메뉴 건너뛰기




Volumn 40, Issue 6, 2015, Pages 318-327

Understanding intramembrane proteolysis: From protein dynamics to reaction kinetics

Author keywords

Conformational dynamics; Intramembrane proteolysis protease; Presenilin; Rhomboid; Transmembrane helix; secretase

Indexed keywords

ALPHA SECRETASE; AMYLOID PRECURSOR PROTEIN; LIPID; MEMBRANE PROTEIN; PRESENILIN; PROTEINASE; RHOMBOID PROTEASE; SIGNAL PEPTIDE PEPTIDASE; SIGNAL PEPTIDE PEPTIDASE LIKE PROTEASE; UNCLASSIFIED DRUG; PEPTIDE HYDROLASE; SECRETASE;

EID: 84929514064     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.04.001     Document Type: Review
Times cited : (87)

References (87)
  • 1
    • 79955663580 scopus 로고    scopus 로고
    • Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing
    • Lichtenthaler S.F., et al. Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing. J. Neurochem. 2011, 117:779-796.
    • (2011) J. Neurochem. , vol.117 , pp. 779-796
    • Lichtenthaler, S.F.1
  • 2
    • 84875871162 scopus 로고    scopus 로고
    • Structural and mechanistic principles of intramembrane proteolysis - lessons from rhomboids
    • Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis - lessons from rhomboids. FEBS J. 2013, 280:1579-1603.
    • (2013) FEBS J. , vol.280 , pp. 1579-1603
    • Strisovsky, K.1
  • 3
    • 84869414387 scopus 로고    scopus 로고
    • Processive proteolysis by gamma-secretase and the mechanism of Alzheimer's disease
    • Wolfe M.S. Processive proteolysis by gamma-secretase and the mechanism of Alzheimer's disease. Biol. Chem. 2012, 393:899-905.
    • (2012) Biol. Chem. , vol.393 , pp. 899-905
    • Wolfe, M.S.1
  • 4
    • 84888428810 scopus 로고    scopus 로고
    • Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles
    • Vinothkumar K.R., Freeman M. Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Curr. Opin. Struct. Biol. 2013, 23:851-858.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 851-858
    • Vinothkumar, K.R.1    Freeman, M.2
  • 5
    • 84890441584 scopus 로고    scopus 로고
    • Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1
    • Manolaridis I., et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013, 504:301-305.
    • (2013) Nature , vol.504 , pp. 301-305
    • Manolaridis, I.1
  • 6
    • 84865389259 scopus 로고    scopus 로고
    • Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins
    • Fleig L., et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 2012, 47:558-569.
    • (2012) Mol. Cell , vol.47 , pp. 558-569
    • Fleig, L.1
  • 7
    • 84919466648 scopus 로고    scopus 로고
    • The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance
    • Avci D., et al. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 2014, 56:630-640.
    • (2014) Mol. Cell , vol.56 , pp. 630-640
    • Avci, D.1
  • 8
    • 84885100166 scopus 로고    scopus 로고
    • The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes
    • Chan E.Y., McQuibban G.A. The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes. Biochim. Biophys. Acta 2013, 1828:2916-2925.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2916-2925
    • Chan, E.Y.1    McQuibban, G.A.2
  • 9
    • 33750886311 scopus 로고    scopus 로고
    • Crystal structure of a rhomboid family intramembrane protease
    • Wang Y., et al. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444:179-183.
    • (2006) Nature , vol.444 , pp. 179-183
    • Wang, Y.1
  • 10
    • 36849037428 scopus 로고    scopus 로고
    • Structure of a site-2 protease family intramembrane metalloprotease
    • Feng L., et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 2007, 318:1608-1612.
    • (2007) Science , vol.318 , pp. 1608-1612
    • Feng, L.1
  • 11
    • 79960918054 scopus 로고    scopus 로고
    • The crystal structure of GXGD membrane protease FlaK
    • Hu J., et al. The crystal structure of GXGD membrane protease FlaK. Nature 2011, 475:528-531.
