메뉴 건너뛰기




Volumn 112, Issue 19, 2015, Pages E2457-E2466

DNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants

Author keywords

Cancer; Dna replication and repair; Lethal mutagenesis; Polymerase fidelity

Indexed keywords

CHECKPOINT KINASE 2; DNA DIRECTED DNA POLYMERASE EPSILON; MEDIATOR OF THE REPLICATION CHECKPOINT 1; NUCLEOSIDE DIPHOSPHATE KINASE; PROTEIN; PROTEIN RAD9; UNCLASSIFIED DRUG; ANTINEOPLASTIC AGENT; DNA DIRECTED DNA POLYMERASE; DNA DIRECTED DNA POLYMERASE ETA; NUCLEOTIDE; PHOSPHATE;

EID: 84929224147     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1422948112     Document Type: Article
Times cited : (48)

References (112)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144(5):646-674.
    • (2011) Cell , vol.144 , Issue.5 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 79957501125 scopus 로고    scopus 로고
    • Human cancers express mutator phenotypes: Origin, consequences and targeting
    • Loeb LA (2011) Human cancers express mutator phenotypes: Origin, consequences and targeting. Nat Rev Cancer 11(6):450-457.
    • (2011) Nat Rev Cancer , vol.11 , Issue.6 , pp. 450-457
    • Loeb, L.A.1
  • 3
    • 79751489596 scopus 로고    scopus 로고
    • Molecular genetics of colorectal cancer
    • Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6: 479-507.
    • (2011) Annu Rev Pathol , vol.6 , pp. 479-507
    • Fearon, E.R.1
  • 5
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell ZF, Isoz I, Lundström EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834): 127-130.
    • (2007) Science , vol.317 , Issue.5834 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundström, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 6
    • 84919743846 scopus 로고    scopus 로고
    • Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication
    • Shinbrot E, et al. (2014) Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res 24(11):1740-1750.
    • (2014) Genome Res , vol.24 , Issue.11 , pp. 1740-1750
    • Shinbrot, E.1
  • 7
    • 84912091104 scopus 로고    scopus 로고
    • Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
    • Yu C, et al. (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56(4):551-563.
    • (2014) Mol Cell , vol.56 , Issue.4 , pp. 551-563
    • Yu, C.1
  • 8
    • 84924180985 scopus 로고    scopus 로고
    • Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
    • Clausen AR, et al. (2015) Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22(3):185-191.
    • (2015) Nat Struct Mol Biol , vol.22 , Issue.3 , pp. 185-191
    • Clausen, A.R.1
  • 10
    • 84877747678 scopus 로고    scopus 로고
    • DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer
    • Church DN, et al.; NSECG Collaborators (2013) DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22(14):2820-2828.
    • (2013) Hum Mol Genet , vol.22 , Issue.14 , pp. 2820-2828
    • Church, D.N.1
  • 11
    • 79951811449 scopus 로고    scopus 로고
    • Concurrent genetic alterations in DNA polymerase proofreading and mismatch repair in human colorectal cancer
    • Yoshida R, et al. (2011) Concurrent genetic alterations in DNA polymerase proofreading and mismatch repair in human colorectal cancer. Eur J Hum Genet 19(3): 320-325.
    • (2011) Eur J Hum Genet , vol.19 , Issue.3 , pp. 320-325
    • Yoshida, R.1
  • 12
    • 84863922124 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of human colon and rectal cancer
    • Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330-337.
    • (2012) Nature , vol.487 , Issue.7407 , pp. 330-337
    • Cancer Genome Atlas Network1
  • 13
    • 84873096362 scopus 로고    scopus 로고
    • Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas
    • Palles C, et al.; CORGI Consortium; WGS500 Consortium (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136-144.
    • (2013) Nat Genet , vol.45 , Issue.2 , pp. 136-144
    • Palles, C.1
  • 14
    • 84877254190 scopus 로고    scopus 로고
    • Integrated genomic characterization of endometrial carcinoma
    • Kandoth C, et al.; Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67-73.
    • (2013) Nature , vol.497 , Issue.7447 , pp. 67-73
    • Cancer Genome Atlas Research Network1    Kandoth, C.2
  • 15
    • 0037180555 scopus 로고    scopus 로고
    • High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading
    • Goldsby RE, et al. (2002) High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading. Proc Natl Acad Sci USA 99(24):15560-15565.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.24 , pp. 15560-15565
    • Goldsby, R.E.1
  • 16
    • 0034958108 scopus 로고    scopus 로고
    • Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice
    • Goldsby RE, et al. (2001) Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nat Med 7(6):638-639.
