-
1
-
-
17044386953
-
Type 2 diabetes: Principles of pathogenesis and therapy
-
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365:1333-1346.
-
(2005)
Lancet.
, vol.365
, pp. 1333-1346
-
-
Stumvoll, M.1
Goldstein, B.J.2
van Haeften, T.W.3
-
2
-
-
0031054198
-
Impaired basal glucose effectiveness in NIDDM: Contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol
-
Basu A, Caumo A, Bettini F, et al. Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes. 1997;46:421-432.
-
(1997)
Diabetes.
, vol.46
, pp. 421-432
-
-
Basu, A.1
Caumo, A.2
Bettini, F.3
-
3
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821-855.
-
(1998)
Annu Rev Biochem.
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
4
-
-
33644943620
-
AMPK: A key sensor of fuel and energy status in skeletal muscle
-
Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda). 2006;21:48-60.
-
(2006)
Physiology (Bethesda).
, vol.21
, pp. 48-60
-
-
Hardie, D.G.1
Sakamoto, K.2
-
5
-
-
67650914230
-
AMPK in health and disease
-
Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025-1078.
-
(2009)
Physiol Rev.
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
6
-
-
0036290846
-
Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate
-
Scott J, Norman D, Hawley S, Kontogiannis L, Hardie D. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol. 2002;317:309-323.
-
(2002)
J Mol Biol.
, vol.317
, pp. 309-323
-
-
Scott, J.1
Norman, D.2
Hawley, S.3
Kontogiannis, L.4
Hardie, D.5
-
7
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24:1810-1820.
-
(2005)
EMBO J.
, vol.24
, pp. 1810-1820
-
-
Sakamoto, K.1
McCarthy, A.2
Smith, D.3
-
8
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472:230-233.
-
(2011)
Nature.
, vol.472
, pp. 230-233
-
-
Xiao, B.1
Sanders, M.J.2
Underwood, E.3
-
9
-
-
33845998942
-
AS160 regulates insulin-and contraction-stimulated glucose uptake in mouse skeletal muscle
-
Kramer HF, Witczak CA, Taylor EB, Fujii N, Hirshman MF, Goodyear LJ. AS160 regulates insulin-and contraction-stimulated glucose uptake in mouse skeletal muscle. J Biol Chem. 2006;281:31478-31485.
-
(2006)
J Biol Chem.
, vol.281
, pp. 31478-31485
-
-
Kramer, H.F.1
Witczak, C.A.2
Taylor, E.B.3
Fujii, N.4
Hirshman, M.F.5
Goodyear, L.J.6
-
10
-
-
34547438354
-
Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport
-
Cartee GD, Wojtaszewski JF. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab. 2007;32:557-566.
-
(2007)
Appl Physiol Nutr Metab.
, vol.32
, pp. 557-566
-
-
Cartee, G.D.1
Wojtaszewski, J.F.2
-
11
-
-
78650897555
-
Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking
-
Chen S, Wasserman DH, MacKintosh C, Sakamoto K. Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab. 2011;13:68-79.
-
(2011)
Cell Metab.
, vol.13
, pp. 68-79
-
-
Chen, S.1
Wasserman, D.H.2
McKintosh, C.3
Sakamoto, K.4
-
12
-
-
33749395733
-
A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160
-
Ramm G, Larance M, Guilhaus M, James DE. A role for 14-3-3 in insulin-stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J Biol Chem. 2006;281:29174-29180.
-
(2006)
J Biol Chem.
, vol.281
, pp. 29174-29180
-
-
Ramm, G.1
Larance, M.2
Guilhaus, M.3
James, D.E.4
-
13
-
-
0037677096
-
Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
-
Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599-14602.
-
(2003)
J Biol Chem.
, vol.278
, pp. 14599-14602
-
-
Sano, H.1
Kane, S.2
Sano, E.3
-
14
-
-
50349099779
-
Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic
-
Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab. 2008;295:E29-E37.
-
(2008)
Am J Physiol Endocrinol Metab.
, vol.295
-
-
Sakamoto, K.1
Holman, G.D.2
-
15
-
-
33747039008
-
Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle
-
Kramer HF, Witczak CA, Fujii N, et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes. 2006;55:2067-2076.
-
(2006)
Diabetes.