    • (2011) Nature , vol.475 , pp. 528-531
    • Hu, J.1
  • 12
    • 84871725890 scopus 로고    scopus 로고
    • Structure of a presenilin family intramembrane aspartate protease
    • Li X., et al. Structure of a presenilin family intramembrane aspartate protease. Nature 2013, 493:56-61.
    • (2013) Nature , vol.493 , pp. 56-61
    • Li, X.1
  • 13
    • 84904560883 scopus 로고    scopus 로고
    • Three-dimensional structure of human γ-secretase
    • Lu P., et al. Three-dimensional structure of human γ-secretase. Nature 2014, 512:166-170.
    • (2014) Nature , vol.512 , pp. 166-170
    • Lu, P.1
  • 14
    • 84890087383 scopus 로고    scopus 로고
    • Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity
    • Dickey S.W., et al. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155:1270-1281.
    • (2013) Cell , vol.155 , pp. 1270-1281
    • Dickey, S.W.1
  • 15
    • 84924940607 scopus 로고    scopus 로고
    • Intramembrane proteolysis of amyloid precursor protein by gamma-secretase is an unusually slow process
    • (in press)
    • Kamp F., et al. Intramembrane proteolysis of amyloid precursor protein by gamma-secretase is an unusually slow process. Biophys. J. 2015, (in press).
    • (2015) Biophys. J.
    • Kamp, F.1
  • 16
    • 84906823305 scopus 로고    scopus 로고
    • Allosteric regulation of rhomboid intramembrane proteolysis
    • Arutyunova E., et al. Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J. 2014, 33:1869-1881.
    • (2014) EMBO J. , vol.33 , pp. 1869-1881
    • Arutyunova, E.1
  • 17
    • 0036898485 scopus 로고    scopus 로고
    • Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases
    • Haass C., Steiner H. Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 2002, 12:556-562.
    • (2002) Trends Cell Biol. , vol.12 , pp. 556-562
    • Haass, C.1    Steiner, H.2
  • 18
    • 84863939887 scopus 로고    scopus 로고
    • Presenilins and γ-secretase: structure, function, and role in Alzheimer disease
    • De Strooper B., et al. Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2:a006304.
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2 , pp. a006304
    • De Strooper, B.1
  • 19
    • 84885092137 scopus 로고    scopus 로고
    • Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases
    • Voss M., et al. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828:2828-2839.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2828-2839
    • Voss, M.1
  • 20
    • 35948982252 scopus 로고    scopus 로고
    • Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases
    • Lemberg M.K., Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007, 17:1634-1646.
    • (2007) Genome Res. , vol.17 , pp. 1634-1646
    • Lemberg, M.K.1    Freeman, M.2
  • 21
    • 84885153827 scopus 로고    scopus 로고
    • Biochemical and structural insights into intramembrane metalloprotease mechanisms
    • Kroos L., Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. Biochim. Biophys. Acta 2013, 1828:2873-2885.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2873-2885
    • Kroos, L.1    Akiyama, Y.2
  • 22
    • 43049163813 scopus 로고    scopus 로고
    • Substrate specificity of gamma-secretase and other intramembrane proteases
    • Beel A.J., Sanders C.R. Substrate specificity of gamma-secretase and other intramembrane proteases. Cell. Mol. Life Sci. 2008, 65:1311-1334.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 1311-1334
    • Beel, A.J.1    Sanders, C.R.2
  • 23
    • 79959636033 scopus 로고    scopus 로고
    • The many substrates of presenilin/gamma-secretase
    • Haapasalo A., Kovacs D.M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 2011, 25:3-28.
    • (2011) J. Alzheimers Dis. , vol.25 , pp. 3-28
    • Haapasalo, A.1    Kovacs, D.M.2
  • 24
    • 54949110552 scopus 로고    scopus 로고
    • Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements
    • Hemming M.L., et al. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol. 2008, 6:e257.
