메뉴 건너뛰기




Volumn 15, Issue 9, 2015, Pages 528-539

Deoxyribonucleotide metabolism, mutagenesis and cancer

Author keywords

[No Author keywords available]

Indexed keywords

ANTINEOPLASTIC AGENT; DEOXYRIBONUCLEOSIDE TRIPHOSPHATE; DEOXYRIBONUCLEOTIDE; DNA POLYMERASE; NUCLEOSIDE DIPHOSPHATE KINASE; PHOSPHORIBOSYLTRANSFERASE; RIBONUCLEOTIDE REDUCTASE; NR2E3 PROTEIN, HUMAN; ORPHAN NUCLEAR RECEPTOR;

EID: 84940046996     PISSN: 1474175X     EISSN: 14741768     Source Type: Journal    
DOI: 10.1038/nrc3981     Document Type: Review
Times cited : (141)

References (143)
  • 1
    • 0012320836 scopus 로고
    • Studies on unbalanced growth in Escherichia coli
    • Cohen S. S., & Barner H. D. Studies on unbalanced growth in Escherichia coli. Proc. Natl Acad. Sci. USA 40, 885-893 (1954
    • (1954) Proc. Natl Acad. Sci. USA , vol.40 , pp. 885-893
    • Cohen, S.S.1    Barner, H.D.2
  • 3
    • 0014596980 scopus 로고
    • Chemotherapy and comparative biochemistry: G h a clowes memorial lecture
    • Hitchings G. H. Chemotherapy and comparative biochemistry: G. H. A. Clowes memorial lecture. Cancer Res. 29, 1895-1903 (1969
    • (1969) Cancer Res , vol.29 , pp. 1895-1903
    • Hitchings, G.H.1
  • 4
    • 13844324348 scopus 로고
    • Deoxyribonucleoside triphosphate levels: A critical factor in the maintenance of genetic stability
    • Kunz B. A., et al. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat. Res. 318, 1-64 (1994
    • (1994) Mutat. Res , vol.318 , pp. 1-64
    • Kunz, B.A.1
  • 5
    • 0024505072 scopus 로고
    • The molecular basis of mutations induced by deoxyribonucleoside pool imbalances in mammalian cells
    • Meuth M. The molecular basis of mutations induced by deoxyribonucleoside pool imbalances in mammalian cells. Exp. Cell Res. 181, 305-316 (1989
    • (1989) Exp. Cell Res , vol.181 , pp. 305-316
    • Meuth, M.1
  • 6
    • 33746539166 scopus 로고    scopus 로고
    • DNA precursor metabolism and genomic stability
    • Mathews C. K. DNA precursor metabolism and genomic stability. FASEB J. 20, 1300-1314 (2006
    • (2006) Faseb J , vol.20 , pp. 1300-1314
    • Mathews, C.K.1
  • 7
    • 0020445220 scopus 로고
    • Selective expansion of mitochondrial deoxyribonucleoside triphosphate pools in antimetaboite-treated HeLa cells
    • Bestwick R. K., Moffett G. L., & Mathews C. K. Selective expansion of mitochondrial deoxyribonucleoside triphosphate pools in antimetaboite-treated HeLa cells. J. Biol. Chem. 257, 9300-9304 (1982
    • (1982) J. Biol. Chem , vol.257 , pp. 9300-9304
    • Bestwick, R.K.1    Moffett, G.L.2    Mathews, C.K.3
  • 8
    • 2342422119 scopus 로고    scopus 로고
    • Mitochondrial deoxyribonucleotides, pool sizes, syn thesis, and regulation
    • Rampazzo C., et al. Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J. Biol. Chem. 279, 17019-17026 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 17019-17026
    • Rampazzo, C.1
  • 9
    • 21644445569 scopus 로고    scopus 로고
    • Mitochondrial deoxynucleotide pools in quiescent fibroblasts
    • Ferraro P., et al. Mitochondrial deoxynucleotide pools in quiescent fibroblasts. J. Biol. Chem. 280, 24472-24480 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 24472-24480
    • Ferraro, P.1
  • 10
    • 84912058824 scopus 로고    scopus 로고
    • The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters
    • Di Noia M. A., et al. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J. Biol. Chem. 289, 33137-33148 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 33137-33148
    • Di Noia, M.A.1
  • 11
    • 84927133194 scopus 로고    scopus 로고
    • Targeting mitochondrial metabolism for cancer therapy
    • Weinberg S. E., & Chandel N. S. Targeting mitochondrial metabolism for cancer therapy. Nat. Chem. Biol. 11, 9-15 (2015
    • (2015) Nat. Chem. Biol , vol.11 , pp. 9-15
    • Weinberg, S.E.1    Chandel, N.S.2
  • 12
    • 0022378436 scopus 로고
    • DNA precursor pools and ribonucleotide reductase activity: Distribution between the nucleus and cytoplasm of mammalian cells
    • Leeds J. M., Slabaugh M. B., & Mathews C. K. DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells. Mol. Cell. Biol. 5, 3443-3450 (1985
    • (1985) Mol. Cell. Biol , vol.5 , pp. 3443-3450
    • Leeds, J.M.1    Slabaugh, M.B.2    Mathews, C.K.3
  • 13
    • 84857060479 scopus 로고    scopus 로고
    • DNTP pools determine fork progression and origin usage under replication stress
    • Poli J., et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 31, 883-894 (2012
    • (2012) Embo J , vol.31 , pp. 883-894
    • Poli, J.1
  • 15
    • 0024987021 scopus 로고
    • Ribonucleotide reductases
    • Stubbe J. Ribonucleotide reductases. Adv. Enzymol. 63, 349-419 (1990
    • (1990) Adv. Enzymol , vol.63 , pp. 349-419
    • Stubbe, J.1
  • 16
    • 0034594978 scopus 로고    scopus 로고
    • A ribonucleotide reductase gene involved in a p53 dependent cell-cycle checkpoint for DNA damage
    • Tanaka H., et al. A ribonucleotide reductase gene involved in a p53 dependent cell-cycle checkpoint for DNA damage. Nature 404, 42-49 (2000
    • (2000) Nature , vol.404 , pp. 42-49
    • Tanaka, H.1
  • 17
    • 0035798630 scopus 로고    scopus 로고
    • Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells
    • Guittet O., et al. Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J. Biol. Chem. 276, 40647-40651 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 40647-40651
    • Guittet, O.1
  • 18
    • 1642453838 scopus 로고    scopus 로고
    • In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase
    • Shao J., et al. In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res. 64, 1-6 (2004
    • (2004) Cancer Res , vol.64 , pp. 1-6
    • Shao, J.1
  • 19
    • 34249811206 scopus 로고    scopus 로고
    • Mutation of RRM2B, encoding p53 controlled ribonucleotide reductase (p53R2), causes severe mitochondrial depletion
    • Bourdon A., et al. Mutation of RRM2B, encoding p53 controlled ribonucleotide reductase (p53R2), causes severe mitochondrial depletion. Nat. Genet. 39, 776-780 (2007
    • (2007) Nat. Genet , vol.39 , pp. 776-780