    • (2001) Nat Med , vol.7 , Issue.6 , pp. 638-639
    • Goldsby, R.E.1
  • 17
    • 70350126567 scopus 로고    scopus 로고
    • DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice
    • Albertson TM, et al. (2009) DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA 106(40):17101-17104.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.40 , pp. 17101-17104
    • Albertson, T.M.1
  • 18
    • 80055094218 scopus 로고    scopus 로고
    • Mutator suppression and escape from replication error-induced extinction in yeast
    • Herr AJ, et al. (2011) Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genet 7(10):e1002282.
    • (2011) PLoS Genet , vol.7 , Issue.10
    • Herr, A.J.1
  • 19
    • 84876442276 scopus 로고    scopus 로고
    • Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast
    • Williams LN, Herr AJ, Preston BD (2013) Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Genetics 193(3):751-770.
    • (2013) Genetics , vol.193 , Issue.3 , pp. 751-770
    • Williams, L.N.1    Herr, A.J.2    Preston, B.D.3
  • 21
    • 0033636253 scopus 로고    scopus 로고
    • Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants
    • Datta A, et al. (2000) Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell 6(3):593-603.
    • (2000) Mol Cell , vol.6 , Issue.3 , pp. 593-603
    • Datta, A.1
  • 22
    • 0037178748 scopus 로고    scopus 로고
    • Interfaces between the detection, signaling, and repair of DNA damage
    • Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297(5581):547-551.
    • (2002) Science , vol.297 , Issue.5581 , pp. 547-551
    • Rouse, J.1    Jackson, S.P.2
  • 23
    • 34249935010 scopus 로고    scopus 로고
    • Maintenance of fork integrity at damaged DNA and natural pause sites
    • Tourrière H, Pasero P (2007) Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst) 6(7):900-913.
    • (2007) DNA Repair (Amst) , vol.6 , Issue.7 , pp. 900-913
    • Tourrière, H.1    Pasero, P.2
  • 24
    • 0027145127 scopus 로고
    • DUN1 encodes a protein kinase that controls the DNA damage response in yeast
    • Zhou Z, Elledge SJ (1993) DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75(6):1119-1127.
    • (1993) Cell , vol.75 , Issue.6 , pp. 1119-1127
    • Zhou, Z.1    Elledge, S.J.2
  • 25
    • 0023925454 scopus 로고
    • Interactions between deoxyribonucleotide and DNA synthesis
    • Reichard P (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57(1):349-374.
    • (1988) Annu Rev Biochem , vol.57 , Issue.1 , pp. 349-374
    • Reichard, P.1
  • 26
    • 33746539166 scopus 로고    scopus 로고
    • DNA precursor metabolism and genomic stability
    • Mathews CK (2006) DNA precursor metabolism and genomic stability. FASEB J 20(9): 1300-1314.
    • (2006) FASEB J , vol.20 , Issue.9 , pp. 1300-1314
    • Mathews, C.K.1
  • 27
    • 0023395932 scopus 로고
    • Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability
    • Elledge SJ, Davis RW (1987) Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol Cell Biol 7(8):2783-2793.
    • (1987) Mol Cell Biol , vol.7 , Issue.8 , pp. 2783-2793
    • Elledge, S.J.1    Davis, R.W.2
  • 28
    • 0025350420 scopus 로고
    • Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase
    • Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4(5):740-751.
    • (1990) Genes Dev , vol.4 , Issue.5 , pp. 740-751
    • Elledge, S.J.1    Davis, R.W.2
  • 29
    • 0034646230 scopus 로고    scopus 로고
    • Yeast ribonucleotide reductase has a heterodimeric ironradical-containing subunit
    • Chabes A, et al. (2000) Yeast ribonucleotide reductase has a heterodimeric ironradical-containing subunit. Proc Natl Acad Sci USA 97(6):2474-2479.
    • (2000) Proc Natl Acad Sci USA , vol.97 , Issue.6 , pp. 2474-2479
    • Chabes, A.1
  • 30
    • 0030813561 scopus 로고    scopus 로고
    • Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae
    • Huang M, Elledge SJ (1997) Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 17(10):6105-6113.
    • (1997) Mol Cell Biol , vol.17 , Issue.10 , pp. 6105-6113
    • Huang, M.1    Elledge, S.J.2
  • 31
    • 0032483576 scopus 로고    scopus 로고
    • The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
    • Huang M, Zhou Z, Elledge SJ (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94(5):595-605.
