-
1
-
-
79955663580
-
Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing
-
Lichtenthaler S.F., et al. Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing. J. Neurochem. 2011, 117:779-796.
-
(2011)
J. Neurochem.
, vol.117
, pp. 779-796
-
-
Lichtenthaler, S.F.1
-
2
-
-
84875871162
-
Structural and mechanistic principles of intramembrane proteolysis - lessons from rhomboids
-
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis - lessons from rhomboids. FEBS J. 2013, 280:1579-1603.
-
(2013)
FEBS J.
, vol.280
, pp. 1579-1603
-
-
Strisovsky, K.1
-
3
-
-
84869414387
-
Processive proteolysis by gamma-secretase and the mechanism of Alzheimer's disease
-
Wolfe M.S. Processive proteolysis by gamma-secretase and the mechanism of Alzheimer's disease. Biol. Chem. 2012, 393:899-905.
-
(2012)
Biol. Chem.
, vol.393
, pp. 899-905
-
-
Wolfe, M.S.1
-
4
-
-
84888428810
-
Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles
-
Vinothkumar K.R., Freeman M. Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Curr. Opin. Struct. Biol. 2013, 23:851-858.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 851-858
-
-
Vinothkumar, K.R.1
Freeman, M.2
-
5
-
-
84890441584
-
Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1
-
Manolaridis I., et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013, 504:301-305.
-
(2013)
Nature
, vol.504
, pp. 301-305
-
-
Manolaridis, I.1
-
6
-
-
84865389259
-
Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins
-
Fleig L., et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 2012, 47:558-569.
-
(2012)
Mol. Cell
, vol.47
, pp. 558-569
-
-
Fleig, L.1
-
7
-
-
84919466648
-
The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance
-
Avci D., et al. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 2014, 56:630-640.
-
(2014)
Mol. Cell
, vol.56
, pp. 630-640
-
-
Avci, D.1
-
8
-
-
84885100166
-
The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes
-
Chan E.Y., McQuibban G.A. The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes. Biochim. Biophys. Acta 2013, 1828:2916-2925.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2916-2925
-
-
Chan, E.Y.1
McQuibban, G.A.2
-
9
-
-
33750886311
-
Crystal structure of a rhomboid family intramembrane protease
-
Wang Y., et al. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444:179-183.
-
(2006)
Nature
, vol.444
, pp. 179-183
-
-
Wang, Y.1
-
10
-
-
36849037428
-
Structure of a site-2 protease family intramembrane metalloprotease
-
Feng L., et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 2007, 318:1608-1612.
-
(2007)
Science
, vol.318
, pp. 1608-1612
-
-
Feng, L.1
-
11
-
-
79960918054
-
The crystal structure of GXGD membrane protease FlaK
-
Hu J., et al. The crystal structure of GXGD membrane protease FlaK. Nature 2011, 475:528-531.
-
(2011)
Nature
, vol.475
, pp. 528-531
-
-
Hu, J.1
-
12
-
-
84871725890
-
Structure of a presenilin family intramembrane aspartate protease
-
Li X., et al. Structure of a presenilin family intramembrane aspartate protease. Nature 2013, 493:56-61.
-
(2013)
Nature
, vol.493
, pp. 56-61
-
-
Li, X.1
-
13
-
-
84904560883
-
Three-dimensional structure of human γ-secretase
-
Lu P., et al. Three-dimensional structure of human γ-secretase. Nature 2014, 512:166-170.
-
(2014)
Nature
, vol.512
, pp. 166-170
-
-
Lu, P.1
-
14
-
-
84890087383
-
Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity
-
Dickey S.W., et al. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155:1270-1281.
-
(2013)
Cell
, vol.155
, pp. 1270-1281
-
-
Dickey, S.W.1
-
15
-
-
84924940607
-
Intramembrane proteolysis of amyloid precursor protein by gamma-secretase is an unusually slow process
-
(in press)
-
Kamp F., et al. Intramembrane proteolysis of amyloid precursor protein by gamma-secretase is an unusually slow process. Biophys. J. 2015, (in press).
