로고    scopus 로고
    • Huntingtin functions as a scaffold for selective macroautophagy
    • Rui Y.N., et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 2015, 17:262-275.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 262-275
    • Rui, Y.N.1
  • 41
    • 84912100068 scopus 로고    scopus 로고
    • Potential function for the Huntingtin protein as a scaffold for selective autophagy
    • Ochaba J., et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16889-16894.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16889-16894
    • Ochaba, J.1
  • 42
    • 77951665859 scopus 로고    scopus 로고
    • Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
    • Martinez-Vicente M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 2010, 13:567-576.
    • (2010) Nat. Neurosci. , vol.13 , pp. 567-576
    • Martinez-Vicente, M.1
  • 43
    • 72149124383 scopus 로고    scopus 로고
    • IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
    • Thompson L.M., et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol. 2009, 187:1083-1099.
    • (2009) J. Cell Biol. , vol.187 , pp. 1083-1099
    • Thompson, L.M.1
  • 44
    • 84867427022 scopus 로고    scopus 로고
    • The role of chaperone-mediated autophagy in huntingtin degradation
    • Qi L., et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE 2012, 7:e46834.
    • (2012) PLoS ONE , vol.7 , pp. e46834
    • Qi, L.1
  • 45
    • 33744916798 scopus 로고    scopus 로고
    • Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1
    • Shibata M., et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 2006, 281:14474-14485.
    • (2006) J. Biol. Chem. , vol.281 , pp. 14474-14485
    • Shibata, M.1
  • 46
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
    • Ravikumar B., et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 2004, 36:585-595.
    • (2004) Nat. Genet. , vol.36 , pp. 585-595
    • Ravikumar, B.1
  • 47
    • 77953486943 scopus 로고    scopus 로고
    • Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease
    • Rose C., et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum. Mol. Genet. 2010, 19:2144-2153.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 2144-2153
    • Rose, C.1
  • 48
    • 1642633757 scopus 로고    scopus 로고
    • Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease
    • Tanaka M., et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 2004, 10:148-154.
    • (2004) Nat. Med. , vol.10 , pp. 148-154
    • Tanaka, M.1
  • 49
    • 77957189194 scopus 로고    scopus 로고
    • α-Synuclein impairs macroautophagy: implications for Parkinson's disease
    • Winslow A.R., et al. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 2010, 190:1023-1037.
    • (2010) J. Cell Biol. , vol.190 , pp. 1023-1037
    • Winslow, A.R.1
  • 50
    • 58149215720 scopus 로고    scopus 로고
    • Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy
    • Yang Q., et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323:124-127.
    • (2009) Science , vol.323 , pp. 124-127
    • Yang, Q.1
  • 51
    • 46049112735 scopus 로고    scopus 로고
    • Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset
    • Gan-Or Z., et al. Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 2008, 70:2277-2283.
    • (2008) Neurology , vol.70 , pp. 2277-2283
    • Gan-Or, Z.1
  • 52
    • 84878911804 scopus 로고    scopus 로고
    • The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease
    • Gan-Or Z., et al. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology 2013, 80:1606-1610.
    • (2013) Neurology , vol.80 , pp. 1606-1610
    • Gan-Or, Z.1
  • 53
    • 79960009804 scopus 로고    scopus 로고
    • Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies
    • Mazzulli J.R., et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011, 146:37-52.
    • (2011) Cell , vol.146 , pp. 37-52
    • Mazzulli, J.R.1
  • 54
    • 79961083395 scopus 로고    scopus 로고
    • CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy
    • Sardi S.P., et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12101-12106.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12101-12106
    • Sardi, S.P.1
  • 55
    • 84874487118 scopus 로고    scopus 로고
    • Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies
    • Sardi S.P., et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3537-3542.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 3537-3542
    • Sardi, S.P.1
  • 56
    • 77956855813 scopus 로고    scopus 로고
    • Pathogenic lysosomal depletion in Parkinson's disease
    • Dehay B., et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 2010, 30:12535-12544.
    • (2010) J. Neurosci. , vol.30 , pp. 12535-12544
    • Dehay, B.1
  • 57
    • 84925597891 scopus 로고    scopus 로고
    • Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein
    • Kilpatrick K., et al. Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein. PLoS ONE 2015, 10:e0120819.