, vol.55
, pp. 2067-2076
-
-
Kramer, H.F.1
Witczak, C.A.2
Fujii, N.3
-
16
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167-1174.
-
(2001)
J Clin Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
17
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120: 2355-2369.
-
(2010)
J Clin Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hébrard, S.2
Leclerc, J.3
-
18
-
-
0036299982
-
Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes
-
Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002;51:2074-2081.
-
(2002)
Diabetes.
, vol.51
, pp. 2074-2081
-
-
Musi, N.1
Hirshman, M.F.2
Nygren, J.3
-
20
-
-
84878871217
-
Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding
-
Turner N, Kowalski GM, Leslie SJ, et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia. 2013;56:1638-1648.
-
(2013)
Diabetologia.
, vol.56
, pp. 1638-1648
-
-
Turner, N.1
Kowalski, G.M.2
Leslie, S.J.3
-
21
-
-
0036068327
-
Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects
-
Kim YB, Ciaraldi TP, Kong A, et al. Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes. 2002;51:443-448.
-
(2002)
Diabetes.
, vol.51
, pp. 443-448
-
-
Kim, Y.B.1
Ciaraldi, T.P.2
Kong, A.3
-
22
-
-
33847399214
-
Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study
-
Sriwijitkamol A, Coletta DK, Wajcberg E, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes. 2007;56:836-848.
-
(2007)
Diabetes.
, vol.56
, pp. 836-848
-
-
Sriwijitkamol, A.1
Coletta, D.K.2
Wajcberg, E.3
-
23
-
-
57349171409
-
Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways
-
Jing M, Cheruvu VK, Ismail-Beigi F. Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. Am J Physiol Cell Physiol. 2008;295:C1071-C1082.
-
(2008)
Am J Physiol Cell Physiol.
, vol.295
-
-
Jing, M.1
Cheruvu, V.K.2
Ismail-Beigi, F.3
-
24
-
-
0029008770
-
Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle
-
Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol. 1995;268:E987-E995.
-
(1995)
Am J Physiol.
, vol.268
-
-
Goodyear, L.J.1
Giorgino, F.2
Balon, T.W.3
Condorelli, G.4
Smith, R.J.5
-
25
-
-
0028914037
-
Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle
-
Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995;361:51-54.
-
(1995)
FEBS Lett.
, vol.361
, pp. 51-54
-
-
Lee, A.D.1
Hansen, P.A.2
Holloszy, J.O.3
-
26
-
-
0029064123
-
Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin
-
Lund S, Holman GD, Schmitz O, Pedersen, O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995;92:5817-5821.
-
(1995)
Proc Natl Acad Sci U S A.
, vol.92
, pp. 5817-5821
-
-
Lund, S.1
Holman, G.D.2
Schmitz, O.3
Pedersen, O.4
-
28
-
-
33751167638
-
Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle
-
Sakamoto K, Arnolds DE, Fujii N, Kramer HF, Hirshman MF, Goodyear LJ. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am J Physiol Endocrinol Metab. 2006;291:E1031-E1037.
-
(2006)
Am J Physiol Endocrinol Metab.
, vol.291
-
-
Sakamoto, K.1
Arnolds, D.E.2
Fujii, N.3
Kramer, H.F.4
Hirshman, M.F.5
Goodyear, L.J.6
-
29
-
-
0025904870
-
Stimulation of glucose transport in skeletal muscle by hypoxia
-
Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol. 1991;70:1593-1600.
-
(1991)
J Appl Physiol.
, vol.70
, pp. 1593-1600
-
-
Cartee, G.D.1
Douen, A.G.2
Ramlal, T.3
Klip, A.4
Holloszy, J.O.5
-
30
-
-
0029066976
-
Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle
-
Azevedo JL Jr, Carey JO, Pories WJ, Morris PG, Dohm GL. Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes. 1995;44:695-698.
-
(1995)
Diabetes.
, vol.44
, pp. 695-698
-
-
Azevedo Jr., J.L.1
Carey, J.O.2
Pories, W.J.3
Morris, P.G.4
Dohm, G.L.5
-
31
-
-
0032966874
-
Effect of AMPK activation on muscle glucose metabolism in conscious rats
-
Bergeron R, Russell RR 3rd, Young LH, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999;276:E938-E944.
-
(1999)
Am J Physiol.