    • (1998) Cell , vol.94 , Issue.5 , pp. 595-605
    • Huang, M.1    Zhou, Z.2    Elledge, S.J.3
  • 32
    • 0037133566 scopus 로고    scopus 로고
    • The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1
    • Zhao X, Rothstein R (2002) The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci USA 99(6): 3746-3751.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.6 , pp. 3746-3751
    • Zhao, X.1    Rothstein, R.2
  • 33
    • 53349151829 scopus 로고    scopus 로고
    • Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase
    • Lee YD, Wang J, Stubbe J, Elledge SJ (2008) Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 32(1):70-80.
    • (2008) Mol Cell , vol.32 , Issue.1 , pp. 70-80
    • Lee, Y.D.1    Wang, J.2    Stubbe, J.3    Elledge, S.J.4
  • 34
    • 57349130603 scopus 로고    scopus 로고
    • Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit
    • Wu X, Huang M (2008) Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol 28(23): 7156-7167.
    • (2008) Mol Cell Biol , vol.28 , Issue.23 , pp. 7156-7167
    • Wu, X.1    Huang, M.2
  • 35
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X, Muller EG, Rothstein R (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2(3): 329-340.
    • (1998) Mol Cell , vol.2 , Issue.3 , pp. 329-340
    • Zhao, X.1    Muller, E.G.2    Rothstein, R.3
  • 36
    • 0033579443 scopus 로고    scopus 로고
    • Yeast Sml1, a protein inhibitor of ribonucleotide reductase
    • Chabes A, Domkin V, Thelander L (1999) Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 274(51):36679-36683.
    • (1999) J Biol Chem , vol.274 , Issue.51 , pp. 36679-36683
    • Chabes, A.1    Domkin, V.2    Thelander, L.3
  • 37
    • 79958001799 scopus 로고    scopus 로고
    • Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools
    • Tsaponina O, Barsoum E, Aström SU, Chabes A (2011) Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 7(5):e1002061.
    • (2011) PLoS Genet , vol.7 , Issue.5
    • Tsaponina, O.1    Barsoum, E.2    Aström, S.U.3    Chabes, A.4
  • 38
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • Chabes A, et al. (2003) Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112(3):391-401.
    • (2003) Cell , vol.112 , Issue.3 , pp. 391-401
    • Chabes, A.1
  • 39
    • 0032530824 scopus 로고    scopus 로고
    • Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway
    • Desany BA, Alcasabas AA, Bachant JB, Elledge SJ (1998) Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12(18):2956-2970.
    • (1998) Genes Dev , vol.12 , Issue.18 , pp. 2956-2970
    • Desany, B.A.1    Alcasabas, A.A.2    Bachant, J.B.3    Elledge, S.J.4
  • 40
    • 0028979332 scopus 로고
    • DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint
    • Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80(1):29-39.
    • (1995) Cell , vol.80 , Issue.1 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 41
    • 0029859168 scopus 로고    scopus 로고
    • RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae
    • Navas TA, Sanchez Y, Elledge SJ (1996) RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10(20):2632-2643.
    • (1996) Genes Dev , vol.10 , Issue.20 , pp. 2632-2643
    • Navas, T.A.1    Sanchez, Y.2    Elledge, S.J.3
  • 42
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274(32):22283-22288.
    • (1999) J Biol Chem , vol.274 , Issue.32 , pp. 22283-22288
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 43
    • 53149135030 scopus 로고    scopus 로고
    • Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
    • Lou H, et al. (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106-117.
    • (2008) Mol Cell , vol.32 , Issue.1 , pp. 106-117
    • Lou, H.1
  • 44
    • 79953759105 scopus 로고    scopus 로고
    • Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase e
    • Puddu F, Piergiovanni G, Plevani P, Muzi-Falconi M (2011) Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase e. PLoS Genet 7(3):e1002022.
    • (2011) PLoS Genet , vol.7 , Issue.3 , pp. e1002022
    • Puddu, F.1    Piergiovanni, G.2    Plevani, P.3    Muzi-Falconi, M.4
  • 45
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3′ - 5′ exonuclease activity
    • Morrison A, Bell JB, Kunkel TA, Sugino A (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′ - 5′ exonuclease activity. Proc Natl Acad Sci USA 88(21):9473-9477.
    • (1991) Proc Natl Acad Sci USA , vol.88 , Issue.21 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 46
    • 0036682979 scopus 로고    scopus 로고
    • Translesion DNA synthesis in eukaryotes: A one- or twopolymerase affair
    • Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: A one- or twopolymerase affair. Genes Dev 16(15):1872-1883.
    • (2002) Genes Dev , vol.16 , Issue.15 , pp. 1872-1883
    • Prakash, S.1    Prakash, L.2
  • 47
    • 0029908575 scopus 로고    scopus 로고
    • Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases
    • Shcherbakova PV, Noskov VN, Pshenichnov MR, Pavlov YI (1996) Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Mutat Res 369(1-2):33-44.