    • (2008) PLoS Biol. , vol.6 , pp. e257
    • Hemming, M.L.1
  • 25
    • 34248371981 scopus 로고    scopus 로고
    • Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease
    • Akiyama Y., Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 2007, 64:1028-1037.
    • (2007) Mol. Microbiol. , vol.64 , pp. 1028-1037
    • Akiyama, Y.1    Maegawa, S.2
  • 26
    • 72149124813 scopus 로고    scopus 로고
    • Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates
    • Strisovsky K., et al. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 2009, 36:1048-1059.
    • (2009) Mol. Cell , vol.36 , pp. 1048-1059
    • Strisovsky, K.1
  • 27
    • 79955526700 scopus 로고    scopus 로고
    • Mammalian EGF receptor activation by the rhomboid protease RHBDL2
    • Adrain C., et al. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011, 12:421-427.
    • (2011) EMBO Rep. , vol.12 , pp. 421-427
    • Adrain, C.1
  • 28
    • 84911500001 scopus 로고    scopus 로고
    • Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures
    • Zoll S., et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33:2408-2421.
    • (2014) EMBO J. , vol.33 , pp. 2408-2421
    • Zoll, S.1
  • 29
    • 80054967217 scopus 로고    scopus 로고
    • Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site
    • Grossman M., et al. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat. Struct. Mol. Biol. 2011, 18:1102-1108.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1102-1108
    • Grossman, M.1
  • 30
    • 84861194622 scopus 로고    scopus 로고
    • The mechanism of gamma-secretase dysfunction in familial Alzheimer disease
    • Chavez-Gutierrez L., et al. The mechanism of gamma-secretase dysfunction in familial Alzheimer disease. EMBO J. 2012, 31:2261-2274.
    • (2012) EMBO J. , vol.31 , pp. 2261-2274
    • Chavez-Gutierrez, L.1
  • 31
    • 84872812991 scopus 로고    scopus 로고
    • γ-Secretase-dependent proteolysis of transmembrane domain of amyloid precursor protein: successive tri- and tetrapeptide release in amyloid β-protein production
    • Takami M., Funamoto S. γ-Secretase-dependent proteolysis of transmembrane domain of amyloid precursor protein: successive tri- and tetrapeptide release in amyloid β-protein production. Int. J. Alzheimers Dis. 2012, 2012:591392.
    • (2012) Int. J. Alzheimers Dis. , vol.2012 , pp. 591392
    • Takami, M.1    Funamoto, S.2
  • 32
    • 84894423032 scopus 로고    scopus 로고
    • Gamma-secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment
    • Matsumura N., et al. Gamma-secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J. Biol. Chem. 2014, 289:5109-5121.
    • (2014) J. Biol. Chem. , vol.289 , pp. 5109-5121
    • Matsumura, N.1
  • 33
    • 84892631959 scopus 로고    scopus 로고
    • Characterization of intermediate steps in amyloid beta (A beta) production under near-native conditions
    • Olsson F., et al. Characterization of intermediate steps in amyloid beta (A beta) production under near-native conditions. J. Biol. Chem. 2014, 289:1540-1550.
    • (2014) J. Biol. Chem. , vol.289 , pp. 1540-1550
    • Olsson, F.1
  • 34
    • 77952947184 scopus 로고    scopus 로고
    • Beta-amyloid precursor protein mutants respond to gamma-secretase modulators
    • Page R.M., et al. Beta-amyloid precursor protein mutants respond to gamma-secretase modulators. J. Biol. Chem. 2010, 285:17798-17810.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17798-17810
    • Page, R.M.1
  • 35
    • 84881366852 scopus 로고    scopus 로고
    • Alzheimer's disease mutations in APP but not gamma-secretase modulators affect epsilon-cleavage-dependent AICD production
    • Dimitrov M., et al. Alzheimer's disease mutations in APP but not gamma-secretase modulators affect epsilon-cleavage-dependent AICD production. Nat. Commun. 2013, 4:2246.
