메뉴 건너뛰기




Volumn 33, Issue 1, 2015, Pages 55-66

mTOR signaling in cellular and organismal energetics

Author keywords

[No Author keywords available]

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; NUCLEOTIDE; TARGET OF RAPAMYCIN KINASE;

EID: 84930363624     PISSN: 09550674     EISSN: 18790410     Source Type: Journal    
DOI: 10.1016/j.ceb.2014.12.001     Document Type: Review
Times cited : (250)

References (91)
  • 1
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124(3):471-484.
    • (2006) Cell , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 2
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149(2):274-293.
    • (2012) Cell , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 3
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189(4):1177-1201.
    • (2011) Genetics , vol.189 , Issue.4 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 4
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: the mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M., Hall M.N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014, 15(3):155-162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.3 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 5
    • 84878532557 scopus 로고    scopus 로고
    • Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
    • Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013, 15(6):555-564.
    • (2013) Nat Cell Biol , vol.15 , Issue.6 , pp. 555-564
    • Dibble, C.C.1    Manning, B.D.2
  • 6
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009, 10(5):307-318.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , Issue.5 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 7
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144(5):757-768.
    • (2011) Cell , vol.144 , Issue.5 , pp. 757-768
    • Zinzalla, V.1
  • 8
    • 70449900928 scopus 로고    scopus 로고
    • TOR complex 2: a signaling pathway of its own
    • Cybulski N., Hall M.N. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 2009, 34(12):620-627.
    • (2009) Trends Biochem Sci , vol.34 , Issue.12 , pp. 620-627
    • Cybulski, N.1    Hall, M.N.2
  • 9
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks C.A., Guertin D.A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010, 29(26):3733-3744.
    • (2010) Oncogene , vol.29 , Issue.26 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 10
    • 84894486696 scopus 로고    scopus 로고
    • Nutrient regulation of the mTOR complex 1 signaling pathway
    • Kim S.G., Buel G.R., Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013, 35(6):463-473.
    • (2013) Mol Cells , vol.35 , Issue.6 , pp. 463-473
    • Kim, S.G.1    Buel, G.R.2    Blenis, J.3
  • 11
    • 33750068623 scopus 로고    scopus 로고
    • MTOR: translation initiation and cancer
    • Mamane Y., et al. mTOR: translation initiation and cancer. Oncogene 2006, 25(48):6416-6422.
    • (2006) Oncogene , vol.25 , Issue.48 , pp. 6416-6422
    • Mamane, Y.1
  • 12
    • 84896629473 scopus 로고    scopus 로고
    • Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
    • Chauvin C., et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014, 33(4):474-483.
    • (2014) Oncogene , vol.33 , Issue.4 , pp. 474-483
    • Chauvin, C.1
  • 13
    • 33745150462 scopus 로고    scopus 로고
    • Ribosomal protein S6 phosphorylation: from protein synthesis to cell size
    • Ruvinsky I., Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006, 31(6):342-348.
    • (2006) Trends Biochem Sci , vol.31 , Issue.6 , pp. 342-348
    • Ruvinsky, I.1    Meyuhas, O.2
  • 14
    • 2442574729 scopus 로고    scopus 로고
    • Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
    • Raught B., et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004, 23(8):1761-1769.
    • (2004) EMBO J , vol.23 , Issue.8 , pp. 1761-1769
    • Raught, B.1
  • 15
    • 33745570504 scopus 로고    scopus 로고
    • The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity
    • Shahbazian D., et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006, 25(12):2781-2791.
    • (2006) EMBO J , vol.25 , Issue.12 , pp. 2781-2791
    • Shahbazian, D.1
  • 16
    • 33746413746 scopus 로고    scopus 로고
    • SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response
    • Peschiaroli A., et al. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006, 23(3):319-329.
    • (2006) Mol Cell , vol.23 , Issue.3 , pp. 319-329
    • Peschiaroli, A.1
  • 17
    • 0035881470 scopus 로고    scopus 로고
    • Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
    • Wang X., et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001, 20(16):4370-4379.