    • (1996) Mutat Res , vol.369 , Issue.1-2 , pp. 33-44
    • Shcherbakova, P.V.1    Noskov, V.N.2    Pshenichnov, M.R.3    Pavlov, Y.I.4
  • 48
    • 0034805293 scopus 로고    scopus 로고
    • In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta
    • Pavlov YI, Shcherbakova PV, Kunkel TA (2001) In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 159(1):47-64.
    • (2001) Genetics , vol.159 , Issue.1 , pp. 47-64
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Kunkel, T.A.3
  • 49
    • 0037224965 scopus 로고    scopus 로고
    • Checkpoint activation regulates mutagenic translesion synthesis
    • Kai M, Wang TS-F (2003) Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17(1):64-76.
    • (2003) Genes Dev , vol.17 , Issue.1 , pp. 64-76
    • Kai, M.1    Wang, T.S.-F.2
  • 51
    • 74249092035 scopus 로고    scopus 로고
    • Participation of DNA polymerase ζ in replication of undamaged DNA in Saccharomyces cerevisiae
    • Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV (2010) Participation of DNA polymerase ζ in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184(1):27-42.
    • (2010) Genetics , vol.184 , Issue.1 , pp. 27-42
    • Northam, M.R.1    Robinson, H.A.2    Kochenova, O.V.3    Shcherbakova, P.V.4
  • 52
    • 78649701177 scopus 로고    scopus 로고
    • Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε
    • Aksenova A, et al. (2010) Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. PLoS Genet 6(11):e1001209.
    • (2010) PLoS Genet , vol.6 , Issue.11
    • Aksenova, A.1
  • 53
    • 0027417017 scopus 로고
    • Pathway correcting DNA replication errors in Saccharomyces cerevisiae
    • Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12(4):1467-1473.
    • (1993) EMBO J , vol.12 , Issue.4 , pp. 1467-1473
    • Morrison, A.1    Johnson, A.L.2    Johnston, L.H.3    Sugino, A.4
  • 54
    • 0034809479 scopus 로고    scopus 로고
    • Spontaneous frameshift mutations in Saccharomyces cerevisiae: Accumulation during DNA replication and removal by proofreading and mismatch repair activities
    • Greene CN, Jinks-Robertson S (2001) Spontaneous frameshift mutations in Saccharomyces cerevisiae: Accumulation during DNA replication and removal by proofreading and mismatch repair activities. Genetics 159(1):65-75.
    • (2001) Genetics , vol.159 , Issue.1 , pp. 65-75
    • Greene, C.N.1    Jinks-Robertson, S.2
  • 55
    • 0032588388 scopus 로고    scopus 로고
    • The 3′->5′ exonucleases of DNA polymerases δ and ε and the 5′->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae
    • Tran HT, Gordenin DA, Resnick MA (1999) The 3′->5′ exonucleases of DNA polymerases δ and ε and the 5′->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19(3):2000-2007.
    • (1999) Mol Cell Biol , vol.19 , Issue.3 , pp. 2000-2007
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 56
    • 0034130841 scopus 로고    scopus 로고
    • EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae
    • Sokolsky T, Alani E (2000) EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae. Genetics 155(2):589-599.
    • (2000) Genetics , vol.155 , Issue.2 , pp. 589-599
    • Sokolsky, T.1    Alani, E.2
  • 57
    • 12844268576 scopus 로고    scopus 로고
    • Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae
    • Zaim J, Speina E, Kierzek AM (2005) Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 280(1):28-37.
    • (2005) J Biol Chem , vol.280 , Issue.1 , pp. 28-37
    • Zaim, J.1    Speina, E.2    Kierzek, A.M.3
  • 58
    • 84857047373 scopus 로고    scopus 로고
    • Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype
    • Davidson MB, et al. (2012) Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J 31(4):895-907.
    • (2012) EMBO J , vol.31 , Issue.4 , pp. 895-907
    • Davidson, M.B.1
  • 59
    • 0035735472 scopus 로고    scopus 로고
    • Mrc1 transduces signals of DNA replication stress to activate Rad53
    • Alcasabas AA, et al. (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958-965.
    • (2001) Nat Cell Biol , vol.3 , Issue.11 , pp. 958-965
    • Alcasabas, A.A.1
  • 60
    • 0031036995 scopus 로고    scopus 로고
    • RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage
    • Paulovich AG, Margulies RU, Garvik BM, Hartwell LH (1997) RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145(1):45-62.