    • (2013) Nat. Commun. , vol.4 , pp. 2246
    • Dimitrov, M.1
  • 36
    • 84909619800 scopus 로고    scopus 로고
    • Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ
    • Fernandez M.A., et al. Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ. J. Biol. Chem. 2014, 289:31043-31052.
    • (2014) J. Biol. Chem. , vol.289 , pp. 31043-31052
    • Fernandez, M.A.1
  • 37
    • 79955667485 scopus 로고    scopus 로고
    • The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
    • Meissner C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117:856-867.
    • (2011) J. Neurochem. , vol.117 , pp. 856-867
    • Meissner, C.1
  • 38
    • 77957231785 scopus 로고    scopus 로고
    • Induced fit, conformational selection and independent dynamic segments: an extended view of binding events
    • Csermely P., et al. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 2010, 35:539-546.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 539-546
    • Csermely, P.1
  • 39
    • 67650069254 scopus 로고    scopus 로고
    • Interaction and conformational dynamics of membrane-spanning protein helices
    • Langosch D., Arkin I.T. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci. 2009, 18:1343-1358.
    • (2009) Protein Sci. , vol.18 , pp. 1343-1358
    • Langosch, D.1    Arkin, I.T.2
  • 40
    • 79959429680 scopus 로고    scopus 로고
    • + channels, and integrin receptors
    • + channels, and integrin receptors. Annu. Rev. Biochem. 2011, 80:211-237.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 211-237
    • Grigoryan, G.1
  • 41
    • 84859912916 scopus 로고    scopus 로고
    • Membrane protein structure and dynamics from NMR spectroscopy
    • Hong M., et al. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 2012, 63:1-24.
    • (2012) Annu. Rev. Phys. Chem. , vol.63 , pp. 1-24
    • Hong, M.1
  • 42
    • 84885097856 scopus 로고    scopus 로고
    • Toward the structure of presenilin/gamma-secretase and presenilin homologs
    • Wolfe M.S. Toward the structure of presenilin/gamma-secretase and presenilin homologs. Biochim. Biophys. Acta 2013, 1828:2886-2897.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2886-2897
    • Wolfe, M.S.1
  • 43
    • 84878256048 scopus 로고    scopus 로고
    • Structural biology of presenilins and signal peptide peptidases
    • Tomita T., Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J. Biol. Chem. 2013, 288:14673-14680.
    • (2013) J. Biol. Chem. , vol.288 , pp. 14673-14680
    • Tomita, T.1    Iwatsubo, T.2
  • 44
    • 33845365770 scopus 로고    scopus 로고
    • Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry
    • Wu Z., et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 2006, 13:1084-1091.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 1084-1091
    • Wu, Z.1
  • 45
    • 34347250499 scopus 로고    scopus 로고
    • Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate
    • Baker R.P., et al. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:8257-8262.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 8257-8262
    • Baker, R.P.1
  • 46
    • 84878409837 scopus 로고    scopus 로고
    • Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease
    • Xue Y., Ha Y. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. J. Biol. Chem. 2012, 288:16645-16654.
    • (2012) J. Biol. Chem. , vol.288 , pp. 16645-16654
    • Xue, Y.1    Ha, Y.2
  • 47
    • 0038771224 scopus 로고    scopus 로고
    • Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain
    • Urban S., Freeman M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 2003, 11:1425-1434.
    • (2003) Mol. Cell , vol.11 , pp. 1425-1434
    • Urban, S.1    Freeman, M.2
  • 48
    • 84878843045 scopus 로고    scopus 로고
    • Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics
    • Moin S.M., Urban S. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. Elife 2012, 1:e00173.
    • (2012) Elife , vol.1 , pp. e00173
    • Moin, S.M.1    Urban, S.2
  • 49
    • 33947597857 scopus 로고    scopus 로고
    • GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42
    • Munter L.M., et al. GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J. 2007, 26:1702-1712.
    • (2007) EMBO J. , vol.26 , pp. 1702-1712
    • Munter, L.M.1
  • 50
    • 84895768762 scopus 로고    scopus 로고
    • Familial Alzheimer's mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site
    • Chen W., et al. Familial Alzheimer's mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site. Nat. Commun. 2014, 5:3037.