, vol.276
-
-
Bergeron, R.1
Russell III, R.R.2
Young, L.H.3
-
32
-
-
0031849916
-
Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998;47:1369-1373.
-
(1998)
Diabetes.
, vol.47
, pp. 1369-1373
-
-
Hayashi, T.1
Hirshman, M.F.2
Kurth, E.J.3
Winder, W.W.4
Goodyear, L.J.5
-
33
-
-
78649961357
-
Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain
-
Chakraborty A, Koldobskiy MA, Bello NT, et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell. 2010;143:897-910.
-
(2010)
Cell.
, vol.143
, pp. 897-910
-
-
Chakraborty, A.1
Koldobskiy, M.A.2
Bello, N.T.3
-
34
-
-
0035039274
-
AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise
-
Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50:921-927.
-
(2001)
Diabetes.
, vol.50
, pp. 921-927
-
-
Musi, N.1
Fujii, N.2
Hirshman, M.F.3
-
35
-
-
0026572747
-
Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: A balanced overview
-
DeFronzo RA. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia. 1992;35:389-397.
-
(1992)
Diabetologia.
, vol.35
, pp. 389-397
-
-
DeFronzo, R.A.1
-
36
-
-
0942265681
-
AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes
-
Højlund K, Mustard KJ, Staehr P, et al. AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;286: E239-E244.
-
(2004)
Am J Physiol Endocrinol Metab.
, vol.286
-
-
Højlund, K.1
Mustard, K.J.2
Staehr, P.3
-
37
-
-
57849090443
-
The glycogen-binding domain on the AMPK # subunit allows the kinase to act as a glycogen sensor
-
McBride A, Ghilagabe S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK # subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9:23-34.
-
(2009)
Cell Metab.
, vol.9
, pp. 23-34
-
-
McBride, A.1
Ghilagabe, S.2
Nikolaev, A.3
Hardie, D.G.4
-
38
-
-
0037326307
-
Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models
-
McBride A, Ghilagaber S, Nikolaev A, Hardie DG. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans. 2003;31:216-219.
-
(2003)
Biochem Soc Trans.
, vol.31
, pp. 216-219
-
-
McBride, A.1
Ghilagaber, S.2
Nikolaev, A.3
Hardie, D.G.4
-
39
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle
-
Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001;7:1085-1094.
-
(2001)
Mol Cell.
, vol.7
, pp. 1085-1094
-
-
Mu, J.1
Brozinick Jr., J.T.2
Valladares, O.3
Bucan, M.4
Birnbaum, M.J.5
-
40
-
-
58149348480
-
Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice
-
Fujii N, Ho RC, Manabe Y, et al. Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes. 2008;57:2958-2966.
-
(2008)
Diabetes.
, vol.57
, pp. 2958-2966
-
-
Fujii, N.1
Ho, R.C.2
Manabe, Y.3
-
41
-
-
63849142460
-
AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: Necessary and/or sufficient?
-
Jensen TE, Wojtaszewski JFP, Richter EA. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiol (Oxf). 2009;196:155-174.
-
(2009)
Acta Physiol (Oxf).
, vol.196
, pp. 155-174
-
-
Jensen, T.E.1
Wojtaszewski, J.F.P.2
Richter, E.A.3
-
42
-
-
79952395789
-
Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle
-
Hunter RW, Treebak JT, Wojtaszewski JF, Sakamoto, K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes. 2011;60:766-774.
-
(2011)
Diabetes.
, vol.60
, pp. 766-774
-
-
Hunter, R.W.1
Treebak, J.T.2
Wojtaszewski, J.F.3
Sakamoto, K.4
-
43
-
-
0032954067
-
Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes
-
Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1192-1197.
-
(1999)
Diabetes.
, vol.48
, pp. 1192-1197
-
-
Kennedy, J.W.1
Hirshman, M.F.2
Gervino, E.V.3
-
44
-
-
66349098674
-
Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling
-
Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Sci Acad U S A. 2009;106:7004-7009.
-
(2009)
Proc Natl Sci Acad U S A.
, vol.106
, pp. 7004-7009
-
-
Gonzalez, E.1
McGraw, T.E.2
-
45
-
-
78649944576
-
Insulin signaling: Inositol phosphates get into the Akt
-
Manning BD. Insulin signaling: inositol phosphates get into the Akt. Cell. 2010;143(6):861-863.