    • (1997) Genetics , vol.145 , Issue.1 , pp. 45-62
    • Paulovich, A.G.1    Margulies, R.U.2    Garvik, B.M.3    Hartwell, L.H.4
  • 61
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17(14): 1755-1767.
    • (2003) Genes Dev , vol.17 , Issue.14 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 62
    • 69149108736 scopus 로고    scopus 로고
    • Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork
    • Naylor ML, Li JM, Osborn AJ, Elledge SJ (2009) Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. Proc Natl Acad Sci USA 106(31):12765-12770.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.31 , pp. 12765-12770
    • Naylor, M.L.1    Li, J.M.2    Osborn, A.J.3    Elledge, S.J.4
  • 63
    • 83455177210 scopus 로고    scopus 로고
    • Drug-sensitive DNA polymerase δ reveals a role for mismatch repair in checkpoint activation in yeast
    • Reha-Krantz LJ, et al. (2011) Drug-sensitive DNA polymerase δ reveals a role for mismatch repair in checkpoint activation in yeast. Genetics 189(4):1211-1224.
    • (2011) Genetics , vol.189 , Issue.4 , pp. 1211-1224
    • Reha-Krantz, L.J.1
  • 64
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes M, et al. (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412(6846):557-561.
    • (2001) Nature , vol.412 , Issue.6846 , pp. 557-561
    • Lopes, M.1
  • 65
    • 77956921247 scopus 로고    scopus 로고
    • Genome instability due to ribonucleotide incorporation into DNA
    • Nick McElhinny SA, et al. (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6(10):774-781.
    • (2010) Nat Chem Biol , vol.6 , Issue.10 , pp. 774-781
    • Nick McElhinny, S.A.1
  • 66
    • 77950351123 scopus 로고    scopus 로고
    • Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants
    • Fasullo M, Tsaponina O, Sun M, Chabes A (2010) Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res 38(4):1195-1203.
    • (2010) Nucleic Acids Res , vol.38 , Issue.4 , pp. 1195-1203
    • Fasullo, M.1    Tsaponina, O.2    Sun, M.3    Chabes, A.4
  • 67
    • 0027605113 scopus 로고
    • DNA damage and cell cycle regulation of ribonucleotide reductase
    • Elledge SJ, Zhou Z, Allen JB, Navas TA (1993) DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays 15(5):333-339.
    • (1993) BioEssays , vol.15 , Issue.5 , pp. 333-339
    • Elledge, S.J.1    Zhou, Z.2    Allen, J.B.3    Navas, T.A.4
  • 68
    • 0027968012 scopus 로고
    • The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast
    • Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8(20):2401-2415.
    • (1994) Genes Dev , vol.8 , Issue.20 , pp. 2401-2415
    • Allen, J.B.1    Zhou, Z.2    Siede, W.3    Friedberg, E.C.4    Elledge, S.J.5
  • 69
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104(3):397-408.
    • (2001) Cell , vol.104 , Issue.3 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 70
    • 77951219621 scopus 로고    scopus 로고
    • A proteome-wide analysis of kinase-substrate network in the DNA damage response
    • Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12812.
    • (2010) J Biol Chem , vol.285 , Issue.17 , pp. 12803-12812
    • Chen, S.H.1    Albuquerque, C.P.2    Liang, J.3    Suhandynata, R.T.4    Zhou, H.5
  • 71
    • 78049369559 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage
    • Andreson BL, Gupta A, Georgieva BP, Rothstein R (2010) The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 38(19):6490-6501.
    • (2010) Nucleic Acids Res , vol.38 , Issue.19 , pp. 6490-6501
    • Andreson, B.L.1    Gupta, A.2    Georgieva, B.P.3    Rothstein, R.4
  • 72
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20(13):3544-3553.
    • (2001) EMBO J , vol.20 , Issue.13 , pp. 3544-3553
    • Zhao, X.1    Chabes, A.2    Domkin, V.3    Thelander, L.4    Rothstein, R.5
  • 73
    • 0000124775 scopus 로고
    • Comparison between DNA melting thermodynamics and DNA polymerase fidelity
    • Petruska J, et al. (1988) Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 85(17):6252-6256.
    • (1988) Proc Natl Acad Sci USA , vol.85 , Issue.17 , pp. 6252-6256
    • Petruska, J.1
  • 74
    • 0025163907 scopus 로고
    • Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase
    • Mendelman LV, Petruska J, Goodman MF (1990) Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem 265(4): 2338-2346.