    • (2001) EMBO J , vol.20 , Issue.16 , pp. 4370-4379
    • Wang, X.1
  • 18
    • 0034535175 scopus 로고    scopus 로고
    • Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex
    • Wilson K.F., Wu W.J., Cerione R.A. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J Biol Chem 2000, 275(48):37307-37310.
    • (2000) J Biol Chem , vol.275 , Issue.48 , pp. 37307-37310
    • Wilson, K.F.1    Wu, W.J.2    Cerione, R.A.3
  • 19
    • 4644303065 scopus 로고    scopus 로고
    • SKAR is a specific target of S6 kinase 1 in cell growth control
    • Richardson C.J., et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 2004, 14(17):1540-1549.
    • (2004) Curr Biol , vol.14 , Issue.17 , pp. 1540-1549
    • Richardson, C.J.1
  • 20
    • 41949101770 scopus 로고    scopus 로고
    • SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs
    • Ma X.M., et al. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008, 133(2):303-313.
    • (2008) Cell , vol.133 , Issue.2 , pp. 303-313
    • Ma, X.M.1
  • 21
    • 34547801661 scopus 로고    scopus 로고
    • S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover
    • Mieulet V., et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 2007, 293(2):C712-C722.
    • (2007) Am J Physiol Cell Physiol , vol.293 , Issue.2 , pp. C712-C722
    • Mieulet, V.1
  • 22
    • 84862777192 scopus 로고    scopus 로고
    • The translational landscape of mTOR signalling steers cancer initiation and metastasis
    • Hsieh A.C., et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485(7396):55-61.
    • (2012) Nature , vol.485 , Issue.7396 , pp. 55-61
    • Hsieh, A.C.1
  • 23
    • 84860527756 scopus 로고    scopus 로고
    • A unifying model for mTORC1-mediated regulation of mRNA translation
    • Thoreen C.C., et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485(7396):109-113.
    • (2012) Nature , vol.485 , Issue.7396 , pp. 109-113
    • Thoreen, C.C.1
  • 24
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Sci Signal 2009, 2(67):ppe24.
    • (2009) Sci Signal , vol.2 , Issue.67
    • Guertin, D.A.1    Sabatini, D.M.2
  • 25
    • 84925968326 scopus 로고    scopus 로고
    • MTORC1-mediated translational elongation limits intestinal tumour initiation and growth
    • [Epub ahead of print]
    • Faller W.J., et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 2014, [Epub ahead of print].
    • (2014) Nature
    • Faller, W.J.1
  • 26
    • 84861872213 scopus 로고    scopus 로고
    • Distinct perturbation of the translatome by the antidiabetic drug metformin
    • Larsson O., et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A 2012, 109(23):8977-8982.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.23 , pp. 8977-8982
    • Larsson, O.1
  • 27
    • 84887415150 scopus 로고    scopus 로고
    • MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
    • Morita M., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013, 18(5):698-711.
    • (2013) Cell Metab , vol.18 , Issue.5 , pp. 698-711
    • Morita, M.1
  • 28
    • 84931586643 scopus 로고    scopus 로고
    • The race to decipher the top secrets of TOP mRNAs
    • [Epub ahead of print]
    • Meyuhas O., Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochim Biophys Acta 2014, [Epub ahead of print].
    • (2014) Biochim Biophys Acta
    • Meyuhas, O.1    Kahan, T.2
  • 29
    • 84906898355 scopus 로고    scopus 로고
    • Coordinated regulation of protein synthesis and degradation by mTORC1
    • Zhang Y., et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014, 513(7518):440-443.
    • (2014) Nature , vol.513 , Issue.7518 , pp. 440-443
    • Zhang, Y.1
  • 30
    • 84881098989 scopus 로고    scopus 로고
    • Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
    • Betz C., et al. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A 2013, 110(31):12526-12534.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.31 , pp. 12526-12534
    • Betz, C.1
  • 31
    • 77649286736 scopus 로고    scopus 로고
    • Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E
    • Hsieh A.C., et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010, 17(3):249-261.
    • (2010) Cancer Cell , vol.17 , Issue.3 , pp. 249-261
    • Hsieh, A.C.1
  • 32
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • Oh W.J., et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010, 29(23):3939-3951.
