메뉴 건너뛰기




Volumn 7, Issue 5, 2014, Pages 850-863

Epigenetic mechanisms in heart failure pathogenesis

Author keywords

Etiology; Heart failure; Histones; Hypertrophy; Transcription factors

Indexed keywords

ADENOSINE TRIPHOSPHATE; CYTOSINE; HISTONE ACETYLTRANSFERASE; HISTONE DEACETYLASE; HISTONE DEACETYLASE 1; HISTONE DEACETYLASE 2; LONG UNTRANSLATED RNA; LYSINE; RNA POLYMERASE II; UNTRANSLATED RNA; CHROMATIN; DNA;

EID: 84925874958     PISSN: 19413289     EISSN: 19413297     Source Type: Journal    
DOI: 10.1161/CIRCHEARTFAILURE.114.001193     Document Type: Article
Times cited : (25)

References (184)
  • 1
    • 84883599602 scopus 로고    scopus 로고
    • Research advances in heart failure: A compendium
    • Braunwald E. Research advances in heart failure: a compendium. Circ Res. 2013;113:633-645.
    • (2013) Circ Res , vol.113 , pp. 633-645
    • Braunwald, E.1
  • 3
    • 84873868258 scopus 로고    scopus 로고
    • Signaling effectors underlying pathologic growth and remodeling of the heart
    • van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013;123:37-45.
    • (2013) J Clin Invest , vol.123 , pp. 37-45
    • Van Berlo, J.H.1    Maillet, M.2    Molkentin, J.D.3
  • 4
    • 11144320715 scopus 로고    scopus 로고
    • Microarray analysis of gene expreßion after transverse aortic constriction in mice
    • Zhao M, Chow A, Powers J, Fajardo G, Bernstein D. Microarray analysis of gene expreßion after transverse aortic constriction in mice. Physiol Genomics. 2004;19:93-105.
    • (2004) Physiol Genomics , vol.19 , pp. 93-105
    • Zhao, M.1    Chow, A.2    Powers, J.3    Fajardo, G.4    Bernstein, D.5
  • 6
    • 0001579865 scopus 로고
    • Canalization of development and genetic aßimilation of acquired characters
    • Waddington CH. Canalization of development and genetic aßimilation of acquired characters. Nature. 1959;183:1654-1655.
    • (1959) Nature , vol.183 , pp. 1654-1655
    • Waddington, C.H.1
  • 8
    • 34249337761 scopus 로고    scopus 로고
    • Perceptions of epigenetics
    • Bird A. Perceptions of epigenetics. Nature. 2007;447:396-398.
    • (2007) Nature , vol.447 , pp. 396-398
    • Bird, A.1
  • 9
    • 84875198920 scopus 로고    scopus 로고
    • Transcriptional regulation and its misregulation in disease
    • Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237-1251.
    • (2013) Cell , vol.152 , pp. 1237-1251
    • Lee, T.I.1    Young, R.A.2
  • 10
    • 84884829249 scopus 로고    scopus 로고
    • Mapping human epigenomes
    • Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155:39-55.
    • (2013) Cell , vol.155 , pp. 39-55
    • Rivera, C.M.1    Ren, B.2
  • 11
    • 84873817376 scopus 로고    scopus 로고
    • Micro RNAs in cardiovascular disease: From pathogenesis to prevention and treatment
    • Quiat D, Olson EN. Micro RNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123:11-18.
    • (2013) J Clin Invest , vol.123 , pp. 11-18
    • Quiat, D.1    Olson, E.N.2
  • 13
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem. 2012;81:119-143.
    • (2012) Annu Rev Biochem , vol.81 , pp. 119-143
    • Zhou, Q.1    Li, T.2    Price, D.H.3
  • 14
    • 79952539053 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms
    • Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396-420.
    • (2011) Cell Res , vol.21 , pp. 396-420
    • Hargreaves, D.C.1    Crabtree, G.R.2
  • 15
  • 16
    • 78650304236 scopus 로고    scopus 로고
    • Charting histone modifications and the functional organization of mammalian genomes
    • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12:7-18.
    • (2011) Nat Rev Genet , vol.12 , pp. 7-18
    • Zhou, V.W.1    Goren, A.2    Bernstein, B.E.3
  • 17
    • 84875424617 scopus 로고    scopus 로고
    • Emerging roles for chromatin as a signal integration and storage platform
    • Badeaux AI, Shi Y. Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol. 2013;14:211-224.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 211-224
    • Badeaux, A.I.1    Shi, Y.2
  • 18
    • 84875165863 scopus 로고    scopus 로고
    • Epigenetic programming and reprogramming during development
    • Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol. 2013;20:282-289.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 282-289
    • Cantone, I.1    Fisher, A.G.2
  • 19
    • 84874116331 scopus 로고    scopus 로고
    • Chromatin: Receiver and quarterback for cellular signals
    • Johnson DG, Dent SY. Chromatin: receiver and quarterback for cellular signals. Cell. 2013;152:685-689.