    • (2015) PLoS ONE , vol.10 , pp. e0120819
    • Kilpatrick, K.1
  • 58
    • 84898073840 scopus 로고    scopus 로고
    • 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy
    • Song W., et al. 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J. Biol. Chem. 2014, 289:10211-10222.
    • (2014) J. Biol. Chem. , vol.289 , pp. 10211-10222
    • Song, W.1
  • 59
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell A.M., Youle R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015, 85:257-273.
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 60
    • 84882754147 scopus 로고    scopus 로고
    • A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1
    • Hertz N.T., et al. A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell 2013, 154:737-747.
    • (2013) Cell , vol.154 , pp. 737-747
    • Hertz, N.T.1
  • 61
    • 84939820927 scopus 로고    scopus 로고
    • MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5
    • Nezich C.L., et al. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 2015, 210:435-450.
    • (2015) J. Cell Biol. , vol.210 , pp. 435-450
    • Nezich, C.L.1
  • 62
    • 84941795152 scopus 로고    scopus 로고
    • Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin
    • Siddiqui A., et al. Mitochondrial quality control via the PGC1alpha-TFEB signaling pathway is compromised by parkin Q311X mutation but independently restored by rapamycin. J. Neurosci. 2015, 35:12833-12844.
    • (2015) J. Neurosci. , vol.35 , pp. 12833-12844
    • Siddiqui, A.1
  • 63
    • 77953913051 scopus 로고    scopus 로고
    • Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
    • Lee J.H., et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141:1146-1158.
    • (2010) Cell , vol.141 , pp. 1146-1158
    • Lee, J.H.1
  • 64
    • 84940796652 scopus 로고    scopus 로고
    • 2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification
    • 2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep. 2015, 12:1430-1444.
    • (2015) Cell Rep. , vol.12 , pp. 1430-1444
    • Lee, J.H.1
  • 65
    • 84865086929 scopus 로고    scopus 로고
    • Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells
    • Coen K., et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 2012, 198:23-35.
    • (2012) J. Cell Biol. , vol.198 , pp. 23-35
    • Coen, K.1
  • 66
    • 14844303381 scopus 로고    scopus 로고
    • Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study
    • Nixon R.A., et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 2005, 64:113-122.
    • (2005) J. Neuropathol. Exp. Neurol. , vol.64 , pp. 113-122
    • Nixon, R.A.1
  • 67
    • 45749114895 scopus 로고    scopus 로고
    • The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice
    • Pickford F., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 2008, 118:2190-2199.
    • (2008) J. Clin. Invest. , vol.118 , pp. 2190-2199
    • Pickford, F.1
  • 68
    • 79955964504 scopus 로고    scopus 로고
    • Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain
    • Rohn T.T., et al. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiol. Dis. 2011, 43:68-78.
    • (2011) Neurobiol. Dis. , vol.43 , pp. 68-78
    • Rohn, T.T.1
  • 69
    • 78650716872 scopus 로고    scopus 로고
    • Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits
    • Yang D.S., et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 2011, 134:258-277.
    • (2011) Brain , vol.134 , pp. 258-277
    • Yang, D.S.1
  • 70
    • 70349987102 scopus 로고    scopus 로고
    • Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing
    • Wang Y., et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 2009, 18:4153-4170.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 4153-4170
    • Wang, Y.1
  • 71
    • 84862285881 scopus 로고    scopus 로고
    • Autophagic degradation of tau in primary neurons and its enhancement by trehalose
    • Kruger U., et al. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol. Aging 2012, 33:2291-2305.
    • (2012) Neurobiol. Aging , vol.33 , pp. 2291-2305
    • Kruger, U.1
  • 72
    • 84863210676 scopus 로고    scopus 로고
    • Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy
    • Schaeffer V., et al. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012, 135:2169-2177.
    • (2012) Brain , vol.135 , pp. 2169-2177
    • Schaeffer, V.1
  • 73
    • 84877803859 scopus 로고    scopus 로고
    • MTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies
    • Caccamo A., et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell 2013, 12:370-380.