    • (2010) EMBO J , vol.29 , Issue.23 , pp. 3939-3951
    • Oh, W.J.1
  • 33
    • 84873488006 scopus 로고    scopus 로고
    • MTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts
    • Dai N., et al. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev 2013, 27(3):301-312.
    • (2013) Genes Dev , vol.27 , Issue.3 , pp. 301-312
    • Dai, N.1
  • 34
    • 84859926218 scopus 로고    scopus 로고
    • The mitochondrial pathways of apoptosis
    • Estaquier J., et al. The mitochondrial pathways of apoptosis. Adv Exp Med Biol 2012, 942:157-183.
    • (2012) Adv Exp Med Biol , vol.942 , pp. 157-183
    • Estaquier, J.1
  • 35
    • 70350374471 scopus 로고    scopus 로고
    • Mitochondrial metabolism and cancer
    • Weinberg F., Chandel N.S. Mitochondrial metabolism and cancer. Ann N Y Acad Sci 2009, 1177:66-73.
    • (2009) Ann N Y Acad Sci , vol.1177 , pp. 66-73
    • Weinberg, F.1    Chandel, N.S.2
  • 36
    • 33748752151 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
    • Schieke S.M., et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006, 281(37):27643-27652.
    • (2006) J Biol Chem , vol.281 , Issue.37 , pp. 27643-27652
    • Schieke, S.M.1
  • 37
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger C.F., et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008, 8(5):411-424.
    • (2008) Cell Metab , vol.8 , Issue.5 , pp. 411-424
    • Bentzinger, C.F.1
  • 38
    • 74049088121 scopus 로고    scopus 로고
    • Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
    • Risson V., et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009, 187(6):859-874.
    • (2009) J Cell Biol , vol.187 , Issue.6 , pp. 859-874
    • Risson, V.1
  • 39
    • 84876184914 scopus 로고    scopus 로고
    • Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy
    • Bentzinger C.F., et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle 2013, 3(1):p6.
    • (2013) Skelet Muscle , vol.3 , Issue.1 , pp. 6
    • Bentzinger, C.F.1
  • 40
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450(7170):736-740.
    • (2007) Nature , vol.450 , Issue.7170 , pp. 736-740
    • Cunningham, J.T.1
  • 41
    • 84862965401 scopus 로고    scopus 로고
    • Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function
    • Romanino K., et al. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proc Natl Acad Sci U S A 2011, 108(51):20808-20813.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.51 , pp. 20808-20813
    • Romanino, K.1
  • 42
    • 84866873298 scopus 로고    scopus 로고
    • PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1
    • Goo C.K., et al. PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS ONE 2012, 7(9):pe45806.
    • (2012) PLoS ONE , vol.7 , Issue.9
    • Goo, C.K.1
  • 43
    • 54849431380 scopus 로고    scopus 로고
    • Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
    • Polak P., et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008, 8(5):399-410.
    • (2008) Cell Metab , vol.8 , Issue.5 , pp. 399-410
    • Polak, P.1
  • 44
    • 84902257417 scopus 로고    scopus 로고
    • Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1
    • Liu M., et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab 2014, 19(6):967-980.
    • (2014) Cell Metab , vol.19 , Issue.6 , pp. 967-980
    • Liu, M.1
  • 45
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012, 15(5):725-738.
    • (2012) Cell Metab , vol.15 , Issue.5 , pp. 725-738
    • Hagiwara, A.1
  • 46
    • 84865503043 scopus 로고    scopus 로고
    • Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
    • Yuan M., et al. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 2012, 287(35):29579-29588.
    • (2012) J Biol Chem , vol.287 , Issue.35 , pp. 29579-29588
    • Yuan, M.1
  • 47
    • 84904433925 scopus 로고    scopus 로고
    • Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
    • Hung C.M., et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep 2014, 8(1):256-271.
    • (2014) Cell Rep , vol.8 , Issue.1 , pp. 256-271
    • Hung, C.M.1
  • 48
    • 84890149646 scopus 로고    scopus 로고
    • Where is mTOR and what is it doing there?
    • Betz C., Hall M.N. Where is mTOR and what is it doing there?. J Cell Biol 2013, 203(4):563-574.