-
(2015)
Biophys. J.
-
-
Kamp, F.1
-
16
-
-
84906823305
-
Allosteric regulation of rhomboid intramembrane proteolysis
-
Arutyunova E., et al. Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J. 2014, 33:1869-1881.
-
(2014)
EMBO J.
, vol.33
, pp. 1869-1881
-
-
Arutyunova, E.1
-
17
-
-
0036898485
-
Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases
-
Haass C., Steiner H. Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 2002, 12:556-562.
-
(2002)
Trends Cell Biol.
, vol.12
, pp. 556-562
-
-
Haass, C.1
Steiner, H.2
-
18
-
-
84863939887
-
Presenilins and γ-secretase: structure, function, and role in Alzheimer disease
-
De Strooper B., et al. Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2:a006304.
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a006304
-
-
De Strooper, B.1
-
19
-
-
84885092137
-
Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases
-
Voss M., et al. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828:2828-2839.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2828-2839
-
-
Voss, M.1
-
20
-
-
35948982252
-
Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases
-
Lemberg M.K., Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007, 17:1634-1646.
-
(2007)
Genome Res.
, vol.17
, pp. 1634-1646
-
-
Lemberg, M.K.1
Freeman, M.2
-
21
-
-
84885153827
-
Biochemical and structural insights into intramembrane metalloprotease mechanisms
-
Kroos L., Akiyama Y. Biochemical and structural insights into intramembrane metalloprotease mechanisms. Biochim. Biophys. Acta 2013, 1828:2873-2885.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2873-2885
-
-
Kroos, L.1
Akiyama, Y.2
-
22
-
-
43049163813
-
Substrate specificity of gamma-secretase and other intramembrane proteases
-
Beel A.J., Sanders C.R. Substrate specificity of gamma-secretase and other intramembrane proteases. Cell. Mol. Life Sci. 2008, 65:1311-1334.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 1311-1334
-
-
Beel, A.J.1
Sanders, C.R.2
-
23
-
-
79959636033
-
The many substrates of presenilin/gamma-secretase
-
Haapasalo A., Kovacs D.M. The many substrates of presenilin/gamma-secretase. J. Alzheimers Dis. 2011, 25:3-28.
-
(2011)
J. Alzheimers Dis.
, vol.25
, pp. 3-28
-
-
Haapasalo, A.1
Kovacs, D.M.2
-
24
-
-
54949110552
-
Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements
-
Hemming M.L., et al. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol. 2008, 6:e257.
-
(2008)
PLoS Biol.
, vol.6
, pp. e257
-
-
Hemming, M.L.1
-
25
-
-
34248371981
-
Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease
-
Akiyama Y., Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 2007, 64:1028-1037.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 1028-1037
-
-
Akiyama, Y.1
Maegawa, S.2
-
26
-
-
72149124813
-
Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates
-
Strisovsky K., et al. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 2009, 36:1048-1059.
-
(2009)
Mol. Cell
, vol.36
, pp. 1048-1059
-
-
Strisovsky, K.1
-
27
-
-
79955526700
-
Mammalian EGF receptor activation by the rhomboid protease RHBDL2
-
Adrain C., et al. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011, 12:421-427.
-
(2011)
EMBO Rep.
, vol.12
, pp. 421-427
-
-
Adrain, C.1
-
28
-
-
84911500001
-
Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures
-
Zoll S., et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33:2408-2421.
-
(2014)
EMBO J.
, vol.33
, pp. 2408-2421
-
-
Zoll, S.1
-
29
-
-
80054967217
-
Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site
-
Grossman M., et al. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat. Struct. Mol. Biol. 2011, 18:1102-1108.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1102-1108
-
-
Grossman, M.1
-
30
-
-
84861194622
-
The mechanism of gamma-secretase dysfunction in familial Alzheimer disease
-
Chavez-Gutierrez L., et al. The mechanism of gamma-secretase dysfunction in familial Alzheimer disease. EMBO J. 2012, 31:2261-2274.
-
(2012)
EMBO J.
