-
1
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell 2006, 124(3):471-484.
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
2
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149(2):274-293.
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
3
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189(4):1177-1201.
-
(2011)
Genetics
, vol.189
, Issue.4
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
4
-
-
84894523716
-
Making new contacts: the mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M., Hall M.N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014, 15(3):155-162.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, Issue.3
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
5
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013, 15(6):555-564.
-
(2013)
Nat Cell Biol
, vol.15
, Issue.6
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
6
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009, 10(5):307-318.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, Issue.5
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
7
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144(5):757-768.
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 757-768
-
-
Zinzalla, V.1
-
8
-
-
70449900928
-
TOR complex 2: a signaling pathway of its own
-
Cybulski N., Hall M.N. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 2009, 34(12):620-627.
-
(2009)
Trends Biochem Sci
, vol.34
, Issue.12
, pp. 620-627
-
-
Cybulski, N.1
Hall, M.N.2
-
9
-
-
77954235821
-
Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks C.A., Guertin D.A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010, 29(26):3733-3744.
-
(2010)
Oncogene
, vol.29
, Issue.26
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
10
-
-
84894486696
-
Nutrient regulation of the mTOR complex 1 signaling pathway
-
Kim S.G., Buel G.R., Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013, 35(6):463-473.
-
(2013)
Mol Cells
, vol.35
, Issue.6
, pp. 463-473
-
-
Kim, S.G.1
Buel, G.R.2
Blenis, J.3
-
11
-
-
33750068623
-
MTOR: translation initiation and cancer
-
Mamane Y., et al. mTOR: translation initiation and cancer. Oncogene 2006, 25(48):6416-6422.
-
(2006)
Oncogene
, vol.25
, Issue.48
, pp. 6416-6422
-
-
Mamane, Y.1
-
12
-
-
84896629473
-
Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
-
Chauvin C., et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014, 33(4):474-483.
-
(2014)
Oncogene
, vol.33
, Issue.4
, pp. 474-483
-
-
Chauvin, C.1
-
13
-
-
33745150462
-
Ribosomal protein S6 phosphorylation: from protein synthesis to cell size
-
Ruvinsky I., Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006, 31(6):342-348.
-
(2006)
Trends Biochem Sci
, vol.31
, Issue.6
, pp. 342-348
-
-
Ruvinsky, I.1
Meyuhas, O.2
-
14
-
-
2442574729
-
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
-
Raught B., et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004, 23(8):1761-1769.
-
(2004)
EMBO J
, vol.23
, Issue.8
, pp. 1761-1769
-
-
Raught, B.1
-
15
-
-
33745570504
-
The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity
-
Shahbazian D., et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006, 25(12):2781-2791.
-
(2006)
EMBO J
, vol.25
, Issue.12
, pp. 2781-2791
-
-
Shahbazian, D.1
-
16
-
-
33746413746
-
SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response
-
Peschiaroli A., et al. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006, 23(3):319-329.
-
(2006)
Mol Cell
, vol.23
, Issue.3
, pp. 319-329
-
-
Peschiaroli, A.1
-
17
-
-
0035881470
-
Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
-
Wang X., et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001, 20(16):4370-4379.
-
(2001)
EMBO J
, vol.20
, Issue.16
, pp. 4370-4379
-
-
Wang, X.1
-
18
-
-
0034535175
-
Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex
-
Wilson K.F., Wu W.J., Cerione R.A. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J Biol Chem 2000, 275(48):37307-37310.
-
(2000)
J Biol Chem
, vol.275
, Issue.48
, pp. 37307-37310
-
-
Wilson, K.F.1
Wu, W.J.2
Cerione, R.A.3
-
19
-
-
4644303065
-
SKAR is a specific target of S6 kinase 1 in cell growth control
-
Richardson C.J., et al. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 2004, 14(17):1540-1549.
-
(2004)
Curr Biol
, vol.14
, Issue.17
, pp. 1540-1549
-
-
Richardson, C.J.1
-
20
-
-
41949101770
-
SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs
-
Ma X.M., et al. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008, 133(2):303-313.
-
(2008)
Cell
, vol.133
, Issue.2
, pp. 303-313
-
-
Ma, X.M.1
-
21
-
-
34547801661
-
S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover
-
Mieulet V., et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 2007, 293(2):C712-C722.