    • (2013) Cell , vol.152 , pp. 685-689
    • Johnson, D.G.1    Dent, S.Y.2
  • 20
    • 0037074010 scopus 로고    scopus 로고
    • Signaling network model of chromatin
    • Schreiber SL, Bernstein BE. Signaling network model of chromatin. Cell. 2002;111:771-778.
    • (2002) Cell , vol.111 , pp. 771-778
    • Schreiber, S.L.1    Bernstein, B.E.2
  • 21
    • 41449086790 scopus 로고    scopus 로고
    • Cardiac plasticity
    • Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370-1380.
    • (2008) N Engl J Med , vol.358 , pp. 1370-1380
    • Hill, J.A.1    Olson, E.N.2
  • 22
    • 84862809492 scopus 로고    scopus 로고
    • Interaction between NFKB and NFAT coordinates cardiac hypertrophy and pathological remodeling
    • Liu Q, Chen Y, Auger-Meßier M, Molkentin JD. Interaction between NFKB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res. 2012;110:1077-1086.
    • (2012) Circ Res , vol.110 , pp. 1077-1086
    • Liu, Q.1    Chen, Y.2    Auger-Meßier, M.3    Molkentin, J.D.4
  • 24
    • 79961091829 scopus 로고    scopus 로고
    • Serine 105 phosphorylation of transcription factor GATA4 is neceßary for streß-induced cardiac hypertrophy in vivo
    • van Berlo JH, Elrod JW, Aronow BJ, Pu WT, Molkentin JD. Serine 105 phosphorylation of transcription factor GATA4 is neceßary for streß-induced cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2011;108:12331-12336.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 12331-12336
    • Van Berlo, J.H.1    Elrod, J.W.2    Aronow, B.J.3    Pu, W.T.4    Molkentin, J.D.5
  • 29
    • 84870222914 scopus 로고    scopus 로고
    • Disentangling the many layers of eukaryotic transcriptional regulation
    • Lelli KM, Slattery M, Mann RS. Disentangling the many layers of eukaryotic transcriptional regulation. Annu Rev Genet. 2012;46:43-68.
    • (2012) Annu Rev Genet , vol.46 , pp. 43-68
    • Lelli, K.M.1    Slattery, M.2    Mann, R.S.3
  • 30
    • 84860443136 scopus 로고    scopus 로고
    • Enhancers: Emerging roles in cell fate specification
    • Ong CT, Corces VG. Enhancers: emerging roles in cell fate specification. EMBO Rep. 2012;13:423-430.
    • (2012) EMBO Rep , vol.13 , pp. 423-430
    • Ong, C.T.1    Corces, V.G.2
  • 31
    • 84865249952 scopus 로고    scopus 로고
    • Transcription factors: From enhancer binding to developmental control
    • Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13:613-626.
    • (2012) Nat Rev Genet , vol.13 , pp. 613-626
    • Spitz, F.1    Furlong, E.E.2
  • 32
    • 84860379799 scopus 로고    scopus 로고
    • Enhancer and promoter interactions-long distance calls
    • Krivega I, Dean A. Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev. 2012;22:79-85.
    • (2012) Curr Opin Genet Dev , vol.22 , pp. 79-85
    • Krivega, I.1    Dean, A.2
  • 33
    • 41949113742 scopus 로고    scopus 로고
    • The enhanceosome
    • Panne D. The enhanceosome. Curr Opin Struct Biol. 2008;18:236-242.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 236-242
    • Panne, D.1
  • 34
    • 77954763022 scopus 로고    scopus 로고
    • Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation
    • Goodrich JA, Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet. 2010;11:549-558.
    • (2010) Nat Rev Genet , vol.11 , pp. 549-558
    • Goodrich, J.A.1    Tjian, R.2
  • 35
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381-395.
    • (2011) Cell Res , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 36
    • 84870375316 scopus 로고    scopus 로고
    • Histone lysine methylation dynamics: Establishment, regulation, and biological impact
    • Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491-507.
    • (2012) Mol Cell , vol.48 , pp. 491-507
    • Black, J.C.1    Van Rechem, C.2    Whetstine, J.R.3
  • 37
    • 77953995002 scopus 로고    scopus 로고
    • Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers
    • Chi P, Allis CD, Wang GG. Covalent histone modifications-miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10:457-469.