    • Bourdon, A.1
  • 20
    • 84865181704 scopus 로고    scopus 로고
    • Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells
    • Pontarin G., Ferraro P., Bee L., Reichard P., & Bianchi V. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc. Natl Acad. Sci. USA 109, 13302-13307 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 13302-13307
    • Pontarin, G.1    Ferraro, P.2    Bee, L.3    Reichard, P.4    Bianchi, V.5
  • 21
    • 0035831458 scopus 로고    scopus 로고
    • Mouse ribonucleotide reductase control influence of substrate binding upon interactions with allosteric inhibitors
    • Chimploy K., & Mathews C. K. Mouse ribonucleotide reductase control. Influence of substrate binding upon interactions with allosteric inhibitors. J. Biol. Chem. 276, 7093-7100 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 7093-7100
    • Chimploy, K.1    Mathews, C.K.2
  • 22
    • 79952331478 scopus 로고    scopus 로고
    • Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization
    • Fairman J. W., et al. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat. Struct. Mol. Biol. 18, 316-322 (2011
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 316-322
    • Fairman, J.W.1
  • 23
    • 0037138464 scopus 로고    scopus 로고
    • Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro
    • Martomo S. A., & Mathews C. K. Effects of biological DNA precursor pool asymmetry upon accuracy of DNA replication in vitro. Mutat. Res. 499, 197-211 (2002
    • (2002) Mutat. Res , vol.499 , pp. 197-211
    • Martomo, S.A.1    Mathews, C.K.2
  • 24
    • 79955772655 scopus 로고    scopus 로고
    • Nucleoside triphosphate pool asymmetry in mammalian mitochondria
    • Wheeler L. J., & Mathews C. K. Nucleoside triphosphate pool asymmetry in mammalian mitochondria. J. Biol. Chem. 286, 16992-16996 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 16992-16996
    • Wheeler, L.J.1    Mathews, C.K.2
  • 25
    • 0027293728 scopus 로고
    • Human c myc transcription factor PuF identified as nm23 H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis
    • Postel E. H., Berberich S. J., Flint S. J., & Ferrone C. A. Human c myc transcription factor PuF identified as nm23 H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261, 478-481 (1993
    • (1993) Science , vol.261 , pp. 478-481
    • Postel, E.H.1    Berberich, S.J.2    Flint, S.J.3    Ferrone, C.A.4
  • 26
    • 0033529536 scopus 로고    scopus 로고
    • Cleavage of DNA by human NM23 H2/nucleoside diphosphate kinase involves formation of a covalent protein-DNA complex
    • Postel E. H. Cleavage of DNA by human NM23 H2/nucleoside diphosphate kinase involves formation of a covalent protein-DNA complex. J. Biol. Chem. 274, 22821-22829 (1999
    • (1999) J. Biol. Chem , vol.274 , pp. 22821-22829
    • Postel, E.H.1
  • 27
    • 0024026803 scopus 로고
    • Immunocytochemical evidence for the cytoplasmic localization and differential expression during the cell cycle of the M1 and M2 subunits of mammalian ribonucleotide reductase
    • Engström Y., & Rozell B. Immunocytochemical evidence for the cytoplasmic localization and differential expression during the cell cycle of the M1 and M2 subunits of mammalian ribonucleotide reductase. EMBO J. 7, 1615-1620 (1988
    • (1988) Embo J , vol.7 , pp. 1615-1620
    • Engström, Y.1    Rozell, B.2
  • 28
    • 56649111359 scopus 로고    scopus 로고
    • Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage
    • Pontarin G., et al. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc. Natl Acad. Sci. USA 105, 17801-17806 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 17801-17806
    • Pontarin, G.1
  • 29
    • 76749114406 scopus 로고    scopus 로고
    • Essential role of Tip60 dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase
    • Niida H., et al. Essential role of Tip60 dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev. 24, 333-338 (2010
    • (2010) Genes Dev , vol.24 , pp. 333-338
    • Niida, H.1
  • 30
    • 84863759637 scopus 로고    scopus 로고
    • Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair
    • Hu C. M., et al. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 22, 36-50 (2012
    • (2012) Cancer Cell , vol.22 , pp. 36-50
    • Hu, C.M.1
  • 31
    • 83755181500 scopus 로고    scopus 로고
    • Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA
    • MacFarlane A., et al. Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J. Biol. Chem. 286, 44015-44022 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 44015-44022
    • MacFarlane, A.1
  • 32
    • 84863398662 scopus 로고    scopus 로고
    • Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus
    • Anderson D. D., Eom J. Y., & Stover P. J. Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J. Biol. Chem. 287, 4790-4799 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 4790-4799
    • Anderson, D.D.1    Eom, J.Y.2    Stover, P.J.3
  • 33
    • 84863421311 scopus 로고    scopus 로고
    • Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis
    • Anderson D. D., Woeller C. F., Chiang E. P., Shane B., & Stover P. J. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J. Biol. Chem. 287, 7051-7062 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 7051-7062
    • Anderson, D.D.1    Woeller, C.F.2    Chiang, E.P.3    Shane, B.4    Stover, P.J.5
  • 34
    • 84908191332 scopus 로고    scopus 로고
    • Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency
    • Field M. S., et al. Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. J. Biol. Chem. 289, 29642-29650 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 29642-29650
    • Field, M.S.1
  • 35
    • 84920973485 scopus 로고    scopus 로고
    • Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis
    • Field M. S., Kamynina E., Watkins D., Rosenblatt D. S., & Stover P. J. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc. Natl Acad. Sci. USA 112, 400-405 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 400-405
    • Field, M.S.1    Kamynina, E.2    Watkins, D.3    Rosenblatt, D.S.4    Stover, P.J.5
  • 36
    • 1642356666 scopus 로고    scopus 로고
    • Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive EF2 binding site and an upstream promoter activating region
    • Chabes A. L., Björklund S., & Thelander L. S. Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive EF2 binding site and an upstream promoter activating region. J. Biol. Chem. 279, 10796-10807 (2004
    • (2004) J. Biol. Chem , vol.279 , pp. 10796-10807
    • Chabes, A.L.1    Björklund, S.2    Thelander, L.S.3
  • 37
    • 67650531172 scopus 로고    scopus 로고
    • Implication of checkpoint kinase-dependent up regulation of ribonucleotide reductase R2 in DNA damage response
    • Zhang Y. W., et al. Implication of checkpoint kinase-dependent up regulation of ribonucleotide reductase R2 in DNA damage response. J. Biol. Chem. 284, 18085-18095 (2009
    • (2009) J. Biol. Chem , vol.284 , pp. 18085-18095
    • Zhang, Y.W.1
  • 38
    • 84860295514 scopus 로고    scopus 로고
    • Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen
    • Salguero I., et al. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Curr. Biol. 22, 720-726 (2012
    • (2012) Curr. Biol , vol.22 , pp. 720-726
    • Salguero, I.1
  • 39
    • 0034625375 scopus 로고    scopus 로고
    • Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks
    • Chabes A., & Thelander L. Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J. Biol. Chem. 275, 17747-17753 (2000
    • (2000) J. Biol. Chem , vol.275 , pp. 17747-17753
    • Chabes, A.1    Thelander, L.2
  • 40
    • 0030974472 scopus 로고    scopus 로고
    • Cell cycle-dependent metabolism of pyrimidine deoxynucleoside triphosphates in CEM cells
    • Bianchi V., et al. Cell cycle-dependent metabolism of pyrimidine deoxynucleoside triphosphates in CEM cells. J. Biol. Chem. 272, 16118-16124 (1997
    • (1997) J. Biol. Chem , vol.272 , pp. 16118-16124
    • Bianchi, V.1
  • 41
    • 78549231232 scopus 로고    scopus 로고
    • Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances
    • Rampazzo C., et al. Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mut. Res. 703, 2-10 (2010
    • (2010) Mut. Res , vol.703 , pp. 2-10
    • Rampazzo, C.1
  • 42
    • 84875158235 scopus 로고    scopus 로고
    • Activating mutations in the nt5c2 nucleotidase gene drive chemotherapy resistance in relapsed all
    • Tzoneva G., et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nature Med. 19, 368-371 (2013
    • (2013) Nature Med , vol.19 , pp. 368-371
    • Tzoneva, G.1
  • 43
    • 83755162644 scopus 로고    scopus 로고
    • Aicardi-goutières syndrome gene and HIV 1 restriction factor samhd1 is a dgtp-regulated deoxynucleotide triphosphohydrolase
    • Powell R. D., Holland P. J., Hollis T., & Perrino F. W. Aicardi-Goutières syndrome gene and HIV 1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596-43600 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 43596-43600
    • Powell, R.D.1    Holland, P.J.2    Hollis, T.3    Perrino, F.W.4
  • 44
    • 83555164881 scopus 로고    scopus 로고
    • HIV 1 restriction factor SAMHD1 is a deoxynucleotide triphosphohydrolase
    • Goldstone D. C., et al. HIV 1 restriction factor SAMHD1 is a deoxynucleotide triphosphohydrolase. Nature 480, 379-382 (2011
    • (2011) Nature , vol.480 , pp. 379-382
    • Goldstone, D.C.1
  • 45
    • 79959843617 scopus 로고    scopus 로고
    • Samhd1 is the dendritic and myeloid-cell-specific HIV 1 restriction factor counteracted by vpx
    • Laguette N., et al. SAMHD1 is the dendritic and myeloid-cell-specific HIV 1 restriction factor counteracted by Vpx. Nature 474, 654-657 (2011
    • (2011) Nature , vol.474 , pp. 654-657
    • Laguette, N.1
  • 46
    • 84897585594 scopus 로고    scopus 로고
    • Samhd1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
    • Clifford R., et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123, 1021-1031 (2014
    • (2014) Blood , vol.123 , pp. 1021-1031
    • Clifford, R.1
  • 47
    • 84896990104 scopus 로고    scopus 로고
    • Samhd1: A new gene for cll
    • Rossi D. SAMHD1: a new gene for CLL. Blood 123, 951-952 (2014
    • (2014) Blood , vol.123 , pp. 951-952
    • Rossi, D.1
  • 48
    • 84883375365 scopus 로고    scopus 로고
    • Gtp is the primary activator of the anti-HIV restriction factor samhd1
    • Amie S. M., Bambara R. A., & Kim B. GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J. Biol. Chem. 288, 25001-25006 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 25001-25006
    • Amie, S.M.1    Bambara, R.A.2    Kim, B.3
  • 49
    • 84911389652 scopus 로고    scopus 로고
    • Structural basis of allosteric activation of SAMHD1 by nucleoside triphosphates
    • Koharudin L. M. I., et al. Structural basis of allosteric activation of SAMHD1 by nucleoside triphosphates. J. Biol. Chem. 289, 32617-32627 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 32617-32627
    • Koharudin, L.M.I.1
  • 50
  • 51
    • 84883397529 scopus 로고    scopus 로고
    • The deoxynucleotide triphosphohydrolase SAMDH1 is a major regulator of DNA precursor pools in mammalian cells
    • Franzolin E., et al. The deoxynucleotide triphosphohydrolase SAMDH1 is a major regulator of DNA precursor pools in mammalian cells. Proc. Natl Acad. Sci. USA 110, 14272-14277 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 14272-14277
    • Franzolin, E.1
  • 52
    • 84903534175 scopus 로고    scopus 로고
    • Allosteric regulation of the human and mouse deoxyribonucleotide triphospholydrolase SAMHD1
    • Miazzi C., et al. Allosteric regulation of the human and mouse deoxyribonucleotide triphospholydrolase SAMHD1. J. Biol. Chem. 289, 18339-18346 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 18339-18346
    • Miazzi, C.1
  • 53
    • 84899804645 scopus 로고    scopus 로고
    • Gtp activator and dntp substrates of HIV 1 restriction factor samhd1 generate a long-lived activated state
    • Hansen E. C., Seamon K. J., Cravens C. N., & Stivers J. T. GTP activator and dNTP substrates of HIV 1 restriction factor SAMHD1 generate a long-lived activated state. Proc. Natl Acad. Sci. USA 111, E1843-E1851 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E1843-E1851