    • (1990) J Biol Chem , vol.265 , Issue.4 , pp. 2338-2346
    • Mendelman, L.V.1    Petruska, J.2    Goodman, M.F.3
  • 75
    • 0024552845 scopus 로고
    • Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha
    • Perrino FW, Loeb LA (1989) Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. J Biol Chem 264(5): 2898-2905.
    • (1989) J Biol Chem , vol.264 , Issue.5 , pp. 2898-2905
    • Perrino, F.W.1    Loeb, L.A.2
  • 76
    • 0024853870 scopus 로고
    • Extension of mismatched 3′ termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase
    • Perrino FW, Preston BD, Sandell LL, Loeb LA (1989) Extension of mismatched 3′ termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA 86(21):8343-8347.
    • (1989) Proc Natl Acad Sci USA , vol.86 , Issue.21 , pp. 8343-8347
    • Perrino, F.W.1    Preston, B.D.2    Sandell, L.L.3    Loeb, L.A.4
  • 77
    • 0023770718 scopus 로고
    • Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity
    • Kuchta RD, Benkovic P, Benkovic SJ (1988) Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27(18):6716-6725.
    • (1988) Biochemistry , vol.27 , Issue.18 , pp. 6716-6725
    • Kuchta, R.D.1    Benkovic, P.2    Benkovic, S.J.3
  • 78
    • 78049270970 scopus 로고    scopus 로고
    • Genome-wide model for the normal eukaryotic DNA replication fork
    • Larrea AA, et al. (2010) Genome-wide model for the normal eukaryotic DNA replication fork. Proc Natl Acad Sci USA 107(41):17674-17679.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.41 , pp. 17674-17679
    • Larrea, A.A.1
  • 79
    • 84923948943 scopus 로고    scopus 로고
    • Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition
    • Lujan SA, et al. (2014) Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res 24(11):1751-1764.
    • (2014) Genome Res , vol.24 , Issue.11 , pp. 1751-1764
    • Lujan, S.A.1
  • 80
    • 0021032993 scopus 로고
    • Competition between high and low mutating strains of Escherichia coli
    • Chao L, Cox EC (1983) Competition between high and low mutating strains of Escherichia coli. Evolution 37(1):125-134.
    • (1983) Evolution , vol.37 , Issue.1 , pp. 125-134
    • Chao, L.1    Cox, E.C.2
  • 81
    • 0030620273 scopus 로고    scopus 로고
    • Evolution of high mutation rates in experimental populations of E. coli
    • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387(6634):703-705.
    • (1997) Nature , vol.387 , Issue.6634 , pp. 703-705
    • Sniegowski, P.D.1    Gerrish, P.J.2    Lenski, R.E.3
  • 82
    • 0031023159 scopus 로고    scopus 로고
    • Proliferation of mutators in A cell population
    • Mao EF, Lane L, Lee J, Miller JH (1997) Proliferation of mutators in A cell population. J Bacteriol 179(2):417-422.
    • (1997) J Bacteriol , vol.179 , Issue.2 , pp. 417-422
    • Mao, E.F.1    Lane, L.2    Lee, J.3    Miller, J.H.4
  • 83
    • 0035970874 scopus 로고    scopus 로고
    • Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut
    • Giraud A, et al. (2001) Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut. Science 291(5513):2606-2608.
    • (2001) Science , vol.291 , Issue.5513 , pp. 2606-2608
    • Giraud, A.1
  • 84
    • 10844266565 scopus 로고    scopus 로고
    • Experimental adaptation of Salmonella typhimurium to mice
    • Nilsson AI, Kugelberg E, Berg OG, Andersson DI (2004) Experimental adaptation of Salmonella typhimurium to mice. Genetics 168(3):1119-1130.
    • (2004) Genetics , vol.168 , Issue.3 , pp. 1119-1130
    • Nilsson, A.I.1    Kugelberg, E.2    Berg, O.G.3    Andersson, D.I.4
  • 85
    • 0036860714 scopus 로고    scopus 로고
    • Enrichment and elimination of mutY mutators in Escherichia coli populations
    • Notley-McRobb L, Seeto S, Ferenci T (2002) Enrichment and elimination of mutY mutators in Escherichia coli populations. Genetics 162(3):1055-1062.
    • (2002) Genetics , vol.162 , Issue.3 , pp. 1055-1062
    • Notley-McRobb, L.1    Seeto, S.2    Ferenci, T.3
  • 86
    • 75749154085 scopus 로고    scopus 로고
    • Optimization of DNA polymerase mutation rates during bacterial evolution
    • Loh E, Salk JJ, Loeb LA (2010) Optimization of DNA polymerase mutation rates during bacterial evolution. Proc Natl Acad Sci USA 107(3):1154-1159.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.3 , pp. 1154-1159
    • Loh, E.1    Salk, J.J.2    Loeb, L.A.3
  • 87
    • 0016176530 scopus 로고
    • Errors in DNA replication as a basis of malignant changes
    • Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34(9):2311-2321.