    • (2014) Nat. Commun. , vol.5 , pp. 3037
    • Chen, W.1
  • 51
    • 84861675099 scopus 로고    scopus 로고
    • The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol
    • Barrett P.J., et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012, 336:1168-1171.
    • (2012) Science , vol.336 , pp. 1168-1171
    • Barrett, P.J.1
  • 52
    • 84873819727 scopus 로고    scopus 로고
    • The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase
    • Pester O., et al. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase. J. Am. Chem. Soc. 2013, 135:1317-1329.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 1317-1329
    • Pester, O.1
  • 53
    • 84896501848 scopus 로고    scopus 로고
    • Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix
    • Scharnagl C., et al. Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix. Biophys. J. 2014, 106:1318-1326.
    • (2014) Biophys. J. , vol.106 , pp. 1318-1326
    • Scharnagl, C.1
  • 54
    • 84896692890 scopus 로고    scopus 로고
    • Perturbations of the straight transmembrane alpha-helical structure of the amyloid precursor protein affect its processing by gamma-secretase
    • Lemmin T., et al. Perturbations of the straight transmembrane alpha-helical structure of the amyloid precursor protein affect its processing by gamma-secretase. J. Biol. Chem. 2014, 289:6763-6774.
    • (2014) J. Biol. Chem. , vol.289 , pp. 6763-6774
    • Lemmin, T.1
  • 55
    • 84858720343 scopus 로고    scopus 로고
    • Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease
    • Weggen S., Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. Alzheimers Res. Ther. 2012, 4:9.
    • (2012) Alzheimers Res. Ther. , vol.4 , pp. 9
    • Weggen, S.1    Beher, D.2
  • 56
    • 84924082166 scopus 로고    scopus 로고
    • Structural biology of presenilin 1 complexes
    • Li Y., et al. Structural biology of presenilin 1 complexes. Mol. Neurodegener. 2014, 9:59.
    • (2014) Mol. Neurodegener. , vol.9 , pp. 59
    • Li, Y.1
  • 57
    • 84961331937 scopus 로고    scopus 로고
    • The dynamic conformational landscape of gamma-secretase
    • Published online December 12, 2014
    • Elad N., et al. The dynamic conformational landscape of gamma-secretase. J. Cell Sci. 2014, Published online December 12, 2014. 10.1242/jcs.164384.
    • (2014) J. Cell Sci.
    • Elad, N.1
  • 58
    • 33847793631 scopus 로고    scopus 로고
    • Open-cap conformation of intramembrane protease GlpG
    • Wang Y., Ha Y. Open-cap conformation of intramembrane protease GlpG. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:2098-2102.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 2098-2102
    • Wang, Y.1    Ha, Y.2
  • 59
    • 84888432749 scopus 로고    scopus 로고
    • Modeling protein association mechanisms and kinetics
    • Zhou H.X., Bates P.A. Modeling protein association mechanisms and kinetics. Curr. Opin. Struct. Biol. 2013, 23:887-893.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 887-893
    • Zhou, H.X.1    Bates, P.A.2
  • 60
    • 0034625081 scopus 로고    scopus 로고
    • Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease
    • Ye J., et al. Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:5123-5128.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5123-5128
    • Ye, J.1
  • 61
    • 0036809216 scopus 로고    scopus 로고
    • Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis
    • Lemberg M.K., Martoglio B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 2002, 10:735-744.
    • (2002) Mol. Cell , vol.10 , pp. 735-744
    • Lemberg, M.K.1    Martoglio, B.2
  • 62
    • 84856874999 scopus 로고    scopus 로고
    • The alpha-helical content of the transmembrane domain of the british dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b)
    • Fluhrer R., et al. The alpha-helical content of the transmembrane domain of the british dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b). J. Biol. Chem. 2012, 287:5156-5163.