    • (2010) Nat Rev Cancer , vol.10 , pp. 457-469
    • Chi, P.1    Allis, C.D.2    Wang, G.G.3
  • 38
    • 84859836380 scopus 로고    scopus 로고
    • Chromatin as an expansive canvas for chemical biology
    • Fierz B, Muir TW. Chromatin as an expansive canvas for chemical biology. Nat Chem Biol. 2012;8:417-427.
    • (2012) Nat Chem Biol , vol.8 , pp. 417-427
    • Fierz, B.1    Muir, T.W.2
  • 40
    • 84885848767 scopus 로고    scopus 로고
    • Tudor: A versatile family of histone methylation 'readers'
    • Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'. Trends Biochem Sci. 2013;38:546-555.
    • (2013) Trends Biochem Sci , vol.38 , pp. 546-555
    • Lu, R.1    Wang, G.G.2
  • 42
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
    • Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13:720-731.
    • (2012) Nat Rev Genet , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 43
    • 70249104647 scopus 로고    scopus 로고
    • Defining mechanisms that regulate RNA polymerase II transcription in vivo
    • Fuda NJ, Ardehali MB, Lis JT. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature. 2009;461:186-192.
    • (2009) Nature , vol.461 , pp. 186-192
    • Fuda, N.J.1    Ardehali, M.B.2    Lis, J.T.3
  • 44
    • 77958111633 scopus 로고    scopus 로고
    • The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation
    • Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet. 2010;11:761-772.
    • (2010) Nat Rev Genet , vol.11 , pp. 761-772
    • Malik, S.1    Roeder, R.G.2
  • 45
    • 84872376792 scopus 로고    scopus 로고
    • The Mediator complex and transcription elongation
    • Conaway RC, Conaway JW. The Mediator complex and transcription elongation. Biochim Biophys Acta. 2013;1829:69-75.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 69-75
    • Conaway, R.C.1    Conaway, J.W.2
  • 47
  • 49
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J, Furey TS, Gerstein M, Giardine B, Greven M, Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S, Kelllis M, Kheradpour P, Laßmann T, Li Q, Lin X, Marinov GK, Merkel A, Mortazavi A, Parker SC, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE, Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J, Bernstein BE, Green ED, Gunter C, Snyder M, Pazin MJ, Lowdon RF, Dillon LA, Adams LB, Kelly CJ, Zhang J, Wexler JR, Good PJ, Feingold EA, Crawford GE, Dekker J, Elinitski L, Farnham PJ, Giddings MC, Gingeras TR, Guigo R, Hubbard TJ, Kellis M, Kent WJ, Lieb JD, Margulies EH, Myers RM, Starnatoyannopoulos JA, Tennebaum SA, Weng Z, White KP, Wold B, Yu Y, Wrobel J, Risk BA, Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X, Mikkelsen TS, Gillespie S, Goren A, Ram O, Zhang X, Wang L, Ißner R, Coyne MJ, Durham T, Ku M, Truong T, Eaton ML, Dobin A, Tanzer A, Lagarde J, Lin W, Xue C, Williams BA, Zaleski C, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Batut P, Bell I, Bell K, Chakrabortty S, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Fastuca M, Fejes-Toth K, Ferreira P, Foißac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Li G, Luo OJ, Park E, Preall JB, Presaud K, Ribeca P, Robyr D, Ruan X, Sammeth M, Sandu KS, Schaeffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Hayashizaki Y, Reymond A, Antonarakis SE, Hannon GJ, Ruan Y, Carninci P, Sloan CA, Learned K, Malladi VS, Wong MC, Barber GP, Cline MS, Dreszer TR, Heitner SG, Karolchik D, Kirkup VM, Meyer LR, Long JC, Maddren M, Raney BJ, Grasfeder LL, Giresi PG, Battenhouse A, Sheffield NC, Showers KA, London D, Bhinge AA, Shestak C, Schaner MR, Kim SK, Zhang ZZ, Mieczkowski PA, Mieczkowska JO, Liu Z, McDaniell RM, Ni Y, Rashid NU, Kim MJ, Adar S, Zhang Z, Wang T, Winter D, Keefe D, Iyer VR, Sandhu KS, Zheng M, Wang P, Gertz J, Vielmetter