    • Hansen, E.C.1    Seamon, K.J.2    Cravens, C.N.3    Stivers, J.T.4
  • 54
    • 84905732218 scopus 로고    scopus 로고
    • The ribonuclease activity of samhd1 is required for HIV 1 restriction
    • Ryoo J., et al. The ribonuclease activity of SAMHD1 is required for HIV 1 restriction. Nat. Med. 20, 936-941 (2014
    • (2014) Nat. Med , vol.20 , pp. 936-941
    • Ryoo, J.1
  • 55
    • 0016176530 scopus 로고
    • Errors in DNA replication as a basis of malignant change
    • Loeb L. A., Springgate C. F., & Battula N. Errors in DNA replication as a basis of malignant change. Cancer Res. 34, 2311-2321 (1974
    • (1974) Cancer Res , vol.34 , pp. 2311-2321
    • Loeb, L.A.1    Springgate, C.F.2    Battula, N.3
  • 56
    • 33749993417 scopus 로고    scopus 로고
    • The consensus coding sequences of human breast and colorectal cancers
    • Sjöblom T., et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268-274 (2006
    • (2006) Science , vol.314 , pp. 268-274
    • Sjöblom, T.1
  • 59
    • 84930343545 scopus 로고    scopus 로고
    • Volatility of mutator phenotypes at single cell resolution
    • Kennedy S. R., et al. Volatility of mutator phenotypes at single cell resolution. PLOS Genet. 11, e1005151 (2015
    • (2015) Plos Genet , vol.11 , pp. e1005151
    • Kennedy, S.R.1
  • 60
    • 84921288028 scopus 로고    scopus 로고
    • Variations in cancer risk among tissues can be explained by the number of stem cell divisions
    • Tomasetti C., & Vogelstein B. Variations in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78-81 (2015
    • (2015) Science , vol.347 , pp. 78-81
    • Tomasetti, C.1    Vogelstein, B.2
  • 61
    • 79952320889 scopus 로고    scopus 로고
    • Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools
    • Kumar D., et al. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res. 39, 1360-1371 (2010
    • (2010) Nucleic Acids Res , vol.39 , pp. 1360-1371
    • Kumar, D.1
  • 62
    • 84860250880 scopus 로고    scopus 로고
    • Novel mutator mutants of E. Coli ribonucleotide reductase: Insights into allosteric regulation and control of mutation rates
    • Ahluwalia D., Bienstock R., & Schaaper R. Novel mutator mutants of E. coli ribonucleotide reductase: insights into allosteric regulation and control of mutation rates. DNA Repair 11, 480-487 (2012
    • (2012) DNA Repair , vol.11 , pp. 480-487
    • Ahluwalia, D.1    Bienstock, R.2    Schaaper, R.3
  • 63
    • 84919684017 scopus 로고    scopus 로고
    • Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand infidelity
    • Buckland R. J., et al. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand infidelity. PLOS Genet. 10, e10004846 (2014
    • (2014) Plos Genet , vol.10 , pp. e10004846
    • Buckland, R.J.1
  • 64
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel T. A., & Burgers P. M. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 18, 521-527 (2008
    • (2008) Trends Cell Biol , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 65
    • 77954757691 scopus 로고    scopus 로고
    • The eukaryotic replicative DNA polymerases take shape
    • Johansson E., & MacNeill S. A. The eukaryotic replicative DNA polymerases take shape. Trends Biochem. Sci. 35, 339-347 (2010
    • (2010) Trends Biochem. Sci , vol.35 , pp. 339-347
    • Johansson, E.1    MacNeill, S.A.2
  • 66
    • 84929396649 scopus 로고    scopus 로고
    • Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae
    • St. Charles J. A., Liberti S. E., Williams J. S., Lujan S. A., & Kunkel T. A. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair 31, 41-51 (2015
    • (2015) DNA Repair , vol.31 , pp. 41-51
    • St. Charles, J.A.1    Liberti, S.E.2    Williams, J.S.3    Lujan, S.A.4    Kunkel, T.A.5
  • 67
    • 84925615834 scopus 로고    scopus 로고
    • Differential mismatch repair underlies mutation rate variation across the human genome
    • Supek F., & Lehner B. Differential mismatch repair underlies mutation rate variation across the human genome. Nature 521, 81-84 (2015
    • (2015) Nature , vol.521 , pp. 81-84
    • Supek, F.1    Lehner, B.2
  • 68
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • Chabes A., et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112, 391-401 (2003
    • (2003) Cell , vol.112 , pp. 391-401
    • Chabes, A.1
  • 69
    • 27844495735 scopus 로고    scopus 로고
    • Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli
    • Wheeler L. J., Rajagopal I., & Mathews C. K. Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair 4, 1450-1456 (2005
    • (2005) DNA Repair , vol.4 , pp. 1450-1456
    • Wheeler, L.J.1    Rajagopal, I.2    Mathews, C.K.3
  • 70
    • 84857047373 scopus 로고    scopus 로고
    • Endogenous replication stress results in expansion of dNTP pools and a mutator phenotype
    • Davidson M. B., et al. Endogenous replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J. 31, 895-907 (2012
    • (2012) Embo J , vol.31 , pp. 895-907
    • Davidson, M.B.1
  • 71
    • 82755165376 scopus 로고    scopus 로고
    • Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced mutagenesis in Escherichia coli
    • Gon S., Napolitano R., Rocha W., Coulton S., & Fuchs R. P. Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced mutagenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 108, 19311-19316 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 19311-19316
    • Gon, S.1    Napolitano, R.2    Rocha, W.3    Coulton, S.4    Fuchs, R.P.5
  • 72
    • 79955525482 scopus 로고    scopus 로고
    • Nucleotide deficiency promotes genomic instability in early stage of cancer development
    • Bester A. C., et al. Nucleotide deficiency promotes genomic instability in early stage of cancer development. Cell 145, 435-446 (2011
    • (2011) Cell , vol.145 , pp. 435-446
    • Bester, A.C.1
  • 73
    • 79751489596 scopus 로고    scopus 로고
    • Molecular genetics of colorectal cancer
    • Fearon E. R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479-507 (2011
    • (2011) Annu. Rev. Pathol , vol.6 , pp. 479-507
    • Fearon, E.R.1
  • 74
    • 84877747678 scopus 로고    scopus 로고