-
(2007)
Am J Physiol Cell Physiol
, vol.293
, Issue.2
, pp. C712-C722
-
-
Mieulet, V.1
-
22
-
-
84862777192
-
The translational landscape of mTOR signalling steers cancer initiation and metastasis
-
Hsieh A.C., et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485(7396):55-61.
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 55-61
-
-
Hsieh, A.C.1
-
23
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen C.C., et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485(7396):109-113.
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 109-113
-
-
Thoreen, C.C.1
-
24
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Sci Signal 2009, 2(67):ppe24.
-
(2009)
Sci Signal
, vol.2
, Issue.67
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
25
-
-
84925968326
-
MTORC1-mediated translational elongation limits intestinal tumour initiation and growth
-
[Epub ahead of print]
-
Faller W.J., et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 2014, [Epub ahead of print].
-
(2014)
Nature
-
-
Faller, W.J.1
-
26
-
-
84861872213
-
Distinct perturbation of the translatome by the antidiabetic drug metformin
-
Larsson O., et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A 2012, 109(23):8977-8982.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.23
, pp. 8977-8982
-
-
Larsson, O.1
-
27
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M., et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013, 18(5):698-711.
-
(2013)
Cell Metab
, vol.18
, Issue.5
, pp. 698-711
-
-
Morita, M.1
-
28
-
-
84931586643
-
The race to decipher the top secrets of TOP mRNAs
-
[Epub ahead of print]
-
Meyuhas O., Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochim Biophys Acta 2014, [Epub ahead of print].
-
(2014)
Biochim Biophys Acta
-
-
Meyuhas, O.1
Kahan, T.2
-
29
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y., et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 2014, 513(7518):440-443.
-
(2014)
Nature
, vol.513
, Issue.7518
, pp. 440-443
-
-
Zhang, Y.1
-
30
-
-
84881098989
-
Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
-
Betz C., et al. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A 2013, 110(31):12526-12534.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.31
, pp. 12526-12534
-
-
Betz, C.1
-
31
-
-
77649286736
-
Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E
-
Hsieh A.C., et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010, 17(3):249-261.
-
(2010)
Cancer Cell
, vol.17
, Issue.3
, pp. 249-261
-
-
Hsieh, A.C.1
-
32
-
-
78649712949
-
MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh W.J., et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010, 29(23):3939-3951.
-
(2010)
EMBO J
, vol.29
, Issue.23
, pp. 3939-3951
-
-
Oh, W.J.1
-
33
-
-
84873488006
-
MTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts
-
Dai N., et al. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev 2013, 27(3):301-312.
-
(2013)
Genes Dev
, vol.27
, Issue.3
, pp. 301-312
-
-
Dai, N.1
-
34
-
-
84859926218
-
The mitochondrial pathways of apoptosis
-
Estaquier J., et al. The mitochondrial pathways of apoptosis. Adv Exp Med Biol 2012, 942:157-183.
-
(2012)
Adv Exp Med Biol
, vol.942
, pp. 157-183
-
-
Estaquier, J.1
-
35
-
-
70350374471
-
Mitochondrial metabolism and cancer
-
Weinberg F., Chandel N.S. Mitochondrial metabolism and cancer. Ann N Y Acad Sci 2009, 1177:66-73.
-
(2009)
Ann N Y Acad Sci
, vol.1177
, pp. 66-73
-
-
Weinberg, F.1
Chandel, N.S.2
-
36
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke S.M., et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006, 281(37):27643-27652.
-
(2006)
J Biol Chem
, vol.281
, Issue.37
, pp. 27643-27652
-
-
Schieke, S.M.1
-
37
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger C.F., et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 2008, 8(5):411-424.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 411-424
-
-
Bentzinger, C.F.1
-
38
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson V., et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009, 187(6):859-874.
-
(2009)
J Cell Biol
, vol.187
, Issue.6
, pp. 859-874
-
-
Risson, V.1
-
39
-
-
84876184914
-
Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy
-
Bentzinger C.F., et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle 2013, 3(1):p6.
-
(2013)
Skelet Muscle
, vol.3
, Issue.1
, pp. 6
-
-
Bentzinger, C.F.1
-
40
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450(7170):736-740.