J, Partridge EC, Varley KE, Gasper C, Bansal A, Pepke S, Jain P, Amrhein H, Bowling KM, Anaya M, Croß MK, Muratet MA, Newberry KM, McCue K, Nesmith AS, Fisher-Aylor KI, Pusey B, DeSalvo G, Parker SL, Balasubramanian S, Davis NS, Meadows SK, Eggleston T, Newberry JS, Levy SE, Absher DM, Wong WH, Blow MJ, Visel A, Pennachio LA, Elnitski L, Petrykowska HM, Abyzov A, Aken B, Barrell D, Barson G, Berry A, Bignell A, Boychenko V, Bußotti G, Davidson C, Despacio-Reyes G, Diekhans M, Ezkurdia I, Frankish A, Gilbert J, Gonzalez JM, Griffiths E, Harte R, Hendrix DA, Hunt T, Jungreis I, Kay M, Khurana E, Leng J, Lin MF, Loveland J, Lu Z, Manthravadi D, Mariotti M, Mudge J, Mukherjee G, Notredame C, Pei B, Rodriguez JM, Saunders G, Sboner A, Searle S, Sisu C, Snow C, Steward C, Tapanari E, Treß ML, van Baren MJ, Washieti S, Wilming L, Zadißa A, Zhengdong Z, Brent M, Haußler D, Valencia A, Raymond A, Addleman N, Alexander RP, Auerbach RK, Bettinger K, Bhardwaj N, Boyle AP, Cao AR, Cayting P, Charos A, Cheng Y, Eastman C, Euskirchen G, Fleming JD, Grubert F, Habegger L, Hariharan M, Harmanci A, Iyenger S, Jin VX, Karczewski KJ, Kasowski M, Lacroute P, Lam H, Larnarre-Vincent N, Lian J, Lindahl-Allen M, Min R, Miotto B, Monahan H, Moqtaderi Z, Mu XJ, O'Geen H, Ouyang Z, Patacsil D, Raha D, Ramirez L, Reed B, Shi M, Slifer T, Witt H, Wu L, Xu X, Yan KK, Yang X, Struhl K, Weißman SM, Tenebaum SA, Penalva LO, Karmakar S, Bhanvadia RR, Choudhury A, Domanus M, Ma L, Moran J, Victorsen A, Auer T, Centarin L, Eichenlaub M, Gruhl F, Heerman S, Hoeckendorf B, Inoue D, Kellner T, Kirchmaier S, Mueller C, Reinhardt R, Schertel L, Schneider S, Sinn R, Wittbrodt B, Wittbrodt J, Jain G, Balasundaram G, Bates DL, Byron R, Canfield TK, Diegel MJ, Dunn D, Ebersol AK, Frum T, Garg K, Gist E, Hansen RS, Boatman L, Haugen E, Humbert R, Johnson AK, Johnson EM, Kutyavin TM, Lee K, Lotakis D, Maurano MT, Neph SJ, Neri FV, Nguyen ED, Qu H, Reynolds AP, Roach V, Rynes E, Sanchez ME, Sandstrom RS, Shafer AO, Stergachis AB, Thomas S, Vernot B, Vierstra J, Vong S, Weaver MA, Yan Y, Zhang M, Akey JA, Bender M, Dorschner MO, Groudine M, MacCoß MJ, Navas P, Stamatoyannopoulos G, Stamatoyannopoulos JA, Beal K, Brazma A, Flicek P, Johnson N, Lukk M, Luscombe NM, Sobral D, Vaquerizas JM, Batzoglou S, Sidow A, Hußami N, Kyriazopoulou-Panagiotopoulou S, Libbrecht MW, Schaub MA, Miller W, Bickel PJ, Banfai B, Boley NP, Huang H, Li JJ, Noble WS, Bilmes JA, Buske OJ, Sahu AO, Kharchenko PV, Park PJ, Baker D, Taylor J, Lochovsky L. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Dunham, I.1    Kundaje, A.2    Aldred, S.F.3    Collins, P.J.4    Davis, C.A.5    Doyle, F.6    Epstein, C.B.7    Frietze, S.8    Harrow, J.9    Kaul, R.10    Khatun, J.11    Lajoie, B.R.12    Landt, S.G.13    Lee, B.K.14    Pauli, F.15    Rosenbloom, K.R.16    Sabo, P.17    Safi, A.18    Sanyal, A.19    Shoresh, N.20    more..
  • 51
    • 84875183056 scopus 로고    scopus 로고
    • Structure and function of long noncoding RNAs in epigenetic regulation
    • Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300-307.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 300-307
    • Mercer, T.R.1    Mattick, J.S.2
  • 52
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution-trashing old rules to forge new ones
    • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77-94.
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 55
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 2013;154:490-503.
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 56
    • 84863149111 scopus 로고    scopus 로고
    • Epigenetics and cardiovascular development
    • Chang CP, Bruneau BG. Epigenetics and cardiovascular development. Annu Rev Physiol. 2012;74:41-68.