    • DNA polymerase e and δ exonuclease domains in endometrial cancer
    • Church D. N., et al. DNA polymerase e and δ exonuclease domains in endometrial cancer. Hum. Mol. Genet. 22, 2820-2828 (2013
    • (2013) Hum. Mol. Genet , vol.22 , pp. 2820-2828
    • Church, D.N.1
  • 75
    • 84873096362 scopus 로고    scopus 로고
    • Germline mutations affecting the proofreading domains of pole and pold1 predispose toward colorectal adenomas and carcinomas
    • Palles C., et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose toward colorectal adenomas and carcinomas. Nat. Genet. 45, 136-144 (2012
    • (2012) Nat. Genet , vol.45 , pp. 136-144
    • Palles, C.1
  • 76
    • 84929167589 scopus 로고    scopus 로고
    • A colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity
    • Mertz T. M., Sharma S., Chabes A., & Shcherbakova P. V. A colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc. Natl Acad. Sci. USA 112, E2467-E2476 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E2467-E2476
    • Mertz, T.M.1    Sharma, S.2    Chabes, A.3    Shcherbakova, P.V.4
  • 77
    • 84929224147 scopus 로고    scopus 로고
    • DNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase e variants
    • Williams L. N., et al. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase e variants. Proc. Natl Acad. Sci. USA 112, E2457-E2466 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E2457-E2466
    • Williams, L.N.1
  • 78
    • 33846576261 scopus 로고    scopus 로고
    • Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae
    • Chabes A., & Stillman B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 1183-1188 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 1183-1188
    • Chabes, A.1    Stillman, B.2
  • 79
    • 84925581062 scopus 로고    scopus 로고
    • Yeast dun1 kinase regulates ribonucleotide reductase inhibitor sml1 in response to iron deficiency
    • Sanvisens N., et al. Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol. Cell. Biol. 34, 3259-3271 (2014
    • (2014) Mol. Cell. Biol , vol.34 , pp. 3259-3271
    • Sanvisens, N.1
  • 80
    • 84938911370 scopus 로고    scopus 로고
    • Ribonucleotide reductase and cancer: Biological mechanisms and targeted therapies
    • Aye Y., Li M., Long M. U. C., & Weiss R. S. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011-2021 (2014
    • (2014) Oncogene , vol.34 , pp. 2011-2021
    • Aye, Y.1    Li, M.2    Long, M.U.C.3    Weiss, R.S.4
  • 81
    • 42349085603 scopus 로고    scopus 로고
    • Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms
    • Xu X., et al. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res. 68, 2652-2660 (2008
    • (2008) Cancer Res , vol.68 , pp. 2652-2660
    • Xu, X.1
  • 82
    • 84910621526 scopus 로고    scopus 로고
    • A functional approach reveals a genetic and physical interaction between ribonucleotide reductase and chk1 in mammalian cells
    • Taricani L., Shanahan F., Malinao M. C., & Parry D. A functional approach reveals a genetic and physical interaction between ribonucleotide reductase and CHK1 in mammalian cells. PLoS ONE 9, e111714 (2014
    • (2014) Plos One , vol.9 , pp. e111714
    • Taricani, L.1    Shanahan, F.2    Malinao, M.C.3    Parry, D.4
  • 83
    • 0019557717 scopus 로고
    • Overproduction of the free radical of ribonucleotide reductase in hydroxyurea-resistant mouse fibroblast 3T6 cells
    • Åkerblom L., et al. Overproduction of the free radical of ribonucleotide reductase in hydroxyurea-resistant mouse fibroblast 3T6 cells. Proc. Natl Acad. Sci. USA 78, 2159-2163 (1981
    • (1981) Proc. Natl Acad. Sci. USA , vol.78 , pp. 2159-2163
    • Åkerblom, L.1
  • 84
    • 71549157751 scopus 로고    scopus 로고
    • Mechanism of inactivation of human ribonucleotide reductase with p53R2 by gemcitabine 5′ diphosphate
    • Wang J., Lohman G. J. S., & Stubbe J. Mechanism of inactivation of human ribonucleotide reductase with p53R2 by gemcitabine 5′ diphosphate. Biochemistry 48, 11612-11621 (2009
    • (2009) Biochemistry , vol.48 , pp. 11612-11621
    • Wang, J.1    Lohman, G.J.S.2    Stubbe, J.3
  • 85
    • 71549129302 scopus 로고    scopus 로고
    • Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′ diphosphate in the presence and absence of reductant
    • Artin E., et al. Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′ diphosphate in the presence and absence of reductant. Biochemistry 48, 11622-11629 (2009
    • (2009) Biochemistry , vol.48 , pp. 11622-11629
    • Artin, E.1
  • 87
    • 84940054160 scopus 로고    scopus 로고
    • The novel ribonucleotide reductase inhibitor COH29 inhibits DNA repair in vitro
    • Chen M. C., et al. The novel ribonucleotide reductase inhibitor COH29 inhibits DNA repair in vitro. Mol. Pharmacol. 87, 996-1005 (2015
    • (2015) Mol. Pharmacol , vol.87 , pp. 996-1005
    • Chen, M.C.1
  • 88
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor sml1 is a new target of the mec1/rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X., Chabes A., Domkin V., Thelander L., & Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 20, 3544-3553 (2001
    • (2001) Embo J , vol.20 , pp. 3544-3553
    • Zhao, X.1    Chabes, A.2    Domkin, V.3    Thelander, L.4    Rothstein, R.5
  • 89
    • 0037133566 scopus 로고    scopus 로고
    • The dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor sml1
    • Zhao X., & Rothstein R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl Acad. Sci. USA 99, 3746-3751 (2002
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 3746-3751
    • Zhao, X.1    Rothstein, R.2
  • 90
    • 79958001799 scopus 로고    scopus 로고
    • Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools
    • Tsaponina O., Barsoum E., Åström S. U., & Chabes A. Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLOS Genet. 7, e1002061 (2011
    • (2011) Plos Genet , vol.7 , pp. e1002061
    • Tsaponina, O.1    Barsoum, E.2    Åström, S.U.3    Chabes, A.4
  • 91
    • 77955079173 scopus 로고    scopus 로고
    • Highly mutagenic and severely unbalanced dNTP pool can escape detection by the S phase checkpoint