, vol.31
, pp. 2261-2274
-
-
Chavez-Gutierrez, L.1
-
31
-
-
84872812991
-
γ-Secretase-dependent proteolysis of transmembrane domain of amyloid precursor protein: successive tri- and tetrapeptide release in amyloid β-protein production
-
Takami M., Funamoto S. γ-Secretase-dependent proteolysis of transmembrane domain of amyloid precursor protein: successive tri- and tetrapeptide release in amyloid β-protein production. Int. J. Alzheimers Dis. 2012, 2012:591392.
-
(2012)
Int. J. Alzheimers Dis.
, vol.2012
, pp. 591392
-
-
Takami, M.1
Funamoto, S.2
-
32
-
-
84894423032
-
Gamma-secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment
-
Matsumura N., et al. Gamma-secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J. Biol. Chem. 2014, 289:5109-5121.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 5109-5121
-
-
Matsumura, N.1
-
33
-
-
84892631959
-
Characterization of intermediate steps in amyloid beta (A beta) production under near-native conditions
-
Olsson F., et al. Characterization of intermediate steps in amyloid beta (A beta) production under near-native conditions. J. Biol. Chem. 2014, 289:1540-1550.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1540-1550
-
-
Olsson, F.1
-
34
-
-
77952947184
-
Beta-amyloid precursor protein mutants respond to gamma-secretase modulators
-
Page R.M., et al. Beta-amyloid precursor protein mutants respond to gamma-secretase modulators. J. Biol. Chem. 2010, 285:17798-17810.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17798-17810
-
-
Page, R.M.1
-
35
-
-
84881366852
-
Alzheimer's disease mutations in APP but not gamma-secretase modulators affect epsilon-cleavage-dependent AICD production
-
Dimitrov M., et al. Alzheimer's disease mutations in APP but not gamma-secretase modulators affect epsilon-cleavage-dependent AICD production. Nat. Commun. 2013, 4:2246.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2246
-
-
Dimitrov, M.1
-
36
-
-
84909619800
-
Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ
-
Fernandez M.A., et al. Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ. J. Biol. Chem. 2014, 289:31043-31052.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 31043-31052
-
-
Fernandez, M.A.1
-
37
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
Meissner C., et al. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117:856-867.
-
(2011)
J. Neurochem.
, vol.117
, pp. 856-867
-
-
Meissner, C.1
-
38
-
-
77957231785
-
Induced fit, conformational selection and independent dynamic segments: an extended view of binding events
-
Csermely P., et al. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 2010, 35:539-546.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 539-546
-
-
Csermely, P.1
-
39
-
-
67650069254
-
Interaction and conformational dynamics of membrane-spanning protein helices
-
Langosch D., Arkin I.T. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci. 2009, 18:1343-1358.
-
(2009)
Protein Sci.
, vol.18
, pp. 1343-1358
-
-
Langosch, D.1
Arkin, I.T.2
-
40
-
-
79959429680
-
+ channels, and integrin receptors
-
+ channels, and integrin receptors. Annu. Rev. Biochem. 2011, 80:211-237.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 211-237
-
-
Grigoryan, G.1
-
41
-
-
84859912916
-
Membrane protein structure and dynamics from NMR spectroscopy
-
Hong M., et al. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 2012, 63:1-24.
-
(2012)
Annu. Rev. Phys. Chem.
, vol.63
, pp. 1-24
-
-
Hong, M.1
-
42
-
-
84885097856
-
Toward the structure of presenilin/gamma-secretase and presenilin homologs
-
Wolfe M.S. Toward the structure of presenilin/gamma-secretase and presenilin homologs. Biochim. Biophys. Acta 2013, 1828:2886-2897.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2886-2897
-
-
Wolfe, M.S.1
-
43
-
-
84878256048
-
Structural biology of presenilins and signal peptide peptidases
-
Tomita T., Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J. Biol. Chem. 2013, 288:14673-14680.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 14673-14680
-
-
Tomita, T.1
Iwatsubo, T.2
-
44
-
-
33845365770
-
Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry
-
Wu Z., et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 2006, 13:1084-1091.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 1084-1091
-
-
Wu, Z.1
-
45
-
-
34347250499
-
Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate
-
Baker R.P., et al. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:8257-8262.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 8257-8262
-
-
Baker, R.P.1
-
46
-
-
84878409837
-
Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease
-
Xue Y., Ha Y. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. J. Biol. Chem. 2012, 288:16645-16654.