-
(2010)
Cell.
, vol.143
, Issue.6
, pp. 861-863
-
-
Manning, B.D.1
-
46
-
-
0034141355
-
The regulation of AMP-activated protein kinase by phosphorylation
-
Stein SC, Woods A, Jone NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000;345:437-443.
-
(2000)
Biochem J.
, vol.345
, pp. 437-443
-
-
Stein, S.C.1
Woods, A.2
Jone, N.A.3
Davison, M.D.4
Carling, D.5
-
47
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-[beta] is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin-dependent protein kinase kinase-[beta] is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2:9-19.
-
(2005)
Cell Metab.
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
-
48
-
-
33744531762
-
DSD-1-proteoglycan/phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues
-
Faissner A, Heck N, Dobbertin A, Garwood J. DSD-1-proteoglycan/phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues. Adv Exp Med Biol. 2006;557:25-53.
-
(2006)
Adv Exp Med Biol.
, vol.557
, pp. 25-53
-
-
Faissner, A.1
Heck, N.2
Dobbertin, A.3
Garwood, J.4
-
49
-
-
6344256238
-
Conditional activation of AKT in adult skeletal muscle induces rapid hypertrophy
-
Lai KM, Gonzalez M, Poueymirou WT, et al. Conditional activation of AKT in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol. 2004;24:9295-9304.
-
(2004)
Mol Cell Biol.
, vol.24
, pp. 9295-9304
-
-
Lai, K.M.1
Gonzalez, M.2
Poueymirou, W.T.3
-
50
-
-
85047693348
-
Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta
-
Garofalo RS, Orena SJ, Rafidi K, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest. 2003;112:197-208.
-
(2003)
J Clin Invest.
, vol.112
, pp. 197-208
-
-
Garofalo, R.S.1
Orena, S.J.2
Rafidi, K.3
-
51
-
-
20044382806
-
Role for Akt3/protein kinase Bgamma in attainment of normal brain size
-
Easton RM, Cho H, Roovers K, et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol. 2005;25: 1869-1878.
-
(2005)
Mol Cell Biol.
, vol.25
, pp. 1869-1878
-
-
Easton, R.M.1
Cho, H.2
Roovers, K.3
-
52
-
-
1342342993
-
PDK1, the master regulator of AGC kinase signal transduction
-
Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 2004;15:161-170.
-
(2004)
Semin Cell Dev Biol.
, vol.15
, pp. 161-170
-
-
Mora, A.1
Komander, D.2
van Aalten, D.M.3
Alessi, D.R.4
-
53
-
-
34249738710
-
Resistance exercise and insulin regulate AS160 and interaction with 14-3-3 in human skeletal muscle
-
Howlett KF, Sakamoto K, Garnham A, Cameron-Smith D, Hargreave M. Resistance exercise and insulin regulate AS160 and interaction with 14-3-3 in human skeletal muscle. Diabetes. 2007;56:1608-1614.
-
(2007)
Diabetes.
, vol.56
, pp. 1608-1614
-
-
Howlett, K.F.1
Sakamoto, K.2
Garnham, A.3
Cameron-Smith, D.4
Hargreave, M.5
-
54
-
-
0029908016
-
Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
-
Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271:31372-31378.
-
(1996)
J Biol Chem.
, vol.271
, pp. 31372-31378
-
-
Kohn, A.D.1
Summers, S.A.2
Birnbaum, M.J.3
Roth, R.A.4
-
55
-
-
84857934301
-
Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1
-
Lu M, Wan M, Leavens KF, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18: 388-395.
-
(2012)
Nat Med.
, vol.18
, pp. 388-395
-
-
Lu, M.1
Wan, M.2
Leavens, K.F.3
-
56
-
-
0035500813
-
Insulin resistance: A phosphorylation-based uncoupling of insulin signaling
-
Zick Y. Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol. 2001;11:437-441.
-
(2001)
Trends Cell Biol.
, vol.11
, pp. 437-441
-
-
Zick, Y.1
-
57
-
-
0035432971
-
Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C activities
-
Tremblay F, Lavigne C, Jacques H, Marette A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C activities. Diabetes. 2001;50:1901-1910.
-
(2001)
Diabetes.