    • (2012) Annu Rev Physiol , vol.74 , pp. 41-68
    • Chang, C.P.1    Bruneau, B.G.2
  • 57
    • 84871590663 scopus 로고    scopus 로고
    • BAF60 A, B, and Cs of muscle determination and renewal
    • Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev. 2012;26:2673-2683.
    • (2012) Genes Dev , vol.26 , pp. 2673-2683
    • Puri, P.L.1    Mercola, M.2
  • 58
    • 84895074956 scopus 로고    scopus 로고
    • SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease
    • Bevilacqua A, Willis MS, Bultman SJ. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease. Cardiovasc Pathol. 2014;23:85-91.
    • (2014) Cardiovasc Pathol , vol.23 , pp. 85-91
    • Bevilacqua, A.1    Willis, M.S.2    Bultman, S.J.3
  • 59
    • 79958718578 scopus 로고    scopus 로고
    • Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities
    • Chang L, Kiriazis H, Gao XM, Du XJ, El-Osta A. Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics. 2011;6:760-768.
    • (2011) Epigenetics , vol.6 , pp. 760-768
    • Chang, L.1    Kiriazis, H.2    Gao, X.M.3    Du, X.J.4    El-Osta, A.5
  • 60
    • 79957490739 scopus 로고    scopus 로고
    • Epigenetic regulation of cardiovascular differentiation
    • Ohtani K, Dimmeler S. Epigenetic regulation of cardiovascular differentiation. Cardiovasc Res. 2011;90:404-412.
    • (2011) Cardiovasc Res , vol.90 , pp. 404-412
    • Ohtani, K.1    Dimmeler, S.2
  • 61
    • 84555204370 scopus 로고    scopus 로고
    • Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer
    • Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai). 2012;44:54-69.
    • (2012) Acta Biochim Biophys Sin (Shanghai) , vol.44 , pp. 54-69
    • Wu, J.I.1
  • 63
    • 84898961854 scopus 로고    scopus 로고
    • Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repreßion cardiac gene transcription during P19 cell differentiation
    • Singh AP, Archer TK. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repreßion cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res. 2014;42:2958-2975.
    • (2014) Nucleic Acids Res , vol.42 , pp. 2958-2975
    • Singh, A.P.1    Archer, T.K.2
  • 64
    • 84863811009 scopus 로고    scopus 로고
    • SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin acceßibility during second heart field development
    • Lei I, Gao X, Sham MH, Wang Z. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin acceßibility during second heart field development. J Biol Chem. 2012;287:24255-24262.
    • (2012) J Biol Chem , vol.287 , pp. 24255-24262
    • Lei, I.1    Gao, X.2    Sham, M.H.3    Wang, Z.4
  • 65
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their poßible role in the regulation of RNA synthesis
    • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their poßible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786-794.
    • (1964) Proc Natl Acad Sci U S A , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 66
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84:843-851.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1    Zhou, J.2    Ranalli, T.3    Kobayashi, R.4    Edmondson, D.G.5    Roth, S.Y.6    Allis, C.D.7
  • 67
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
    • Taunton J, Haßig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996;272:408-411.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1    Haßig, C.A.2    Schreiber, S.L.3
  • 70
    • 84886812954 scopus 로고    scopus 로고
    • The nexus of chromatin regulation and intermediary metabolism
    • Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature. 2013;502:489-498.
    • (2013) Nature , vol.502 , pp. 489-498
    • Gut, P.1    Verdin, E.2
  • 71
    • 84874067738 scopus 로고    scopus 로고
    • Protein lysine acetylation analysis: Current MSbased proteomic technologies
    • Zhang K, Tian S, Fan E. Protein lysine acetylation analysis: current MSbased proteomic technologies. Analyst. 2013;138:1628-1636.
    • (2013) Analyst , vol.138 , pp. 1628-1636
    • Zhang, K.1    Tian, S.2    Fan, E.3
  • 74
    • 0028876839 scopus 로고
    • A family of transcriptional adaptor proteins targeted by the E1A oncoprotein
    • Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature. 1995;374:81-84.
    • (1995) Nature , vol.374 , pp. 81-84
    • Arany, Z.1    Newsome, D.2    Oldread, E.3    Livingston, D.M.4    Eckner, R.5
  • 77
    • 0037470133 scopus 로고    scopus 로고
    • The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity
    • Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003;278:6838-6847.
    • (2003) J Biol Chem , vol.278 , pp. 6838-6847
    • Gusterson, R.J.1    Jazrawi, E.2    Adcock, I.M.3    Latchman, D.S.4
  • 80
    • 33644849325 scopus 로고    scopus 로고
    • Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo
    • Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation. 2006;113:679-690.