    • (2013) J Cell Biol , vol.203 , Issue.4 , pp. 563-574
    • Betz, C.1    Hall, M.N.2
  • 49
    • 84859448265 scopus 로고    scopus 로고
    • Mitofusin 2 (Mfn2) links mitochondrial endoplasmic reticulum function with insulin signaling is essential for normal glucose F homeostasis
    • Sebastian D., et al. Mitofusin 2 (Mfn2) links mitochondrial endoplasmic reticulum function with insulin signaling is essential for normal glucose F homeostasis. Proc Natl Acad Sci US A 2012, 109(14):5523-5528.
    • (2012) Proc Natl Acad Sci US A , vol.109 , Issue.14 , pp. 5523-5528
    • Sebastian, D.1
  • 50
    • 79953206927 scopus 로고    scopus 로고
    • Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction
    • Colombi M., et al. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 2011, 30(13):1551-1565.
    • (2011) Oncogene , vol.30 , Issue.13 , pp. 1551-1565
    • Colombi, M.1
  • 51
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010, 39(2):171-183.
    • (2010) Mol Cell , vol.39 , Issue.2 , pp. 171-183
    • Duvel, K.1
  • 52
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • Robitaille A.M., et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013, 339(6125):1320-1323.
    • (2013) Science , vol.339 , Issue.6125 , pp. 1320-1323
    • Robitaille, A.M.1
  • 53
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra I., et al. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013, 339(6125):1323-1328.
    • (2013) Science , vol.339 , Issue.6125 , pp. 1323-1328
    • Ben-Sahra, I.1
  • 54
    • 84892727198 scopus 로고    scopus 로고
    • What we talk about when we talk about fat
    • Rosen E.D., Spiegelman B.M. What we talk about when we talk about fat. Cell 2014, 156(1-2):20-44.
    • (2014) Cell , vol.156 , Issue.1-2 , pp. 20-44
    • Rosen, E.D.1    Spiegelman, B.M.2
  • 55
    • 67649867447 scopus 로고    scopus 로고
    • MTOR complex 2 in adipose tissue negatively controls whole-body growth
    • Cybulski N., et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci U S A 2009, 106(24):9902-9907.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.24 , pp. 9902-9907
    • Cybulski, N.1
  • 56
    • 77953200528 scopus 로고    scopus 로고
    • Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
    • Kumar A., et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010, 59(6):1397-1406.
    • (2010) Diabetes , vol.59 , Issue.6 , pp. 1397-1406
    • Kumar, A.1
  • 57
    • 84877927481 scopus 로고    scopus 로고
    • MTOR in aging, metabolism, and cancer
    • Cornu M., Albert V., Hall M.N. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013, 23(1):53-62.
    • (2013) Curr Opin Genet Dev , vol.23 , Issue.1 , pp. 53-62
    • Cornu, M.1    Albert, V.2    Hall, M.N.3
  • 58
    • 84874655800 scopus 로고    scopus 로고
    • The multifaceted role of mTORC1 in the control of lipid metabolism
    • Ricoult S.J., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 2013, 14(3):242-251.
    • (2013) EMBO Rep , vol.14 , Issue.3 , pp. 242-251
    • Ricoult, S.J.1    Manning, B.D.2
  • 59
    • 84885187437 scopus 로고    scopus 로고
    • A Central role for mTOR in lipid homeostasis
    • Lamming D.W., Sabatini D.M. A Central role for mTOR in lipid homeostasis. Cell Metab 2013, 18(4):465-469.
    • (2013) Cell Metab , vol.18 , Issue.4 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 60
    • 79953177846 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
    • Kenerson H.L., Yeh M.M., Yeung R.S. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 2011, 6(3):pe18075.
    • (2011) PLoS ONE , vol.6 , Issue.3
    • Kenerson, H.L.1    Yeh, M.M.2    Yeung, R.S.3
  • 61
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies J.L., et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011, 14(1):21-32.
    • (2011) Cell Metab , vol.14 , Issue.1 , pp. 21-32
    • Yecies, J.L.1
  • 62
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468(7327):1100-1104.