, vol.50
, pp. 1901-1910
-
-
Tremblay, F.1
Lavigne, C.2
Jacques, H.3
Marette, A.4
-
58
-
-
20044389885
-
Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects
-
Karlsson HK, Zierath JR, Kane S, Krook A, Lienhard GE, Wallberg-Henriksson H. Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes. 2005;54:1692-1697.
-
(2005)
Diabetes.
, vol.54
, pp. 1692-1697
-
-
Karlsson, H.K.1
Zierath, J.R.2
Kane, S.3
Krook, A.4
Lienhard, G.E.5
Wallberg-Henriksson, H.6
-
59
-
-
0035368548
-
Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
-
Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292:1728-1731.
-
(2001)
Science.
, vol.292
, pp. 1728-1731
-
-
Cho, H.1
Mu, J.2
Kim, J.K.3
-
60
-
-
2542528670
-
A family with severe insulin resistance and diabetes due to a mutation in AKT2
-
George S, Rochford JJ, Wolfrum C, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304:1325-1328.
-
(2004)
Science.
, vol.304
, pp. 1325-1328
-
-
George, S.1
Rochford, J.J.2
Wolfrum, C.3
-
62
-
-
34247391898
-
Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo
-
Calleja V, Alcor D, Laguerre M, et al. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol. 2007;5:e95.
-
(2007)
PLoS Biol.
, vol.5
-
-
Calleja, V.1
Alcor, D.2
Laguerre, M.3
-
63
-
-
78049389339
-
Protein pyrophosphorylation by diphosphoinositol pentakisphosphate (InsP7)
-
Werner JK Jr, Speed T, Bhandari R. Protein pyrophosphorylation by diphosphoinositol pentakisphosphate (InsP7). Methods Mol Biol. 2009;645:87-102.
-
(2009)
Methods Mol Biol.
, vol.645
, pp. 87-102
-
-
Werner Jr., J.K.1
Speed, T.2
Bhandari, R.3
-
64
-
-
70849090308
-
Inositol pyrophosphates: Structure, enzymology and function
-
Barker CJ, Illies C, Gaboardi GC, Berggren PO. Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci. 2009;66: 3851-3871.
-
(2009)
Cell Mol Life Sci.
, vol.66
, pp. 3851-3871
-
-
Barker, C.J.1
Illies, C.2
Gaboardi, G.C.3
Berggren, P.O.4
-
65
-
-
12544255427
-
Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death
-
Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH. Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem. 2005;280:1634-1640.
-
(2005)
J Biol Chem.
, vol.280
, pp. 1634-1640
-
-
Nagata, E.1
Luo, H.R.2
Saiardi, A.3
Bae, B.I.4
Suzuki, N.5
Snyder, S.H.6
-
66
-
-
0035914367
-
Identification and characterization of a novel inositol hexakisphosphate kinase
-
Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH. Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem. 2001;276:39179-39185.
-
(2001)
J Biol Chem.
, vol.276
, pp. 39179-39185
-
-
Saiardi, A.1
Nagata, E.2
Luo, H.R.3
Snowman, A.M.4
Snyder, S.H.5
-
67
-
-
33750908045
-
Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: A randomized controlled trial
-
Weiss EP, Racette SB, Villareal DT, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr. 2006;84:1033-1042.
-
(2006)
Am J Clin Nutr.
, vol.84
, pp. 1033-1042
-
-
Weiss, E.P.1
Racette, S.B.2
Villareal, D.T.3
-
68
-
-
67449093365
-
Characterization of a selective inhibitor of inositol hexakisphosphate kinases: Use in defining biological roles and metabolic relationships of inositol pyrophosphates
-
Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP. Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem. 2009;284:10571-10582.
-
(2009)
J Biol Chem.
, vol.284
, pp. 10571-10582
-
-
Padmanabhan, U.1
Dollins, D.E.2
Fridy, P.C.3
York, J.D.4
Downes, C.P.5
-
69
-
-
40649083560
-
Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis
-
Bhandari R, Juluri KR, Resnick AC, Snyder SH. Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci U S A. 2008;105:2349-2353.
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, pp. 2349-2353
-
-
Bhandari, R.1
Juluri, K.R.2
Resnick, A.C.3
Snyder, S.H.4
-
70
-
-
0031859919
-
Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: Potential role of glycogen
-
Reynolds T 4th, Brozinick JT, Rogers MA, Cushman SW. Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: potential role of glycogen. Am J Physiol. 1998;274:E773-E778.