    • Kumar D., Viberg J., Nilsson A. K., & Chabes A. Highly mutagenic and severely unbalanced dNTP pool can escape detection by the S phase checkpoint. Nucleic Acids Res. 38, 3975-3983 (2010
    • (2010) Nucleic Acids Res , vol.38 , pp. 3975-3983
    • Kumar, D.1    Viberg, J.2    Nilsson, A.K.3    Chabes, A.4
  • 92
    • 84890370061 scopus 로고    scopus 로고
    • Pre-activation of the genome integrity checkpoint increases DNA damage tolerance
    • Tsaponina O., & Chabes A. Pre-activation of the genome integrity checkpoint increases DNA damage tolerance. Nucleic Acids Res. 41, 10371-10378 (2013
    • (2013) Nucleic Acids Res , vol.41 , pp. 10371-10378
    • Tsaponina, O.1    Chabes, A.2
  • 93
    • 0346106146 scopus 로고    scopus 로고
    • Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication
    • Angus S. P., et al. Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J. Biol. Chem. 277, 44376-44384 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 44376-44384
    • Angus, S.P.1
  • 94
    • 48849105341 scopus 로고    scopus 로고
    • Direct role of nucleotide metabolism in c Myc-dependent proliferation of melanoma cells
    • Mannava S., et al. Direct role of nucleotide metabolism in c Myc-dependent proliferation of melanoma cells. Cell Cycle 7, 2392-2400 (2008
    • (2008) Cell Cycle , vol.7 , pp. 2392-2400
    • Mannava, S.1
  • 95
    • 84901353547 scopus 로고    scopus 로고
    • Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer
    • Cunningham J. T., Moreno M. V., Lodi A., Ronen S. M., & Ruggiero D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157, 1008-1103 (2014
    • (2014) Cell , vol.157 , pp. 1008-1103
    • Cunningham, J.T.1    Moreno, M.V.2    Lodi, A.3    Ronen, S.M.4    Ruggiero, D.5
  • 96
    • 84871297080 scopus 로고    scopus 로고
    • Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence
    • Mannava S., et al. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am. J. Pathol. 182, 142-150 (2013
    • (2013) Am. J. Pathol , vol.182 , pp. 142-150
    • Mannava, S.1
  • 97
    • 84870782361 scopus 로고    scopus 로고
    • Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C MYC depletion
    • Mannava S., et al. Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C MYC depletion. Aging 4, 917-922 (2012
    • (2012) Aging , vol.4 , pp. 917-922
    • Mannava, S.1
  • 98
    • 84877001084 scopus 로고    scopus 로고
    • Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence
    • Aird K. M., et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 3, 1252-1265 (2013
    • (2013) Cell Rep , vol.3 , pp. 1252-1265
    • Aird, K.M.1
  • 99
    • 84920154185 scopus 로고    scopus 로고
    • Nucleotide metabolism, oncogene-induced senescence, and cancer
    • Aird K. M., & Zhang R. Nucleotide metabolism, oncogene-induced senescence, and cancer. Cancer Lett. 356, 204-210 (2015
    • (2015) Cancer Lett , vol.356 , pp. 204-210
    • Aird, K.M.1    Zhang, R.2
  • 100
    • 34547159757 scopus 로고    scopus 로고
    • P53 mediates senescence-like arrest induced by chronic replication stress
    • Marusyk A., Wheeler L. J., Mathews C. K., & DeGregori J. D. p53 mediates senescence-like arrest induced by chronic replication stress. Mol. Cell. Biol. 27, 5336-5351 (2007
    • (2007) Mol. Cell. Biol , vol.27 , pp. 5336-5351
    • Marusyk, A.1    Wheeler, L.J.2    Mathews, C.K.3    DeGregori, J.D.4
  • 101
    • 84859265162 scopus 로고    scopus 로고
    • Senescence: A new weapon for cancer therapy
    • Acosta J. C., & Gil J. Senescence: a new weapon for cancer therapy. Trends Cell Biol. 22, 211-219 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 211-219
    • Acosta, J.C.1    Gil, J.2
  • 102
    • 84870701023 scopus 로고    scopus 로고
    • Initiation of genome instability and preneoplastic processes through loss of fhit expression
    • Saldivar J. C., et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLOS Genet. 8, e1003077 (2012
    • (2012) Plos Genet , vol.8 , pp. e1003077
    • Saldivar, J.C.1
  • 103
    • 84892705383 scopus 로고    scopus 로고
    • Bcl2 induces replication stress by inhibiting ribonucleotide reductase
    • Xie M., et al. Bcl2 induces replication stress by inhibiting ribonucleotide reductase. Cancer Res. 74, 212-223 (2014
    • (2014) Cancer Res , vol.74 , pp. 212-223
    • Xie, M.1
  • 104
    • 78149435151 scopus 로고    scopus 로고
    • Telomeric strategies: Means to an end
    • Jain D., & Cooper J. P. Telomeric strategies: means to an end. Ann. Rev. Genet. 44, 243-269 (2010
    • (2010) Ann. Rev. Genet , vol.44 , pp. 243-269
    • Jain, D.1    Cooper, J.P.2
  • 105
    • 0024978857 scopus 로고
    • A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis
    • Greider C. W., & Blackburn E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331-337 (1989
    • (1989) Nature , vol.337 , pp. 331-337
    • Greider, C.W.1    Blackburn, E.H.2
  • 106
    • 34248526205 scopus 로고    scopus 로고
    • Telomerase and the aging process
    • Hornsby P. J. Telomerase and the aging process. Exp. Gerontol. 42, 575-581 (2007
    • (2007) Exp. Gerontol , vol.42 , pp. 575-581
    • Hornsby, P.J.1
  • 107
    • 25444522262 scopus 로고    scopus 로고
    • Telomerase and cancer
    • Blackburn E. H. Telomerase and cancer. Mol. Cancer Res. 3, 477-482 (2005
    • (2005) Mol. Cancer Res , vol.3 , pp. 477-482
    • Blackburn, E.H.1
  • 108
    • 0033576259 scopus 로고    scopus 로고
    • Effect of dGTP concentration on human and CHO telomerase
    • Maine I. P., Chen F. S., & Windle B. Effect of dGTP concentration on human and CHO telomerase. Biochemistry 38, 15325-15332 (1999
    • (1999) Biochemistry , vol.38 , pp. 15325-15332
    • Maine, I.P.1    Chen, F.S.2    Windle, B.3
  • 109
    • 84876362282 scopus 로고    scopus 로고
    • Telomere length homeostasis responds to changes in intracellular dNTP pools
    • Gupta A., et al. Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics 193, 1095-1105 (2013
    • (2013) Genetics , vol.193 , pp. 1095-1105
    • Gupta, A.1
  • 111
    • 0019997115 scopus 로고
    • DNA precursor pool: A significant target for N methyl-N nitrosourea in CH3/T101/2 clone 8 cells