    • (2012) J. Biol. Chem. , vol.287 , pp. 5156-5163
    • Fluhrer, R.1
  • 63
    • 84922219279 scopus 로고    scopus 로고
    • Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u
    • Chen C.Y., et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 2014, 33:2492-2506.
    • (2014) EMBO J. , vol.33 , pp. 2492-2506
    • Chen, C.Y.1
  • 64
    • 84885412461 scopus 로고    scopus 로고
    • The cleavage domain of the amyloid precursor protein transmembrane helix does not exhibit above-average backbone dynamics
    • Pester O., et al. The cleavage domain of the amyloid precursor protein transmembrane helix does not exhibit above-average backbone dynamics. ChemBioChem 2013, 14:1943-1948.
    • (2013) ChemBioChem , vol.14 , pp. 1943-1948
    • Pester, O.1
  • 65
    • 17244364283 scopus 로고    scopus 로고
    • Proteases universally recognize beta strands in their active sites
    • Tyndall J.D., et al. Proteases universally recognize beta strands in their active sites. Chem. Rev. 2005, 105:973-999.
    • (2005) Chem. Rev. , vol.105 , pp. 973-999
    • Tyndall, J.D.1
  • 66
    • 53049089639 scopus 로고    scopus 로고
    • Direct and potent regulation of γ-secretase by its lipid microenvironment
    • Osenkowski P., et al. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem. 2008, 283:22529-22540.
    • (2008) J. Biol. Chem. , vol.283 , pp. 22529-22540
    • Osenkowski, P.1
  • 67
    • 84862300133 scopus 로고    scopus 로고
    • Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness
    • Winkler E., et al. Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness. J. Biol. Chem. 2012, 287:21326-21334.
    • (2012) J. Biol. Chem. , vol.287 , pp. 21326-21334
    • Winkler, E.1
  • 68
    • 84860459631 scopus 로고    scopus 로고
    • Effects of membrane lipids on the activity and processivity of purified gamma-secretase
    • Holmes O., et al. Effects of membrane lipids on the activity and processivity of purified gamma-secretase. Biochemistry 2012, 51:3565-3575.
    • (2012) Biochemistry , vol.51 , pp. 3565-3575
    • Holmes, O.1
  • 69
    • 13844306483 scopus 로고    scopus 로고
    • Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity
    • Urban S., Wolfe M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. PNAS 2005, 102:1883-1888.
    • (2005) PNAS , vol.102 , pp. 1883-1888
    • Urban, S.1    Wolfe, M.S.2
  • 70
    • 84918808671 scopus 로고    scopus 로고
    • Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation
    • Voss M., et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014, 33:2890-2905.
    • (2014) EMBO J. , vol.33 , pp. 2890-2905
    • Voss, M.1
  • 71
    • 84903147836 scopus 로고    scopus 로고
    • Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins
    • Boname J.M., et al. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J. Cell Biol. 2014, 205:847-862.
    • (2014) J. Cell Biol. , vol.205 , pp. 847-862
    • Boname, J.M.1
  • 72
    • 33846541511 scopus 로고    scopus 로고
    • Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase
    • Stevenson L.G., et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1003-1008.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1003-1008
    • Stevenson, L.G.1
  • 73
    • 77249150932 scopus 로고    scopus 로고
    • Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules
    • Hern J.A., et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2693-2698.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2693-2698
    • Hern, J.A.1
  • 74
    • 79551711208 scopus 로고    scopus 로고
    • Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging
    • Kasai R.S., et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 2011, 192:463-480.
    • (2011) J. Cell Biol. , vol.192 , pp. 463-480
    • Kasai, R.S.1
  • 75
    • 0035895421 scopus 로고    scopus 로고
    • Non-alpha-helical elements modulate polytopic membrane protein architecture
    • Riek R.P., et al. Non-alpha-helical elements modulate polytopic membrane protein architecture. J. Mol. Biol. 2001, 306:349-362.