-
(1998)
Am J Physiol.
, vol.274
-
-
Reynolds IV, T.1
Brozinick, J.T.2
Rogers, M.A.3
Cushman, S.W.4
-
71
-
-
0029587224
-
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
-
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785-789.
-
(1995)
Nature.
, vol.378
, pp. 785-789
-
-
Cross, D.A.1
Alessi, D.R.2
Cohen, P.3
Andjelkovich, M.4
Hemmings, B.A.5
-
72
-
-
42449097289
-
Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
-
Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367-377.
-
(2008)
Nat Rev Mol Cell Biol.
, vol.9
, pp. 367-377
-
-
Guilherme, A.1
Virbasius, J.V.2
Puri, V.3
Czech, M.P.4
-
73
-
-
0036398986
-
The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes
-
Kaidanovich O, Eldar-Finkelman H. The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002;6:555-561.
-
(2002)
Expert Opin Ther Targets.
, vol.6
, pp. 555-561
-
-
Kaidanovich, O.1
Eldar-Finkelman, H.2
-
74
-
-
0038624395
-
Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2
-
Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003;17: 1352-1365.
-
(2003)
Genes Dev.
, vol.17
, pp. 1352-1365
-
-
Peng, X.D.1
Xu, P.Z.2
Chen, M.L.3
-
75
-
-
0033525870
-
Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene
-
Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283:1544-1548.
-
(1999)
Science.
, vol.283
, pp. 1544-1548
-
-
Elchebly, M.1
Payette, P.2
Michaliszyn, E.3
-
76
-
-
36448947507
-
Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells
-
Illies C, Gromada J, Fiume R, et al. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 2007;318:1299-1302.
-
(2007)
Science.
, vol.318
, pp. 1299-1302
-
-
Illies, C.1
Gromada, J.2
Fiume, R.3
-
77
-
-
33646342516
-
Impact of differences in fasting glucose and glucose tolerance on the hyperbolic relationship between insulin sensitivity and insulin responses
-
Utzschneider KM, Prigeon RL, Carr DB, et al. Impact of differences in fasting glucose and glucose tolerance on the hyperbolic relationship between insulin sensitivity and insulin responses. Diabetes Care. 2006;29:356-362.
-
(2006)
Diabetes Care.
, vol.29
, pp. 356-362
-
-
Utzschneider, K.M.1
Prigeon, R.L.2
Carr, D.B.3
-
78
-
-
0034637103
-
Inhibition of adipogenesis by Wnt signaling
-
Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289:950-953.
-
(2000)
Science.
, vol.289
, pp. 950-953
-
-
Ross, S.E.1
Hemati, N.2
Longo, K.A.3
-
79
-
-
38649091396
-
Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice
-
Izumiya Y, Hopkins T, Morris C, et al. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 2008;7:159-172.
-
(2008)
Cell Metab.
, vol.7
, pp. 159-172
-
-
Izumiya, Y.1
Hopkins, T.2
Morris, C.3
-
80
-
-
0038700565
-
Akt kinases in breast cancer and the results of adjuvant therapy
-
Stål O, Pérez-Tenorio G, Akerberg L, et al. Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res. 2003;5: R37-R44.
-
(2003)
Breast Cancer Res.
, vol.5
-
-
Stål, O.1
Pérez-Tenorio, G.2
Akerberg, L.3
-
81
-
-
4944249733
-
Deregulated Akt3 activity promotes development of malignant melanoma
-
Stahl JM, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64: 7002-7010.
-
(2004)
Cancer Res.
, vol.64
, pp. 7002-7010
-
-
Stahl, J.M.1
Sharma, A.2
Cheung, M.3
-
82
-
-
66449117931
-
AMP-activated protein kinase promotes human prostate cancer cell growth and survival
-
Park HU, Suy S, Danner M, et al. AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther. 2009;8:733-741.
-
(2009)
Mol Cancer Ther.
, vol.8
, pp. 733-741
-
-
Park, H.U.1
Suy, S.2
Danner, M.3
-
83
-
-
78649302320
-
Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis
-
Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2010;3:1451-1461.
-
(2010)
Cancer Prev Res (Phila).
, vol.3
, pp. 1451-1461
-
-
Decensi, A.1
Puntoni, M.2
Goodwin, P.3
|