    • (2006) Circulation , vol.113 , pp. 679-690
    • Miyamoto, S.1    Kawamura, T.2    Morimoto, T.3    Ono, K.4    Wada, H.5    Kawase, Y.6    Matsumori, A.7    Nishio, R.8    Kita, T.9    Hasegawa, K.10
  • 83
    • 34347346076 scopus 로고    scopus 로고
    • Regulation of P-TEFb elongation complex activity by CDK9 acetylation
    • Fu J, Yoon HG, Qin J, Wong J. Regulation of P-TEFb elongation complex activity by CDK9 acetylation. Mol Cell Biol. 2007;27:4641-4651.
    • (2007) Mol Cell Biol , vol.27 , pp. 4641-4651
    • Fu, J.1    Yoon, H.G.2    Qin, J.3    Wong, J.4
  • 86
    • 1842578986 scopus 로고    scopus 로고
    • Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
    • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17-31.
    • (2004) J Mol Biol , vol.338 , pp. 17-31
    • Gregoretti, I.V.1    Lee, Y.M.2    Goodson, H.V.3
  • 88
    • 61749094417 scopus 로고    scopus 로고
    • Endothelinstimulated human B-type natriuretic peptide gene expreßion is mediated by Yin Yang 1 in aßociation with histone deacetylase 2
    • Glenn DJ, Wang F, Chen S, Nishimoto M, Gardner DG. Endothelinstimulated human B-type natriuretic peptide gene expreßion is mediated by Yin Yang 1 in aßociation with histone deacetylase 2. Hypertension. 2009;53:549-555.
    • (2009) Hypertension , vol.53 , pp. 549-555
    • Glenn, D.J.1    Wang, F.2    Chen, S.3    Nishimoto, M.4    Gardner, D.G.5
  • 89
    • 70449095895 scopus 로고    scopus 로고
    • Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy
    • Kee HJ, Kook H. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol. 2009;47:770-780.
    • (2009) J Mol Cell Cardiol , vol.47 , pp. 770-780
    • Kee, H.J.1    Kook, H.2
  • 93
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice
    • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758-2771.
    • (2009) J Clin Invest , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4    Isbatan, A.5    Gupta, M.P.6
  • 94
    • 80052799903 scopus 로고    scopus 로고
    • Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy
    • Sundaresan NR, Pillai VB, Gupta MP. Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol. 2011;51:614-618.
    • (2011) J Mol Cell Cardiol , vol.51 , pp. 614-618
    • Sundaresan, N.R.1    Pillai, V.B.2    Gupta, M.P.3
  • 95
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases streß resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E. Sirt7 increases streß resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102:703-710.
    • (2008) Circ Res , vol.102 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3    Kostin, S.4    Boettger, T.5    Kubin, T.6    Braun, T.7    Bober, E.8
  • 97
    • 35548942629 scopus 로고    scopus 로고
    • Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury
    • Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF. Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res. 2007;76:473-481.
    • (2007) Cardiovasc Res , vol.76 , pp. 473-481
    • Zhao, T.C.1    Cheng, G.2    Zhang, L.X.3    Tseng, Y.T.4    Padbury, J.F.5
  • 99
    • 72449139586 scopus 로고    scopus 로고
    • Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition
    • Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009;297:L864-L870.
    • (2009) Am J Physiol Lung Cell Mol Physiol , vol.297 , pp. L864-L870
    • Guo, W.1    Shan, B.2    Klingsberg, R.C.3    Qin, X.4    Lasky, J.A.5
  • 100
    • 33745173485 scopus 로고    scopus 로고
    • Suppreßion of claß I and II histone deacetylases blunts preßure overload cardiac hypertrophy
    • Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA. Suppreßion of claß I and II histone deacetylases blunts preßure overload cardiac hypertrophy. Circulation. 2006;113:2579-2588.
    • (2006) Circulation , vol.113 , pp. 2579-2588
    • Kong, Y.1    Tannous, P.2    Lu, G.3    Berenji, K.4    Rothermel, B.A.5    Olson, E.N.6    Hill, J.A.7
  • 101
    • 78149267015 scopus 로고    scopus 로고
    • Histone deacetylase: A potential therapeutic target for fibrotic disorders
    • Pang M, Zhuang S. Histone deacetylase: a potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther. 2010;335:266-272.
    • (2010) J Pharmacol Exp Ther , vol.335 , pp. 266-272
    • Pang, M.1    Zhuang, S.2
  • 102
    • 67249152096 scopus 로고    scopus 로고
    • Cardiac fibroblasts: At the heart of myocardial remodeling
    • Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123:255-278.