    • (2001) J. Mol. Biol. , vol.306 , pp. 349-362
    • Riek, R.P.1
  • 76
    • 84869495285 scopus 로고    scopus 로고
    • Statistical analyses and computational prediction of helical kinks in membrane proteins
    • Huang Y.H., Chen C.M. Statistical analyses and computational prediction of helical kinks in membrane proteins. J. Comput. Aided Mol. Des. 2012, 26:1171-1185.
    • (2012) J. Comput. Aided Mol. Des. , vol.26 , pp. 1171-1185
    • Huang, Y.H.1    Chen, C.M.2
  • 77
    • 78049336297 scopus 로고    scopus 로고
    • Residue-specific side-chain packing determines backbone dynamics of transmembrane model helices
    • Quint S., et al. Residue-specific side-chain packing determines backbone dynamics of transmembrane model helices. Biophys. J. 2010, 99:2541-2549.
    • (2010) Biophys. J. , vol.99 , pp. 2541-2549
    • Quint, S.1
  • 78
    • 84892958093 scopus 로고    scopus 로고
    • Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature
    • Dominguez L., et al. Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature. J. Am. Chem. Soc. 2014, 136:854-857.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 854-857
    • Dominguez, L.1
  • 79
    • 84864751064 scopus 로고    scopus 로고
    • Multifaceted substrate capture scheme of a rhomboid protease
    • Reddy T., Rainey J.K. Multifaceted substrate capture scheme of a rhomboid protease. J. Phys. Chem. B 2012, 116:8942-8954.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 8942-8954
    • Reddy, T.1    Rainey, J.K.2
  • 80
    • 79952316125 scopus 로고    scopus 로고
    • Structure of rhomboid protease in a lipid environment
    • Vinothkumar K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 2011, 407:232-247.
    • (2011) J. Mol. Biol. , vol.407 , pp. 232-247
    • Vinothkumar, K.R.1
  • 81
    • 14744267675 scopus 로고    scopus 로고
    • The initial substrate-binding site of γ-secretase is located on presenilin near the active site
    • Kornilova A.Y., et al. The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3230-3235.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 3230-3235
    • Kornilova, A.Y.1
  • 82
    • 84876826437 scopus 로고    scopus 로고
    • Mechanism of intramembrane cleavage of alcadeins by gamma-secretase
    • Piao Y., et al. Mechanism of intramembrane cleavage of alcadeins by gamma-secretase. PLoS ONE 2013, 8:e62431.
    • (2013) PLoS ONE , vol.8 , pp. e62431
    • Piao, Y.1
  • 83
    • 77952055764 scopus 로고    scopus 로고
    • X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate
    • Das A., et al. X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate. J. Am. Chem. Soc. 2010, 132:6366-6373.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 6366-6373
    • Das, A.1
  • 84
    • 0034778987 scopus 로고    scopus 로고
    • Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases
    • Northrop D.B. Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc. Chem. Res. 2001, 34:790-797.
    • (2001) Acc. Chem. Res. , vol.34 , pp. 790-797
    • Northrop, D.B.1
  • 85
    • 33746869326 scopus 로고    scopus 로고
    • Catalysis and linear free energy relationships in aspartic proteases
    • Bjelic S., Aqvist J. Catalysis and linear free energy relationships in aspartic proteases. Biochemistry 2006, 45:7709-7723.
    • (2006) Biochemistry , vol.45 , pp. 7709-7723
    • Bjelic, S.1    Aqvist, J.2
  • 86
    • 60849131737 scopus 로고    scopus 로고
    • A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis
    • Sato T., et al. A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:1421-1426.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 1421-1426
    • Sato, T.1
  • 87
    • 84876797754 scopus 로고    scopus 로고
    • Substrate determinants in the C99 juxtamembrane domains differentially affect gamma-secretase cleavage specificity and modulator pharmacology
    • Ousson S., et al. Substrate determinants in the C99 juxtamembrane domains differentially affect gamma-secretase cleavage specificity and modulator pharmacology. J. Neurochem. 2013, 125:610-619.
    • (2013) J. Neurochem. , vol.125 , pp. 610-619
    • Ousson, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.