    • (1974) Cancer Res , vol.34 , Issue.9 , pp. 2311-2321
    • Loeb, L.A.1    Springgate, C.F.2    Battula, N.3
  • 88
    • 33747153121 scopus 로고    scopus 로고
    • Ploidy controls the success of mutators and nature of mutations during budding yeast evolution
    • Thompson DA, Desai MM, Murray AW (2006) Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol 16(16):1581-1590.
    • (2006) Curr Biol , vol.16 , Issue.16 , pp. 1581-1590
    • Thompson, D.A.1    Desai, M.M.2    Murray, A.W.3
  • 89
    • 0034972360 scopus 로고    scopus 로고
    • Mutational meltdown in laboratory yeast populations
    • Zeyl C, Mizesko M, de Visser JAGM (2001) Mutational meltdown in laboratory yeast populations. Evolution 55(5):909-917.
    • (2001) Evolution , vol.55 , Issue.5 , pp. 909-917
    • Zeyl, C.1    Mizesko, M.2    De Visser, J.A.G.M.3
  • 90
    • 9244225098 scopus 로고    scopus 로고
    • Mutants in the Exo I motif of Escherichia coli dnaQ: Defective proofreading and inviability due to error catastrophe
    • Fijalkowska IJ, Schaaper RM (1996) Mutants in the Exo I motif of Escherichia coli dnaQ: Defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci USA 93(7):2856-2861.
    • (1996) Proc Natl Acad Sci USA , vol.93 , Issue.7 , pp. 2856-2861
    • Fijalkowska, I.J.1    Schaaper, R.M.2
  • 91
    • 84923989372 scopus 로고    scopus 로고
    • Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers
    • Shlien A, et al.; Biallelic Mismatch Repair Deficiency Consortium (2015) Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 47(3):257-262.
    • (2015) Nat Genet , vol.47 , Issue.3 , pp. 257-262
    • Shlien, A.1
  • 92
    • 84929167589 scopus 로고    scopus 로고
    • Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity
    • Mertz TM, Sharma S, Chabes A, Shcherbakova PV (2015) Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci USA 112:E2467-E2476.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E2467-E2476
    • Mertz, T.M.1    Sharma, S.2    Chabes, A.3    Shcherbakova, P.V.4
  • 93
    • 84887432378 scopus 로고    scopus 로고
    • Hypermutability and error catastrophe due to defects in ribonucleotide reductase
    • Ahluwalia D, Schaaper RM (2013) Hypermutability and error catastrophe due to defects in ribonucleotide reductase. Proc Natl Acad Sci USA 110(46):18596-18601.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.46 , pp. 18596-18601
    • Ahluwalia, D.1    Schaaper, R.M.2
  • 94
    • 82755165376 scopus 로고    scopus 로고
    • Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and inducedmutagenesis in Escherichia coli
    • Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP (2011) Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and inducedmutagenesis in Escherichia coli. Proc Natl Acad Sci USA 108(48):19311-19316.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.48 , pp. 19311-19316
    • Gon, S.1    Napolitano, R.2    Rocha, W.3    Coulon, S.4    Fuchs, R.P.5
  • 95
    • 27844495735 scopus 로고    scopus 로고
    • Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli
    • Wheeler LJ, Rajagopal I, Mathews CK (2005) Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair (Amst) 4(12):1450-1456.
    • (2005) DNA Repair (Amst) , vol.4 , Issue.12 , pp. 1450-1456
    • Wheeler, L.J.1    Rajagopal, I.2    Mathews, C.K.3
  • 96
    • 0025366033 scopus 로고
    • S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs
    • Björklund S, Skog S, Tribukait B, Thelander L (1990) S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29(23):5452-5458.
    • (1990) Biochemistry , vol.29 , Issue.23 , pp. 5452-5458
    • Björklund, S.1    Skog, S.2    Tribukait, B.3    Thelander, L.4
  • 97
    • 0242317756 scopus 로고    scopus 로고
    • Mouse ribonucleotide reductase R2 protein: A new target for anaphase-promoting complex-Cdh1-mediated proteolysis
    • Chabes AL, Pfleger CM, Kirschner MW, Thelander L (2003) Mouse ribonucleotide reductase R2 protein: A new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA 100(7):3925-3929.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.7 , pp. 3925-3929
    • Chabes, A.L.1    Pfleger, C.M.2    Kirschner, M.W.3    Thelander, L.4
  • 98
    • 84861544402 scopus 로고    scopus 로고
    • Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair
    • D'Angiolella V, et al. (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149(5):1023-1034.