    • (2010) Nature , vol.468 , Issue.7327 , pp. 1100-1104
    • Sengupta, S.1
  • 63
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson T.R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146(3):408-420.
    • (2011) Cell , vol.146 , Issue.3 , pp. 408-420
    • Peterson, T.R.1
  • 64
    • 84903958633 scopus 로고    scopus 로고
    • Liver damage inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition
    • Umemura A., et al. Liver damage inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab 2014, 20(1):133-144.
    • (2014) Cell Metab , vol.20 , Issue.1 , pp. 133-144
    • Umemura, A.1
  • 65
    • 84905977025 scopus 로고    scopus 로고
    • Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
    • Cornu M., et al. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 2014, 111(32):11592-11599.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.32 , pp. 11592-11599
    • Cornu, M.1
  • 66
    • 84883778996 scopus 로고    scopus 로고
    • FGF21 regulates metabolism and circadian behavior by acting on the nervous system
    • Bookout A.L., et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013, 19(9):1147-1152.
    • (2013) Nat Med , vol.19 , Issue.9 , pp. 1147-1152
    • Bookout, A.L.1
  • 67
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A., et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153(4):840-854.
    • (2013) Cell , vol.153 , Issue.4 , pp. 840-854
    • Csibi, A.1
  • 68
    • 77952562382 scopus 로고    scopus 로고
    • Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
    • Choo A.Y., et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010, 38(4):487-499.
    • (2010) Mol Cell , vol.38 , Issue.4 , pp. 487-499
    • Choo, A.Y.1
  • 69
    • 0037372730 scopus 로고    scopus 로고
    • Glutamine and glutamate - their central role in cell metabolism and function
    • Newsholme P., et al. Glutamine and glutamate - their central role in cell metabolism and function. Cell Biochem Funct 2003, 21(1):1-9.
    • (2003) Cell Biochem Funct , vol.21 , Issue.1 , pp. 1-9
    • Newsholme, P.1
  • 70
    • 0025454459 scopus 로고
    • Total parenteral nutrition, glutamine, and tumor growth
    • Fischer J.E., Chance W.T. Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 1990, 14(4 Suppl.):86S-89S.
    • (1990) JPEN J Parenter Enteral Nutr , vol.14 , Issue.4 , pp. 86S-89S
    • Fischer, J.E.1    Chance, W.T.2
  • 71
    • 0027145124 scopus 로고
    • Glutamine and cancer
    • Souba W.W. Glutamine and cancer. Ann Surg 1993, 218(6):715-728.
    • (1993) Ann Surg , vol.218 , Issue.6 , pp. 715-728
    • Souba, W.W.1
  • 72
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008, 7(1):11-20.
    • (2008) Cell Metab , vol.7 , Issue.1 , pp. 11-20
    • DeBerardinis, R.J.1
  • 73
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335(6076):1638-1643.
    • (2012) Science , vol.335 , Issue.6076 , pp. 1638-1643
    • Lamming, D.W.1
  • 74
    • 84923277833 scopus 로고    scopus 로고
    • Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan
    • Lamming D.W., et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 2014, 13(5):911-917.
    • (2014) Aging Cell , vol.13 , Issue.5 , pp. 911-917
    • Lamming, D.W.1
  • 75
    • 84873378527 scopus 로고    scopus 로고
    • Exercise metabolism and the molecular regulation of skeletal muscle adaptation
    • Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013, 17(2):162-184.
    • (2013) Cell Metab , vol.17 , Issue.2 , pp. 162-184
    • Egan, B.1    Zierath, J.R.2
  • 76
    • 84896714585 scopus 로고    scopus 로고
    • Enhanced skeletal muscle for effective glucose homeostasis
    • Yang J. Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci 2014, 121:133-163.
    • (2014) Prog Mol Biol Transl Sci , vol.121 , pp. 133-163
    • Yang, J.1
  • 77
    • 84894829780 scopus 로고    scopus 로고
    • Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes
    • Mackenzie R.W., Elliott B.T. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes 2014, 7:55-64.
    • (2014) Diabetes Metab Syndr Obes , vol.7 , pp. 55-64
    • Mackenzie, R.W.1    Elliott, B.T.2
  • 78
    • 6344256238 scopus 로고    scopus 로고
    • Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy
    • Lai K.M., et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004, 24(21):9295-9304.