-
(2012)
J. Biol. Chem.
, vol.288
, pp. 16645-16654
-
-
Xue, Y.1
Ha, Y.2
-
47
-
-
0038771224
-
Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain
-
Urban S., Freeman M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 2003, 11:1425-1434.
-
(2003)
Mol. Cell
, vol.11
, pp. 1425-1434
-
-
Urban, S.1
Freeman, M.2
-
48
-
-
84878843045
-
Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics
-
Moin S.M., Urban S. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. Elife 2012, 1:e00173.
-
(2012)
Elife
, vol.1
, pp. e00173
-
-
Moin, S.M.1
Urban, S.2
-
49
-
-
33947597857
-
GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42
-
Munter L.M., et al. GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J. 2007, 26:1702-1712.
-
(2007)
EMBO J.
, vol.26
, pp. 1702-1712
-
-
Munter, L.M.1
-
50
-
-
84895768762
-
Familial Alzheimer's mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site
-
Chen W., et al. Familial Alzheimer's mutations within APPTM increase Abeta42 production by enhancing accessibility of epsilon-cleavage site. Nat. Commun. 2014, 5:3037.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3037
-
-
Chen, W.1
-
51
-
-
84861675099
-
The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol
-
Barrett P.J., et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012, 336:1168-1171.
-
(2012)
Science
, vol.336
, pp. 1168-1171
-
-
Barrett, P.J.1
-
52
-
-
84873819727
-
The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase
-
Pester O., et al. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase. J. Am. Chem. Soc. 2013, 135:1317-1329.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1317-1329
-
-
Pester, O.1
-
53
-
-
84896501848
-
Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix
-
Scharnagl C., et al. Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix. Biophys. J. 2014, 106:1318-1326.
-
(2014)
Biophys. J.
, vol.106
, pp. 1318-1326
-
-
Scharnagl, C.1
-
54
-
-
84896692890
-
Perturbations of the straight transmembrane alpha-helical structure of the amyloid precursor protein affect its processing by gamma-secretase
-
Lemmin T., et al. Perturbations of the straight transmembrane alpha-helical structure of the amyloid precursor protein affect its processing by gamma-secretase. J. Biol. Chem. 2014, 289:6763-6774.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 6763-6774
-
-
Lemmin, T.1
-
55
-
-
84858720343
-
Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease
-
Weggen S., Beher D. Molecular consequences of amyloid precursor protein and presenilin mutations causing autosomal-dominant Alzheimer's disease. Alzheimers Res. Ther. 2012, 4:9.
-
(2012)
Alzheimers Res. Ther.
, vol.4
, pp. 9
-
-
Weggen, S.1
Beher, D.2
-
56
-
-
84924082166
-
Structural biology of presenilin 1 complexes
-
Li Y., et al. Structural biology of presenilin 1 complexes. Mol. Neurodegener. 2014, 9:59.
-
(2014)
Mol. Neurodegener.
, vol.9
, pp. 59
-
-
Li, Y.1
-
57
-
-
84961331937
-
The dynamic conformational landscape of gamma-secretase
-
Published online December 12, 2014
-
Elad N., et al. The dynamic conformational landscape of gamma-secretase. J. Cell Sci. 2014, Published online December 12, 2014. 10.1242/jcs.164384.