    • Topal M. D., & Baker M. S. DNA precursor pool: a significant target for N methyl-N nitrosourea in CH3/T101/2 clone 8 cells. Proc. Natl Acad. Sci. USA 79, 2211-2215 (1982
    • (1982) Proc. Natl Acad. Sci. USA , vol.79 , pp. 2211-2215
    • Topal, M.D.1    Baker, M.S.2
  • 112
    • 0026513966 scopus 로고
    • MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis
    • Maki H., & Sekiguchi M. MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nature 355, 273-275 (1992
    • (1992) Nature , vol.355 , pp. 273-275
    • Maki, H.1    Sekiguchi, M.2
  • 113
    • 85009806203 scopus 로고    scopus 로고
    • Mutations caused by oxidized DNA precursors and their prevention by nucleotide pool sanitization enzymes
    • Kamiya H. Mutations caused by oxidized DNA precursors and their prevention by nucleotide pool sanitization enzymes. Genes Environ. 29, 133-140 (2007
    • (2007) Genes Environ , vol.29 , pp. 133-140
    • Kamiya, H.1
  • 114
    • 0026486615 scopus 로고
    • Hydrolytic elimination of a mutagenic nucleotide, 8 oxodGTP, by human 18 kilodalton protein: Sanitization of nucleotide pool
    • Mao J. Y., Maki H., & Sekiguchi M. Hydrolytic elimination of a mutagenic nucleotide, 8 oxodGTP, by human 18 kilodalton protein: sanitization of nucleotide pool. Proc. Natl Acad. Sci. USA 89, 11021-11025 (1992
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 11021-11025
    • Mao, J.Y.1    Maki, H.2    Sekiguchi, M.3
  • 115
    • 0037041015 scopus 로고    scopus 로고
    • A molecular basis for the selective recognition of 2 hydroxy-dATP and 8 oxo-dGTP by human MTH 1
    • Sakai Y., et al. A molecular basis for the selective recognition of 2 hydroxy-dATP and 8 oxo-dGTP by human MTH 1. J. Biol. Chem. 277, 8579-8587 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 8579-8587
    • Sakai, Y.1
  • 116
    • 0141733067 scopus 로고    scopus 로고
    • An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress
    • Yoshimura D., et al. An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J. Biol. Chem. 278, 37965-37973 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 37965-37973
    • Yoshimura, D.1
  • 117
    • 84862302029 scopus 로고    scopus 로고
    • Human mth3 (nudt18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates
    • Takagi Y., et al. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates. J. Biol. Chem. 287, 21541-21549 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 21541-21549
    • Takagi, Y.1
  • 118
    • 0035949687 scopus 로고    scopus 로고
    • Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8 oxo-dGTPase
    • Tsuzuki T., et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8 oxo-dGTPase. Proc. Natl Acad. Sci. USA 98, 11456-11461 (2001
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 11456-11461
    • Tsuzuki, T.1
  • 119
    • 0037374556 scopus 로고    scopus 로고
    • Ogg1 knockout-associated lung tumorigenesis and its suppression by mth1 gene disruption
    • Sakumi K., et al. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 63, 902-905 (2003
    • (2003) Cancer Res , vol.63 , pp. 902-905
    • Sakumi, K.1
  • 120
    • 0037013297 scopus 로고    scopus 로고
    • Assessing the metabolic function of the mutt 8 oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis
    • Tassotto M. L., & Mathews C. K. Assessing the metabolic function of the MutT 8 oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis. J. Biol. Chem. 277, 15807-15812 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 15807-15812
    • Tassotto, M.L.1    Mathews, C.K.2
  • 121
    • 42449137498 scopus 로고    scopus 로고
    • Trace amounts of 8 oxo-dGTP in mitochondrial extracts reduce DNA polymerase γ replication fidelity
    • Pursell Z. F., McDonald J. T., Mathews C. K., & Kunkel T. A. Trace amounts of 8 oxo-dGTP in mitochondrial extracts reduce DNA polymerase γ replication fidelity. Nucleic Acids Res. 36, 4990-4995 (2008
    • (2008) Nucleic Acids Res , vol.36 , pp. 4990-4995
    • Pursell, Z.F.1    McDonald, J.T.2    Mathews, C.K.3    Kunkel, T.A.4
  • 122
    • 33745257002 scopus 로고    scopus 로고
    • MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides
    • Nakabeppu Y., Kajitani K., Sakamoto K., Yamaguchi H., & Tsuchimoto D. MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair 5, 761-772 (2006
    • (2006) DNA Repair , vol.5 , pp. 761-772
    • Nakabeppu, Y.1    Kajitani, K.2    Sakamoto, K.3    Yamaguchi, H.4    Tsuchimoto, D.5
  • 123
    • 84909971352 scopus 로고    scopus 로고
    • Preventive DNA repair by sanitizing the cellular (deoxy) nucleoside triphosphate pool
    • Nagy G. N., Leveles I., & Vértessy B. G. Preventive DNA repair by sanitizing the cellular (deoxy) nucleoside triphosphate pool. FEBS J. 281, 4207-4223 (2014
    • (2014) Febs J , vol.281 , pp. 4207-4223
    • Nagy, G.N.1    Leveles, I.2    Vértessy, B.G.3
  • 124
    • 84899619506 scopus 로고    scopus 로고
    • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
    • Gad H., et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508, 215-221 (2014
    • (2014) Nature , vol.508 , pp. 215-221
    • Gad, H.1
  • 125
    • 84899619048 scopus 로고    scopus 로고
    • Stereospecific targeting of MTH1 by S-crizotinib as an anticancer strategy
    • Huber K. V. M., et al. Stereospecific targeting of MTH1 by S-crizotinib as an anticancer strategy. Nature 508, 222-226 (2014
    • (2014) Nature , vol.508 , pp. 222-226
    • Huber, K.V.M.1
  • 126
    • 0014800626 scopus 로고
    • Chemical carcinogenesis, chemotherapy: Cancers continuing core challenges - G h a clowes memorial lecture
    • Heidelberger C. Chemical carcinogenesis, chemotherapy: cancers continuing core challenges - G. H. A. Clowes memorial lecture. Cancer Res. 30, 1549-1569 (1970
    • (1970) Cancer Res , vol.30 , pp. 1549-1569
    • Heidelberger, C.1
  • 127
    • 0029036377 scopus 로고
    • The catalytic mechanism and structure of thymidylate synthase
    • Carreras C., & Santi D. V. The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem. 64, 721-762 (1995
    • (1995) Annu. Rev. Biochem , vol.64 , pp. 721-762
    • Carreras, C.1    Santi, D.V.2