    • (2004) Mol Cell Biol , vol.24 , Issue.21 , pp. 9295-9304
    • Lai, K.M.1
  • 79
    • 42449104351 scopus 로고    scopus 로고
    • MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
    • Fraenkel M., et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008, 57(4):945-957.
    • (2008) Diabetes , vol.57 , Issue.4 , pp. 945-957
    • Fraenkel, M.1
  • 80
    • 77953218866 scopus 로고    scopus 로고
    • Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
    • Houde V.P., et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010, 59(6):1338-1348.
    • (2010) Diabetes , vol.59 , Issue.6 , pp. 1338-1348
    • Houde, V.P.1
  • 81
    • 48149112155 scopus 로고    scopus 로고
    • Sirolimus is associated with new-onset diabetes in kidney transplant recipients
    • Johnston O., et al. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008, 19(7):1411-1418.
    • (2008) J Am Soc Nephrol , vol.19 , Issue.7 , pp. 1411-1418
    • Johnston, O.1
  • 82
    • 84877577382 scopus 로고    scopus 로고
    • Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy
    • Castets P., et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 2013, 17(5):731-744.
    • (2013) Cell Metab , vol.17 , Issue.5 , pp. 731-744
    • Castets, P.1
  • 83
    • 37549000623 scopus 로고    scopus 로고
    • Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity
    • Kumar A., et al. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 2008, 28(1):61-70.
    • (2008) Mol Cell Biol , vol.28 , Issue.1 , pp. 61-70
    • Kumar, A.1
  • 84
    • 0035709038 scopus 로고    scopus 로고
    • The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis
    • Cone R.D., et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 2001, 25(Suppl. 5):S63-S67.
    • (2001) Int J Obes Relat Metab Disord , vol.25 , pp. S63-S67
    • Cone, R.D.1
  • 85
    • 33751191841 scopus 로고    scopus 로고
    • Role of neuropeptides in appetite regulation and obesity - a review
    • Arora S., Anubhuti Role of neuropeptides in appetite regulation and obesity - a review. Neuropeptides 2006, 40(6):375-401.
    • (2006) Neuropeptides , vol.40 , Issue.6 , pp. 375-401
    • Arora, S.1    Anubhuti2
  • 86
    • 1042288138 scopus 로고    scopus 로고
    • Appetite regulation: from the gut to the hypothalamus
    • Neary N.M., Goldstone A.P., Bloom S.R. Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol (Oxf) 2004, 60(2):153-160.
    • (2004) Clin Endocrinol (Oxf) , vol.60 , Issue.2 , pp. 153-160
    • Neary, N.M.1    Goldstone, A.P.2    Bloom, S.R.3
  • 87
    • 84864927001 scopus 로고    scopus 로고
    • Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons
    • Yang S.B., et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012, 75(3):425-436.
    • (2012) Neuron , vol.75 , Issue.3 , pp. 425-436
    • Yang, S.B.1
  • 88
    • 84902329648 scopus 로고    scopus 로고
    • Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis
    • Kocalis H.E., et al. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab 2014, 3(4):394-407.
    • (2014) Mol Metab , vol.3 , Issue.4 , pp. 394-407
    • Kocalis, H.E.1
  • 89
    • 63449109316 scopus 로고    scopus 로고
    • Critical role for hypothalamic mTOR activity in energy balance
    • Mori H., et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 2009, 9(4):362-374.
    • (2009) Cell Metab , vol.9 , Issue.4 , pp. 362-374
    • Mori, H.1
  • 90
    • 0141706357 scopus 로고    scopus 로고
    • Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation
    • Matsuzaki H., et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 2003, 100(20):11285-11290.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.20 , pp. 11285-11290
    • Matsuzaki, H.1
  • 91
    • 77949858304 scopus 로고    scopus 로고
    • PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake
    • Iskandar K., et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab 2010, 298(4):E787-E798.
    • (2010) Am J Physiol Endocrinol Metab , vol.298 , Issue.4 , pp. E787-E798
    • Iskandar, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.