-
(2014)
J. Cell Sci.
-
-
Elad, N.1
-
58
-
-
33847793631
-
Open-cap conformation of intramembrane protease GlpG
-
Wang Y., Ha Y. Open-cap conformation of intramembrane protease GlpG. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:2098-2102.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 2098-2102
-
-
Wang, Y.1
Ha, Y.2
-
59
-
-
84888432749
-
Modeling protein association mechanisms and kinetics
-
Zhou H.X., Bates P.A. Modeling protein association mechanisms and kinetics. Curr. Opin. Struct. Biol. 2013, 23:887-893.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 887-893
-
-
Zhou, H.X.1
Bates, P.A.2
-
60
-
-
0034625081
-
Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease
-
Ye J., et al. Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:5123-5128.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 5123-5128
-
-
Ye, J.1
-
61
-
-
0036809216
-
Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis
-
Lemberg M.K., Martoglio B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 2002, 10:735-744.
-
(2002)
Mol. Cell
, vol.10
, pp. 735-744
-
-
Lemberg, M.K.1
Martoglio, B.2
-
62
-
-
84856874999
-
The alpha-helical content of the transmembrane domain of the british dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b)
-
Fluhrer R., et al. The alpha-helical content of the transmembrane domain of the british dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b). J. Biol. Chem. 2012, 287:5156-5163.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 5156-5163
-
-
Fluhrer, R.1
-
63
-
-
84922219279
-
Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u
-
Chen C.Y., et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 2014, 33:2492-2506.
-
(2014)
EMBO J.
, vol.33
, pp. 2492-2506
-
-
Chen, C.Y.1
-
64
-
-
84885412461
-
The cleavage domain of the amyloid precursor protein transmembrane helix does not exhibit above-average backbone dynamics
-
Pester O., et al. The cleavage domain of the amyloid precursor protein transmembrane helix does not exhibit above-average backbone dynamics. ChemBioChem 2013, 14:1943-1948.
-
(2013)
ChemBioChem
, vol.14
, pp. 1943-1948
-
-
Pester, O.1
-
65
-
-
17244364283
-
Proteases universally recognize beta strands in their active sites
-
Tyndall J.D., et al. Proteases universally recognize beta strands in their active sites. Chem. Rev. 2005, 105:973-999.
-
(2005)
Chem. Rev.
, vol.105
, pp. 973-999
-
-
Tyndall, J.D.1
-
66
-
-
53049089639
-
Direct and potent regulation of γ-secretase by its lipid microenvironment
-
Osenkowski P., et al. Direct and potent regulation of γ-secretase by its lipid microenvironment. J. Biol. Chem. 2008, 283:22529-22540.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 22529-22540
-
-
Osenkowski, P.1
-
67
-
-
84862300133
-
Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness
-
Winkler E., et al. Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness. J. Biol. Chem. 2012, 287:21326-21334.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 21326-21334
-
-
Winkler, E.1
-
68
-
-
84860459631
-
Effects of membrane lipids on the activity and processivity of purified gamma-secretase
-
Holmes O., et al. Effects of membrane lipids on the activity and processivity of purified gamma-secretase. Biochemistry 2012, 51:3565-3575.
-
(2012)
Biochemistry
, vol.51
, pp. 3565-3575
-
-
Holmes, O.1
-
69
-
-
13844306483
-
Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity
-
Urban S., Wolfe M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. PNAS 2005, 102:1883-1888.
-
(2005)
PNAS
, vol.102
, pp. 1883-1888
-
-
Urban, S.1
Wolfe, M.S.2
-
70
-
-
84918808671
-
Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation
-
Voss M., et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014, 33:2890-2905.
-
(2014)
EMBO J.
, vol.33
, pp. 2890-2905
-
-
Voss, M.1
-
71
-
-
84903147836
-
Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins
-
Boname J.M., et al. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J. Cell Biol. 2014, 205:847-862.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 847-862
-
-
Boname, J.M.1
-
72
-
-
33846541511
-
Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase
-
Stevenson L.G., et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1003-1008.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1003-1008
-
-
Stevenson, L.G.1
-
73
-
-
77249150932
-
Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules
-
Hern J.A., et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2693-2698.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2693-2698
-
-
Hern, J.A.1
-
74
-
-
79551711208
-
Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging
-
Kasai R.S., et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 2011, 192:463-480.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 463-480
-
-
Kasai, R.S.1
-
75
-
-
0035895421
-
Non-alpha-helical elements modulate polytopic membrane protein architecture
-
Riek R.P., et al. Non-alpha-helical elements modulate polytopic membrane protein architecture. J. Mol. Biol. 2001, 306:349-362.