    • (2013) Aging Cell , vol.12 , pp. 370-380
    • Caccamo, A.1
  • 74
    • 84877109118 scopus 로고    scopus 로고
    • Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice
    • Ozcelik S., et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS ONE 2013, 8:e62459.
    • (2013) PLoS ONE , vol.8 , pp. e62459
    • Ozcelik, S.1
  • 75
    • 84868687820 scopus 로고    scopus 로고
    • Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein
    • Parr C., et al. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol. Cell. Biol. 2012, 32:4410-4418.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 4410-4418
    • Parr, C.1
  • 76
    • 33847203593 scopus 로고    scopus 로고
    • Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus
    • Lukiw W.J. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007, 18:297-300.
    • (2007) Neuroreport , vol.18 , pp. 297-300
    • Lukiw, W.J.1
  • 77
    • 84887243168 scopus 로고    scopus 로고
    • MiR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease
    • Tiribuzi R., et al. miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol. Aging 2014, 35:345-356.
    • (2014) Neurobiol. Aging , vol.35 , pp. 345-356
    • Tiribuzi, R.1
  • 78
    • 84896730305 scopus 로고    scopus 로고
    • Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP
    • Coffey E.E., et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 2014, 263:111-124.
    • (2014) Neuroscience , vol.263 , pp. 111-124
    • Coffey, E.E.1
  • 79
    • 84862883617 scopus 로고    scopus 로고
    • A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2
    • Zhang X., et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 2012, 32:8633-8648.
    • (2012) J. Neurosci. , vol.32 , pp. 8633-8648
    • Zhang, X.1
  • 80
    • 84907173621 scopus 로고    scopus 로고
    • Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease
    • Landel V., et al. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol. Neurodegener. 2014, 9:33.
    • (2014) Mol. Neurodegener. , vol.9 , pp. 33
    • Landel, V.1
  • 81
    • 4544224048 scopus 로고    scopus 로고
    • Antiprion immunotherapy: to suppress or to stimulate?
    • Aguzzi A., Sigurdson C.J. Antiprion immunotherapy: to suppress or to stimulate?. Nat. Rev. Immunol. 2004, 4:725-736.
    • (2004) Nat. Rev. Immunol. , vol.4 , pp. 725-736
    • Aguzzi, A.1    Sigurdson, C.J.2
  • 82
    • 84863595757 scopus 로고    scopus 로고
    • Purified and synthetic Alzheimer's amyloid beta (Abeta) prions
    • Stohr J., et al. Purified and synthetic Alzheimer's amyloid beta (Abeta) prions. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11025-11030.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11025-11030
    • Stohr, J.1
  • 83
    • 84902486430 scopus 로고    scopus 로고
    • Distinct tau prion strains propagate in cells and mice and define different tauopathies
    • Sanders D.W., et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 2014, 82:1271-1288.
    • (2014) Neuron , vol.82 , pp. 1271-1288
    • Sanders, D.W.1
  • 84
    • 84872346089 scopus 로고    scopus 로고
    • Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy
    • Iba M., et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 2013, 33:1024-1037.
    • (2013) J. Neurosci. , vol.33 , pp. 1024-1037
    • Iba, M.1
  • 85
    • 67650077008 scopus 로고    scopus 로고
    • Transmission and spreading of tauopathy in transgenic mouse brain
    • Clavaguera F., et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 2009, 11:909-913.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 909-913
    • Clavaguera, F.1
  • 86
    • 84869109864 scopus 로고    scopus 로고
    • Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice
    • Luk K.C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012, 338:949-953.
    • (2012) Science , vol.338 , pp. 949-953
    • Luk, K.C.1
  • 87
    • 84941198850 scopus 로고    scopus 로고
    • Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy
    • Jaunmuktane Z., et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 2015, 525:247-250.
    • (2015) Nature , vol.525 , pp. 247-250
    • Jaunmuktane, Z.1
  • 88
    • 84869475871 scopus 로고    scopus 로고
    • Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases
    • Xu Y., et al. Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 2012, 8:1604-1620.
    • (2012) Autophagy , vol.8 , pp. 1604-1620
    • Xu, Y.1
  • 89
    • 84893472608 scopus 로고    scopus 로고
    • De novo prion aggregates trigger autophagy in skeletal muscle
    • Joshi-Barr S., et al. De novo prion aggregates trigger autophagy in skeletal muscle. J. Virol. 2014, 88:2071-2082.