    • (2009) Pharmacol Ther , vol.123 , pp. 255-278
    • Porter, K.E.1    Turner, N.A.2
  • 103
    • 73349122017 scopus 로고    scopus 로고
    • Cardiac fibroblast: The renaißance cell
    • Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaißance cell. Circ Res. 2009;105:1164-1176.
    • (2009) Circ Res , vol.105 , pp. 1164-1176
    • Souders, C.A.1    Bowers, S.L.2    Baudino, T.A.3
  • 104
    • 84874958737 scopus 로고    scopus 로고
    • Function and fate of myofibroblasts after myocardial infarction
    • Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tißue Repair. 2013;6:5.
    • (2013) Fibrogenesis Tißue Repair , vol.6 , pp. 5
    • Turner, N.A.1    Porter, K.E.2
  • 105
    • 77954621422 scopus 로고    scopus 로고
    • Trichostatin a prevents TGF-beta1-induced apoptosis by inhibiting ERK activation in human renal tubular epithelial cells
    • Yoshikawa M, Hishikawa K, Idei M, Fujita T. Trichostatin a prevents TGF-beta1-induced apoptosis by inhibiting ERK activation in human renal tubular epithelial cells. Eur J Pharmacol. 2010;642:28-36.
    • (2010) Eur J Pharmacol , vol.642 , pp. 28-36
    • Yoshikawa, M.1    Hishikawa, K.2    Idei, M.3    Fujita, T.4
  • 106
    • 77955984513 scopus 로고    scopus 로고
    • HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats
    • Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension. 2010;56:437-444.
    • (2010) Hypertension , vol.56 , pp. 437-444
    • Cardinale, J.P.1    Sriramula, S.2    Pariaut, R.3    Guggilam, A.4    Mariappan, N.5    Elks, C.M.6    Francis, J.7
  • 107
    • 73449117582 scopus 로고    scopus 로고
    • Immunomodulatory effects of deacetylase inhibitors: Therapeutic targeting of FOXP3+ regulatory T cells
    • Wang L, de Zoeten EF, Greene MI, Hancock WW. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov. 2009;8:969-981.
    • (2009) Nat Rev Drug Discov , vol.8 , pp. 969-981
    • Wang, L.1    De Zoeten, E.F.2    Greene, M.I.3    Hancock, W.W.4
  • 108
    • 44349184388 scopus 로고    scopus 로고
    • HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity
    • Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008;283:10135-10146.
    • (2008) J Biol Chem , vol.283 , pp. 10135-10146
    • Gupta, M.P.1    Samant, S.A.2    Smith, S.H.3    Shroff, S.G.4
  • 110
    • 34547886153 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase on ventricular remodeling in infarcted rats
    • Lee TM, Lin MS, Chang NC. Inhibition of histone deacetylase on ventricular remodeling in infarcted rats. Am J Physiol Heart Circ Physiol. 2007;293:H968-H977.
    • (2007) Am J Physiol Heart Circ Physiol , vol.293 , pp. H968-H977
    • Lee, T.M.1    Lin, M.S.2    Chang, N.C.3
  • 113
    • 0034597816 scopus 로고    scopus 로고
    • Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation
    • McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106-111.
    • (2000) Nature , vol.408 , pp. 106-111
    • McKinsey, T.A.1    Zhang, C.L.2    Lu, J.3    Olson, E.N.4
  • 114
    • 0037162697 scopus 로고    scopus 로고
    • Claß II histone deacetylases act as signal-responsive repreßors of cardiac hypertrophy
    • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Claß II histone deacetylases act as signal-responsive repreßors of cardiac hypertrophy. Cell. 2002;110:479-488.
    • (2002) Cell , vol.110 , pp. 479-488
    • Zhang, C.L.1    McKinsey, T.A.2    Chang, S.3    Antos, C.L.4    Hill, J.A.5    Olson, E.N.6
  • 119
    • 84855875719 scopus 로고    scopus 로고
    • Therapeutic potential for HDAC inhibitors in the heart
    • McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol. 2012;52:303-319.
    • (2012) Annu Rev Pharmacol Toxicol , vol.52 , pp. 303-319
    • McKinsey, T.A.1
  • 124
    • 55549099609 scopus 로고    scopus 로고
    • Transgenic overexpreßion of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy
    • Trivedi CM, Lu MM, Wang Q, Epstein JA. Transgenic overexpreßion of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem. 2008;283:26484-26489.