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 736-740
-
-
Cunningham, J.T.1
-
41
-
-
84862965401
-
Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function
-
Romanino K., et al. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proc Natl Acad Sci U S A 2011, 108(51):20808-20813.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.51
, pp. 20808-20813
-
-
Romanino, K.1
-
42
-
-
84866873298
-
PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1
-
Goo C.K., et al. PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS ONE 2012, 7(9):pe45806.
-
(2012)
PLoS ONE
, vol.7
, Issue.9
-
-
Goo, C.K.1
-
43
-
-
54849431380
-
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
-
Polak P., et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008, 8(5):399-410.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 399-410
-
-
Polak, P.1
-
44
-
-
84902257417
-
Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1
-
Liu M., et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab 2014, 19(6):967-980.
-
(2014)
Cell Metab
, vol.19
, Issue.6
, pp. 967-980
-
-
Liu, M.1
-
45
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012, 15(5):725-738.
-
(2012)
Cell Metab
, vol.15
, Issue.5
, pp. 725-738
-
-
Hagiwara, A.1
-
46
-
-
84865503043
-
Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
-
Yuan M., et al. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 2012, 287(35):29579-29588.
-
(2012)
J Biol Chem
, vol.287
, Issue.35
, pp. 29579-29588
-
-
Yuan, M.1
-
47
-
-
84904433925
-
Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
-
Hung C.M., et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep 2014, 8(1):256-271.
-
(2014)
Cell Rep
, vol.8
, Issue.1
, pp. 256-271
-
-
Hung, C.M.1
-
48
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz C., Hall M.N. Where is mTOR and what is it doing there?. J Cell Biol 2013, 203(4):563-574.
-
(2013)
J Cell Biol
, vol.203
, Issue.4
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
49
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial endoplasmic reticulum function with insulin signaling is essential for normal glucose F homeostasis
-
Sebastian D., et al. Mitofusin 2 (Mfn2) links mitochondrial endoplasmic reticulum function with insulin signaling is essential for normal glucose F homeostasis. Proc Natl Acad Sci US A 2012, 109(14):5523-5528.
-
(2012)
Proc Natl Acad Sci US A
, vol.109
, Issue.14
, pp. 5523-5528
-
-
Sebastian, D.1
-
50
-
-
79953206927
-
Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction
-
Colombi M., et al. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 2011, 30(13):1551-1565.
-
(2011)
Oncogene
, vol.30
, Issue.13
, pp. 1551-1565
-
-
Colombi, M.1
-
51
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010, 39(2):171-183.
-
(2010)
Mol Cell
, vol.39
, Issue.2
, pp. 171-183
-
-
Duvel, K.1
-
52
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
Robitaille A.M., et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 2013, 339(6125):1320-1323.
-
(2013)
Science
, vol.339
, Issue.6125
, pp. 1320-1323
-
-
Robitaille, A.M.1
-
53
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra I., et al. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013, 339(6125):1323-1328.
-
(2013)
Science
, vol.339
, Issue.6125
, pp. 1323-1328
-
-
Ben-Sahra, I.1
-
54
-
-
84892727198
-
What we talk about when we talk about fat
-
Rosen E.D., Spiegelman B.M. What we talk about when we talk about fat. Cell 2014, 156(1-2):20-44.
-
(2014)
Cell
, vol.156
, Issue.1-2
, pp. 20-44
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
55
-
-
67649867447
-
MTOR complex 2 in adipose tissue negatively controls whole-body growth
-
Cybulski N., et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci U S A 2009, 106(24):9902-9907.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.24
, pp. 9902-9907
-
-
Cybulski, N.1
-
56
-
-
77953200528
-
Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
-
Kumar A., et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010, 59(6):1397-1406.
-
(2010)
Diabetes
, vol.59
, Issue.6
, pp. 1397-1406
-
-
Kumar, A.1
-
57
-
-
84877927481
-
MTOR in aging, metabolism, and cancer
-
Cornu M., Albert V., Hall M.N. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013, 23(1):53-62.
-
(2013)
Curr Opin Genet Dev
, vol.23
, Issue.1
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
58
-
-
84874655800
-
The multifaceted role of mTORC1 in the control of lipid metabolism
-
Ricoult S.J., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 2013, 14(3):242-251.