  • 128
    • 0025832444 scopus 로고
    • Mechanism of cell death following thymidylate synthase inhibition: 2′ deoxyuridine 5′ triphosphate accumulation DNA damage, and growth inhibition following exposure to cb3717 and dipyridamole
    • Curtin N. J., Harris A. L., & Aherne G. W. Mechanism of cell death following thymidylate synthase inhibition: 2′ deoxyuridine 5′ triphosphate accumulation, DNA damage, and growth inhibition following exposure to CB3717 and dipyridamole. Cancer Res. 51, 2346-2352 (1991
    • (1991) Cancer Res , vol.51 , pp. 2346-2352
    • Curtin, N.J.1    Harris, A.L.2    Aherne, G.W.3
  • 129
    • 79952074754 scopus 로고    scopus 로고
    • Dynamics of uracil and 5 fluorouracil in DNA
    • Parker J. B., & Stivers J. T. Dynamics of uracil and 5 fluorouracil in DNA. Biochemistry 50, 612-617 (2011
    • (2011) Biochemistry , vol.50 , pp. 612-617
    • Parker, J.B.1    Stivers, J.T.2
  • 130
    • 84859804352 scopus 로고    scopus 로고
    • Discovery of a novel class of potent human deoxyuridine triphosphatase inhibitors remarkably enhancing the antitumor activity of thymidylate synthase inhibitors
    • Miyahara S., et al. Discovery of a novel class of potent human deoxyuridine triphosphatase inhibitors remarkably enhancing the antitumor activity of thymidylate synthase inhibitors. J. Med. Chem. 55, 2970-2980 (2012
    • (2012) J. Med. Chem , vol.55 , pp. 2970-2980
    • Miyahara, S.1
  • 131
    • 0038387494 scopus 로고    scopus 로고
    • 5 fluorouracil: Mechanisms of action and clinical strategies
    • Longley D. B., Harkin D. P., & Johnston P. G. 5 fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338 (2003
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 330-338
    • Longley, D.B.1    Harkin, D.P.2    Johnston, P.G.3
  • 132
    • 0023929848 scopus 로고
    • 5 fluorouracil substitution alters pre-mRNA splicing in vitro
    • Doong S. L., & Dolnick B. J. 5 fluorouracil substitution alters pre-mRNA splicing in vitro. J. Biol. Chem. 263, 4467-4473 (1988
    • (1988) J. Biol. Chem , vol.263 , pp. 4467-4473
    • Doong, S.L.1    Dolnick, B.J.2
  • 133
    • 69149099584 scopus 로고    scopus 로고
    • Identification of genes conferring resistance to 5 fluorouracil
    • Yoo B. K., et al. Identification of genes conferring resistance to 5 fluorouracil. Proc. Natl Acad. Sci. USA 106, 12938-12943 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 12938-12943
    • Yoo, B.K.1
  • 135
    • 84901625708 scopus 로고    scopus 로고
    • DGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon
    • Itsko M., & Schaaper R. M. dGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon. PLOS Genet. 10, e1004310 (2014
    • (2014) Plos Genet , vol.10 , pp. e1004310
    • Itsko, M.1    Schaaper, R.M.2
  • 136
    • 84920109615 scopus 로고    scopus 로고
    • Internalization and stability of a thymidylate synthase peptide inhibitor in ovarian cancer cells
    • Cannazza G., et al. Internalization and stability of a thymidylate synthase peptide inhibitor in ovarian cancer cells. J. Med. Chem. 57, 10551-10556 (2014
    • (2014) J. Med. Chem , vol.57 , pp. 10551-10556
    • Cannazza, G.1
  • 137
    • 84921510043 scopus 로고    scopus 로고
    • Alanine mutants of the interface residues of human thymidylate synthase decode key features of the binding mode of allosteric anticancer peptides
    • Tochowitz A., et al. Alanine mutants of the interface residues of human thymidylate synthase decode key features of the binding mode of allosteric anticancer peptides. J. Med. Chem. 58, 1012-1018 (2014
    • (2014) J. Med. Chem , vol.58 , pp. 1012-1018
    • Tochowitz, A.1
  • 138
    • 84928474035 scopus 로고    scopus 로고
    • Hotspots in an obligate homodimeric anticancer target structural and functional effects of interfacial mutations in human thymidylate synthase
    • Salo-Ahen O. M. H., et al. Hotspots in an obligate homodimeric anticancer target. Structural and functional effects of interfacial mutations in human thymidylate synthase. J. Med. Chem. 58, 3572-3581 (2015
    • (2015) J. Med. Chem , vol.58 , pp. 3572-3581
    • Salo-Ahen, O.M.H.1
  • 139
    • 0001334571 scopus 로고
    • Temporary remissions in acute leukemia of children produced by folic acid antagonist, 4 aminopteroyl-glutamic acid (aminopterin
    • Farber S., et al. Temporary remissions in acute leukemia of children produced by folic acid antagonist, 4 aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 239, 779-787 (1948
    • (1948) N. Engl. J. Med , vol.239 , pp. 779-787
    • Farber, S.1
  • 140
    • 84914454996 scopus 로고
    • Inhibition of dihydrofolic reductase by aminopterin and amethopterin
    • Osborn M. J., Freeman M., & Huennekens F. M. Inhibition of dihydrofolic reductase by aminopterin and amethopterin. Proc. Soc. Exp. Biol. Med. 97, 429-431 (1958
    • (1958) Proc. Soc. Exp. Biol. Med , vol.97 , pp. 429-431
    • Osborn, M.J.1    Freeman, M.2    Huennekens, F.M.3
  • 141
    • 6844229703 scopus 로고
    • Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli
    • Reichard P., Baldesten A., & Rutberg L. Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J. Biol. Chem. 236, 1150-1155 (1961
    • (1961) J. Biol. Chem , vol.236 , pp. 1150-1155
    • Reichard, P.1    Baldesten, A.2    Rutberg, L.3
  • 142
    • 0018712697 scopus 로고
    • Fidelity of replication of phage fx174 by DNA polymerase III holoenzyme: Spontaneous mutation by misincorporation
    • Fersht A. R. Fidelity of replication of phage FX174 by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc. Natl Acad. Sci. USA 76, 4946-4950 (1979
    • (1979) Proc. Natl Acad. Sci. USA , vol.76 , pp. 4946-4950
    • Fersht, A.R.1
  • 143
    • 0019522434 scopus 로고
    • Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools
    • Weinberg G., Ullman B., & Martin D. W. Jr. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc. Natl Acad. Sci. USA 78, 2447-2451 (1981
    • (1981) Proc. Natl Acad. Sci. USA , vol.78 , pp. 2447-2451
    • Weinberg, G.1    Ullman, B.2    Martin, D.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.