-
(2001)
J. Mol. Biol.
, vol.306
, pp. 349-362
-
-
Riek, R.P.1
-
76
-
-
84869495285
-
Statistical analyses and computational prediction of helical kinks in membrane proteins
-
Huang Y.H., Chen C.M. Statistical analyses and computational prediction of helical kinks in membrane proteins. J. Comput. Aided Mol. Des. 2012, 26:1171-1185.
-
(2012)
J. Comput. Aided Mol. Des.
, vol.26
, pp. 1171-1185
-
-
Huang, Y.H.1
Chen, C.M.2
-
77
-
-
78049336297
-
Residue-specific side-chain packing determines backbone dynamics of transmembrane model helices
-
Quint S., et al. Residue-specific side-chain packing determines backbone dynamics of transmembrane model helices. Biophys. J. 2010, 99:2541-2549.
-
(2010)
Biophys. J.
, vol.99
, pp. 2541-2549
-
-
Quint, S.1
-
78
-
-
84892958093
-
Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature
-
Dominguez L., et al. Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature. J. Am. Chem. Soc. 2014, 136:854-857.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 854-857
-
-
Dominguez, L.1
-
79
-
-
84864751064
-
Multifaceted substrate capture scheme of a rhomboid protease
-
Reddy T., Rainey J.K. Multifaceted substrate capture scheme of a rhomboid protease. J. Phys. Chem. B 2012, 116:8942-8954.
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 8942-8954
-
-
Reddy, T.1
Rainey, J.K.2
-
80
-
-
79952316125
-
Structure of rhomboid protease in a lipid environment
-
Vinothkumar K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 2011, 407:232-247.
-
(2011)
J. Mol. Biol.
, vol.407
, pp. 232-247
-
-
Vinothkumar, K.R.1
-
81
-
-
14744267675
-
The initial substrate-binding site of γ-secretase is located on presenilin near the active site
-
Kornilova A.Y., et al. The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3230-3235.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 3230-3235
-
-
Kornilova, A.Y.1
-
82
-
-
84876826437
-
Mechanism of intramembrane cleavage of alcadeins by gamma-secretase
-
Piao Y., et al. Mechanism of intramembrane cleavage of alcadeins by gamma-secretase. PLoS ONE 2013, 8:e62431.
-
(2013)
PLoS ONE
, vol.8
, pp. e62431
-
-
Piao, Y.1
-
83
-
-
77952055764
-
X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate
-
Das A., et al. X-ray snapshot of HIV-1 protease in action: observation of tetrahedral intermediate and short ionic hydrogen bond SIHB with catalytic aspartate. J. Am. Chem. Soc. 2010, 132:6366-6373.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 6366-6373
-
-
Das, A.1
-
84
-
-
0034778987
-
Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases
-
Northrop D.B. Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Acc. Chem. Res. 2001, 34:790-797.
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 790-797
-
-
Northrop, D.B.1
-
85
-
-
33746869326
-
Catalysis and linear free energy relationships in aspartic proteases
-
Bjelic S., Aqvist J. Catalysis and linear free energy relationships in aspartic proteases. Biochemistry 2006, 45:7709-7723.
-
(2006)
Biochemistry
, vol.45
, pp. 7709-7723
-
-
Bjelic, S.1
Aqvist, J.2
-
86
-
-
60849131737
-
A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis
-
Sato T., et al. A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:1421-1426.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 1421-1426
-
-
Sato, T.1
-
87
-
-
84876797754
-
Substrate determinants in the C99 juxtamembrane domains differentially affect gamma-secretase cleavage specificity and modulator pharmacology
-
Ousson S., et al. Substrate determinants in the C99 juxtamembrane domains differentially affect gamma-secretase cleavage specificity and modulator pharmacology. J. Neurochem. 2013, 125:610-619.
-
(2013)
J. Neurochem.
, vol.125
, pp. 610-619
-
-
Ousson, S.1
|