-
(2013)
EMBO Rep
, vol.14
, Issue.3
, pp. 242-251
-
-
Ricoult, S.J.1
Manning, B.D.2
-
59
-
-
84885187437
-
A Central role for mTOR in lipid homeostasis
-
Lamming D.W., Sabatini D.M. A Central role for mTOR in lipid homeostasis. Cell Metab 2013, 18(4):465-469.
-
(2013)
Cell Metab
, vol.18
, Issue.4
, pp. 465-469
-
-
Lamming, D.W.1
Sabatini, D.M.2
-
60
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
-
Kenerson H.L., Yeh M.M., Yeung R.S. Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 2011, 6(3):pe18075.
-
(2011)
PLoS ONE
, vol.6
, Issue.3
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
61
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies J.L., et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011, 14(1):21-32.
-
(2011)
Cell Metab
, vol.14
, Issue.1
, pp. 21-32
-
-
Yecies, J.L.1
-
62
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S., et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468(7327):1100-1104.
-
(2010)
Nature
, vol.468
, Issue.7327
, pp. 1100-1104
-
-
Sengupta, S.1
-
63
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson T.R., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146(3):408-420.
-
(2011)
Cell
, vol.146
, Issue.3
, pp. 408-420
-
-
Peterson, T.R.1
-
64
-
-
84903958633
-
Liver damage inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition
-
Umemura A., et al. Liver damage inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition. Cell Metab 2014, 20(1):133-144.
-
(2014)
Cell Metab
, vol.20
, Issue.1
, pp. 133-144
-
-
Umemura, A.1
-
65
-
-
84905977025
-
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
-
Cornu M., et al. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 2014, 111(32):11592-11599.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.32
, pp. 11592-11599
-
-
Cornu, M.1
-
66
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout A.L., et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013, 19(9):1147-1152.
-
(2013)
Nat Med
, vol.19
, Issue.9
, pp. 1147-1152
-
-
Bookout, A.L.1
-
67
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A., et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153(4):840-854.
-
(2013)
Cell
, vol.153
, Issue.4
, pp. 840-854
-
-
Csibi, A.1
-
68
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
Choo A.Y., et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010, 38(4):487-499.
-
(2010)
Mol Cell
, vol.38
, Issue.4
, pp. 487-499
-
-
Choo, A.Y.1
-
69
-
-
0037372730
-
Glutamine and glutamate - their central role in cell metabolism and function
-
Newsholme P., et al. Glutamine and glutamate - their central role in cell metabolism and function. Cell Biochem Funct 2003, 21(1):1-9.
-
(2003)
Cell Biochem Funct
, vol.21
, Issue.1
, pp. 1-9
-
-
Newsholme, P.1
-
70
-
-
0025454459
-
Total parenteral nutrition, glutamine, and tumor growth
-
Fischer J.E., Chance W.T. Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 1990, 14(4 Suppl.):86S-89S.
-
(1990)
JPEN J Parenter Enteral Nutr
, vol.14
, Issue.4
, pp. 86S-89S
-
-
Fischer, J.E.1
Chance, W.T.2
-
71
-
-
0027145124
-
Glutamine and cancer
-
Souba W.W. Glutamine and cancer. Ann Surg 1993, 218(6):715-728.
-
(1993)
Ann Surg
, vol.218
, Issue.6
, pp. 715-728
-
-
Souba, W.W.1
-
72
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008, 7(1):11-20.
-
(2008)
Cell Metab
, vol.7
, Issue.1
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
73
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335(6076):1638-1643.
-
(2012)
Science
, vol.335
, Issue.6076
, pp. 1638-1643
-
-
Lamming, D.W.1
-
74
-
-
84923277833
-
Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan
-
Lamming D.W., et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 2014, 13(5):911-917.
-
(2014)
Aging Cell
, vol.13
, Issue.5
, pp. 911-917
-
-
Lamming, D.W.1
-
75
-
-
84873378527
-
Exercise metabolism and the molecular regulation of skeletal muscle adaptation
-
Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013, 17(2):162-184.
-
(2013)
Cell Metab
, vol.17
, Issue.2
, pp. 162-184
-
-
Egan, B.1
Zierath, J.R.2
-
76
-
-
84896714585
-
Enhanced skeletal muscle for effective glucose homeostasis
-
Yang J. Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci 2014, 121:133-163.