    • (2012) Cell , vol.149 , Issue.5 , pp. 1023-1034
    • D'Angiolella, V.1
  • 99
    • 33646359442 scopus 로고    scopus 로고
    • Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells
    • Håkansson P, Hofer A, Thelander L (2006) Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 281(12):7834-7841.
    • (2006) J Biol Chem , vol.281 , Issue.12 , pp. 7834-7841
    • Håkansson, P.1    Hofer, A.2    Thelander, L.3
  • 100
    • 0034738967 scopus 로고    scopus 로고
    • A ribonucleotide reductase gene is a transcriptional target of p53 and p73
    • Nakano K, Bálint E, Ashcroft M, Vousden KH (2000) A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 19(37):4283-4289.
    • (2000) Oncogene , vol.19 , Issue.37 , pp. 4283-4289
    • Nakano, K.1    Bálint, E.2    Ashcroft, M.3    Vousden, K.H.4
  • 101
    • 0034594978 scopus 로고    scopus 로고
    • A ribonucleotide reductase gene involved in a p53- dependent cell-cycle checkpoint for DNA damage
    • Tanaka H, et al. (2000) A ribonucleotide reductase gene involved in a p53- dependent cell-cycle checkpoint for DNA damage. Nature 404(6773):42-49.
    • (2000) Nature , vol.404 , Issue.6773 , pp. 42-49
    • Tanaka, H.1
  • 102
    • 34249823347 scopus 로고    scopus 로고
    • Ribonucleotide reductase and mitochondrial DNA synthesis
    • Thelander L (2007) Ribonucleotide reductase and mitochondrial DNA synthesis. Nat Genet 39(6):703-704.
    • (2007) Nat Genet , vol.39 , Issue.6 , pp. 703-704
    • Thelander, L.1
  • 103
    • 76749114406 scopus 로고    scopus 로고
    • Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase
    • Niida H, et al. (2010) Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 24(4): 333-338.
    • (2010) Genes Dev , vol.24 , Issue.4 , pp. 333-338
    • Niida, H.1
  • 104
    • 0034693148 scopus 로고    scopus 로고
    • Cross-talk between the allosteric effector-binding sites in mouse ribonucleotide reductase
    • Reichard P, Eliasson R, Ingemarson R, Thelander L (2000) Cross-talk between the allosteric effector-binding sites in mouse ribonucleotide reductase. J Biol Chem 275(42):33021-33026.
    • (2000) J Biol Chem , vol.275 , Issue.42 , pp. 33021-33026
    • Reichard, P.1    Eliasson, R.2    Ingemarson, R.3    Thelander, L.4
  • 106
    • 0021668558 scopus 로고
    • A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance
    • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345-346.
    • (1984) Mol Gen Genet , vol.197 , Issue.2 , pp. 345-346
    • Boeke, J.D.1    LaCroute, F.2    Fink, G.R.3
  • 107
    • 0032957639 scopus 로고    scopus 로고
    • Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis
    • Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26(4):680-682.
    • (1999) Biotechniques , vol.26 , Issue.4 , pp. 680-682
    • Wang, W.1    Malcolm, B.A.2
  • 108
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115-132.
    • (1998) Yeast , vol.14 , Issue.2 , pp. 115-132
    • Brachmann, C.B.1
  • 109
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/singlestranded carrier DNA/polyethylene glycol method
    • Methods in Enzymology, eds Guthrie C, Fink GR (Academic, San Diego)
    • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/singlestranded carrier DNA/polyethylene glycol method. Part B: Guide to Yeast Genetics and Molecular and Cell Biology, Methods in Enzymology, eds Guthrie C, Fink GR (Academic, San Diego), Vol 350, pp 87-96.
    • (2002) Part B: Guide to Yeast Genetics and Molecular and Cell Biology , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 110
    • 56049108085 scopus 로고    scopus 로고
    • A note on plating efficiency in fluctuation experiments
    • Zheng Q (2008) A note on plating efficiency in fluctuation experiments. Math Biosci 216(2):150-153.
    • (2008) Math Biosci , vol.216 , Issue.2 , pp. 150-153
    • Zheng, Q.1
  • 112
    • 77952308176 scopus 로고    scopus 로고
    • YODA: Software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast
    • Olsen B, Murakami CJ, Kaeberlein M (2010) YODA: Software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 11:141.
    • (2010) BMC Bioinformatics , vol.11 , pp. 141
    • Olsen, B.1    Murakami, C.J.2    Kaeberlein, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.