    • (2014) J. Virol. , vol.88 , pp. 2071-2082
    • Joshi-Barr, S.1
  • 90
    • 84865749298 scopus 로고    scopus 로고
    • Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease
    • Cortes C.J., et al. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J. Neurosci. 2012, 32:12396-12405.
    • (2012) J. Neurosci. , vol.32 , pp. 12396-12405
    • Cortes, C.J.1
  • 91
    • 65249103439 scopus 로고    scopus 로고
    • Autophagy induction by trehalose counteracts cellular prion infection
    • Aguib Y., et al. Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 2009, 5:361-369.
    • (2009) Autophagy , vol.5 , pp. 361-369
    • Aguib, Y.1
  • 92
    • 0034001444 scopus 로고    scopus 로고
    • Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation
    • Doh-Ura K., et al. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 2000, 74:4894-4897.
    • (2000) J. Virol. , vol.74 , pp. 4894-4897
    • Doh-Ura, K.1
  • 93
    • 84892418749 scopus 로고    scopus 로고
    • Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease
    • Geschwind M.D., et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 2013, 81:2015-2023.
    • (2013) Neurology , vol.81 , pp. 2015-2023
    • Geschwind, M.D.1
  • 94
    • 17444413067 scopus 로고    scopus 로고
    • In vitro generation of infectious scrapie prions
    • Castilla J., et al. In vitro generation of infectious scrapie prions. Cell 2005, 121:195-206.
    • (2005) Cell , vol.121 , pp. 195-206
    • Castilla, J.1
  • 95
    • 0003986552 scopus 로고
    • Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease
    • Wischik C.M., et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:4506-4510.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 4506-4510
    • Wischik, C.M.1
  • 96
    • 34548341065 scopus 로고    scopus 로고
    • The effect of truncated human alpha-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease
    • Michell A.W., et al. The effect of truncated human alpha-synuclein (1-120) on dopaminergic cells in a transgenic mouse model of Parkinson's disease. Cell Transplant. 2007, 16:461-474.
    • (2007) Cell Transplant. , vol.16 , pp. 461-474
    • Michell, A.W.1
  • 97
    • 0025876226 scopus 로고
    • N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state
    • Caughey B., et al. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J. Virol. 1991, 65:6597-6603.
    • (1991) J. Virol. , vol.65 , pp. 6597-6603
    • Caughey, B.1
  • 98
    • 26444587508 scopus 로고    scopus 로고
    • Macroautophagy - a novel beta-amyloid peptide-generating pathway activated in Alzheimer's disease
    • Yu W.H., et al. Macroautophagy - a novel beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 2005, 171:87-98.
    • (2005) J. Cell Biol. , vol.171 , pp. 87-98
    • Yu, W.H.1
  • 99
    • 51549106105 scopus 로고    scopus 로고
    • Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species
    • Sevlever D., et al. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008, 47:9678-9687.
    • (2008) Biochemistry , vol.47 , pp. 9678-9687
    • Sevlever, D.1
  • 100
    • 84908518328 scopus 로고    scopus 로고
    • Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous alpha-synuclein fibrils
    • Tsujimura A., et al. Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous alpha-synuclein fibrils. Neurobiol. Dis. 2014, 73C:244-253.
    • (2014) Neurobiol. Dis. , vol.73C , pp. 244-253
    • Tsujimura, A.1
  • 101
    • 84939787271 scopus 로고    scopus 로고
    • Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
    • Perera R.M., et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015, 524:361-365.
    • (2015) Nature , vol.524 , pp. 361-365
    • Perera, R.M.1
  • 102
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 103
    • 79956358522 scopus 로고    scopus 로고
    • Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
    • Fan W., et al. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7769-7774.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7769-7774
    • Fan, W.1
  • 104
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • Pattingre S., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005, 122:927-939.
    • (2005) Cell , vol.122 , pp. 927-939
    • Pattingre, S.1
  • 105
    • 53549100450 scopus 로고    scopus 로고
    • Dynamics and function of PtdIns(3)P in autophagy
    • Obara K., Ohsumi Y. Dynamics and function of PtdIns(3)P in autophagy. Autophagy 2008, 4:952-954.