-
(2014)
Prog Mol Biol Transl Sci
, vol.121
, pp. 133-163
-
-
Yang, J.1
-
77
-
-
84894829780
-
Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes
-
Mackenzie R.W., Elliott B.T. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes 2014, 7:55-64.
-
(2014)
Diabetes Metab Syndr Obes
, vol.7
, pp. 55-64
-
-
Mackenzie, R.W.1
Elliott, B.T.2
-
78
-
-
6344256238
-
Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy
-
Lai K.M., et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004, 24(21):9295-9304.
-
(2004)
Mol Cell Biol
, vol.24
, Issue.21
, pp. 9295-9304
-
-
Lai, K.M.1
-
79
-
-
42449104351
-
MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
-
Fraenkel M., et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008, 57(4):945-957.
-
(2008)
Diabetes
, vol.57
, Issue.4
, pp. 945-957
-
-
Fraenkel, M.1
-
80
-
-
77953218866
-
Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
-
Houde V.P., et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010, 59(6):1338-1348.
-
(2010)
Diabetes
, vol.59
, Issue.6
, pp. 1338-1348
-
-
Houde, V.P.1
-
81
-
-
48149112155
-
Sirolimus is associated with new-onset diabetes in kidney transplant recipients
-
Johnston O., et al. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008, 19(7):1411-1418.
-
(2008)
J Am Soc Nephrol
, vol.19
, Issue.7
, pp. 1411-1418
-
-
Johnston, O.1
-
82
-
-
84877577382
-
Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy
-
Castets P., et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 2013, 17(5):731-744.
-
(2013)
Cell Metab
, vol.17
, Issue.5
, pp. 731-744
-
-
Castets, P.1
-
83
-
-
37549000623
-
Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity
-
Kumar A., et al. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 2008, 28(1):61-70.
-
(2008)
Mol Cell Biol
, vol.28
, Issue.1
, pp. 61-70
-
-
Kumar, A.1
-
84
-
-
0035709038
-
The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis
-
Cone R.D., et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 2001, 25(Suppl. 5):S63-S67.
-
(2001)
Int J Obes Relat Metab Disord
, vol.25
, pp. S63-S67
-
-
Cone, R.D.1
-
85
-
-
33751191841
-
Role of neuropeptides in appetite regulation and obesity - a review
-
Arora S., Anubhuti Role of neuropeptides in appetite regulation and obesity - a review. Neuropeptides 2006, 40(6):375-401.
-
(2006)
Neuropeptides
, vol.40
, Issue.6
, pp. 375-401
-
-
Arora, S.1
Anubhuti2
-
86
-
-
1042288138
-
Appetite regulation: from the gut to the hypothalamus
-
Neary N.M., Goldstone A.P., Bloom S.R. Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol (Oxf) 2004, 60(2):153-160.
-
(2004)
Clin Endocrinol (Oxf)
, vol.60
, Issue.2
, pp. 153-160
-
-
Neary, N.M.1
Goldstone, A.P.2
Bloom, S.R.3
-
87
-
-
84864927001
-
Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons
-
Yang S.B., et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012, 75(3):425-436.
-
(2012)
Neuron
, vol.75
, Issue.3
, pp. 425-436
-
-
Yang, S.B.1
-
88
-
-
84902329648
-
Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis
-
Kocalis H.E., et al. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab 2014, 3(4):394-407.
-
(2014)
Mol Metab
, vol.3
, Issue.4
, pp. 394-407
-
-
Kocalis, H.E.1
-
89
-
-
63449109316
-
Critical role for hypothalamic mTOR activity in energy balance
-
Mori H., et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab 2009, 9(4):362-374.
-
(2009)
Cell Metab
, vol.9
, Issue.4
, pp. 362-374
-
-
Mori, H.1
-
90
-
-
0141706357
-
Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation
-
Matsuzaki H., et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 2003, 100(20):11285-11290.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.20
, pp. 11285-11290
-
-
Matsuzaki, H.1
-
91
-
-
77949858304
-
PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake
-
Iskandar K., et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab 2010, 298(4):E787-E798.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, Issue.4
, pp. E787-E798
-
-
Iskandar, K.1
|