    • (2008) Autophagy , vol.4 , pp. 952-954
    • Obara, K.1    Ohsumi, Y.2
  • 106
    • 33846207543 scopus 로고    scopus 로고
    • Stimulation of ATG12-ATG5 conjugation by ribonucleic acid
    • Shao Y., et al. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 2007, 3:10-16.
    • (2007) Autophagy , vol.3 , pp. 10-16
    • Shao, Y.1
  • 107
    • 74049140368 scopus 로고    scopus 로고
    • Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy
    • Fujioka Y., et al. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 2010, 285:1508-1515.
    • (2010) J. Biol. Chem. , vol.285 , pp. 1508-1515
    • Fujioka, Y.1
  • 108
    • 65649136884 scopus 로고    scopus 로고
    • The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy
    • Satoo K., et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009, 28:1341-1350.
    • (2009) EMBO J. , vol.28 , pp. 1341-1350
    • Satoo, K.1
  • 109
    • 84897008751 scopus 로고    scopus 로고
    • Structural insights into E2-E3 interaction for LC3 lipidation
    • Metlagel Z., et al. Structural insights into E2-E3 interaction for LC3 lipidation. Autophagy 2014, 10:522-523.
    • (2014) Autophagy , vol.10 , pp. 522-523
    • Metlagel, Z.1
  • 110
    • 84899844485 scopus 로고    scopus 로고
    • Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3
    • Nath S., et al. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014, 16:415-424.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 415-424
    • Nath, S.1
  • 111
    • 22844436451 scopus 로고    scopus 로고
    • Dynein mutations impair autophagic clearance of aggregate-prone proteins
    • Ravikumar B., et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 2005, 37:771-776.
    • (2005) Nat. Genet. , vol.37 , pp. 771-776
    • Ravikumar, B.1
  • 112
    • 0032559260 scopus 로고    scopus 로고
    • Kinesin and dynein superfamily proteins and the mechanism of organelle transport
    • Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998, 279:519-526.
    • (1998) Science , vol.279 , pp. 519-526
    • Hirokawa, N.1
  • 113
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151:1256-1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1
  • 114
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: from growth signal integration to cancer, diabetes and ageing
    • Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 21-35
    • Zoncu, R.1
  • 115
    • 84875423993 scopus 로고    scopus 로고
    • Amino acid signalling upstream of mTOR
    • Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 133-139
    • Jewell, J.L.1
  • 116
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L., et al. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1
  • 117
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335:1638-1643.
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1
  • 118
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
    • (2007) Cell Metab. , vol.6 , pp. 458-471
    • Mammucari, C.1
  • 119
    • 80052970809 scopus 로고    scopus 로고
    • FoxO transcription factors; regulation by AKT and 14-3-3 proteins
    • Tzivion G., et al. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 2011, 1813:1938-1945.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1938-1945
    • Tzivion, G.1
  • 120
    • 84937520970 scopus 로고    scopus 로고
    • Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy
    • Arias E., et al. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 2015, 59:270-284.
    • (2015) Mol. Cell , vol.59 , pp. 270-284
    • Arias, E.1
  • 121
    • 0028062014 scopus 로고
    • Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family
    • Hemesath T.J., et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994, 8:2770-2780.
    • (1994) Genes Dev. , vol.8 , pp. 2770-2780
    • Hemesath, T.J.1
  • 122
    • 84870508533 scopus 로고    scopus 로고
    • Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF
    • Pogenberg V., et al. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev. 2012, 26:2647-2658.
    • (2012) Genes Dev. , vol.26 , pp. 2647-2658
    • Pogenberg, V.1
  • 123
    • 84893055506 scopus 로고    scopus 로고
    • The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
    • Martina J.A., et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 2014, 7:ra9.
    • (2014) Sci. Signal. , vol.7 , pp. ra9
    • Martina, J.A.1
  • 124
    • 84922311449 scopus 로고    scopus 로고
    • MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
    • Ploper D., et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E420-E429.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E420-E429
    • Ploper, D.1
  • 125
    • 84906901689 scopus 로고    scopus 로고
    • An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
    • Zhang Y., et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34:11929-11947.
    • (2014) J. Neurosci. , vol.34 , pp. 11929-11947
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.