    • (2008) J Biol Chem , vol.283 , pp. 26484-26489
    • Trivedi, C.M.1    Lu, M.M.2    Wang, Q.3    Epstein, J.A.4
  • 125
    • 67650572769 scopus 로고    scopus 로고
    • Epigenetic control of skull morphogenesis by histone deacetylase 8
    • Haberland M, Mokalled MH, Montgomery RL, Olson EN. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 2009;23:1625-1630.
    • (2009) Genes Dev , vol.23 , pp. 1625-1630
    • Haberland, M.1    Mokalled, M.H.2    Montgomery, R.L.3    Olson, E.N.4
  • 126
    • 33745812011 scopus 로고    scopus 로고
    • CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy
    • Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006;116:1853-1864.
    • (2006) J Clin Invest , vol.116 , pp. 1853-1864
    • Backs, J.1    Song, K.2    Bezprozvannaya, S.3    Chang, S.4    Olson, E.N.5
  • 127
    • 4544358659 scopus 로고    scopus 로고
    • Histone deacetylases 5 and 9 govern responsiveneß of the heart to a subset of streß signals and play redundant roles in heart development
    • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveneß of the heart to a subset of streß signals and play redundant roles in heart development. Mol Cell Biol. 2004;24:8467-8476.
    • (2004) Mol Cell Biol , vol.24 , pp. 8467-8476
    • Chang, S.1    McKinsey, T.A.2    Zhang, C.L.3    Richardson, J.A.4    Hill, J.A.5    Olson, E.N.6
  • 128
    • 4544315655 scopus 로고    scopus 로고
    • Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5
    • Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24:8374-8385.
    • (2004) Mol Cell Biol , vol.24 , pp. 8374-8385
    • Vega, R.B.1    Harrison, B.C.2    Meadows, E.3    Roberts, C.R.4    Papst, P.J.5    Olson, E.N.6    McKinsey, T.A.7
  • 130
    • 33644837326 scopus 로고    scopus 로고
    • Control of cardiac growth by histone acetylation/deacetylation
    • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res. 2006;98:15-24.
    • (2006) Circ Res , vol.98 , pp. 15-24
    • Backs, J.1    Olson, E.N.2
  • 132
    • 84880183268 scopus 로고    scopus 로고
    • HDAC inhibition suppreßes cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity
    • Kee HJ, Bae EH, Park S, Lee KE, Suh SH, Kim SW, Jeong MH. HDAC inhibition suppreßes cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity. Kidney Blood Preß Res. 2013;37:229-239.
    • (2013) Kidney Blood Preß Res , vol.37 , pp. 229-239
    • Kee, H.J.1    Bae, E.H.2    Park, S.3    Lee, K.E.4    Suh, S.H.5    Kim, S.W.6    Jeong, M.H.7
  • 136
    • 84873863863 scopus 로고    scopus 로고
    • Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy
    • Sayed D, He M, Yang Z, Lin L, Abdellatif M. Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy. J Biol Chem. 2013;288:2546-2558.
    • (2013) J Biol Chem , vol.288 , pp. 2546-2558
    • Sayed, D.1    He, M.2    Yang, Z.3    Lin, L.4    Abdellatif, M.5
  • 138
    • 23744514308 scopus 로고    scopus 로고
    • The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription
    • Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell. 2005;19:523-534.
    • (2005) Mol Cell , vol.19 , pp. 523-534
    • Jang, M.K.1    Mochizuki, K.2    Zhou, M.3    Jeong, H.S.4    Brady, J.N.5    Ozato, K.6
  • 139
    • 23744467035 scopus 로고    scopus 로고
    • Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4
    • Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005;19:535-545.
    • (2005) Mol Cell , vol.19 , pp. 535-545
    • Yang, Z.1    Yik, J.H.2    Chen, R.3    He, N.4    Jang, M.K.5    Ozato, K.6    Zhou, Q.7
  • 140
    • 84886853624 scopus 로고    scopus 로고
    • Topology of mammalian developmental enhancers and their regulatory landscapes
    • de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013;502:499-506.
    • (2013) Nature , vol.502 , pp. 499-506
    • De Laat, W.1    Duboule, D.2
  • 141
    • 84886808679 scopus 로고    scopus 로고
    • Chromatin proteins and modifications as drug targets
    • Helin K, Dhanak D. Chromatin proteins and modifications as drug targets. Nature. 2013;502:480-488.
    • (2013) Nature , vol.502 , pp. 480-488
    • Helin, K.1    Dhanak, D.2
  • 142
    • 33646486601 scopus 로고    scopus 로고
    • Histone lysine demethylases and their impact on epigenetics
    • Trojer P, Reinberg D. Histone lysine demethylases and their impact on epigenetics. Cell. 2006;125:213-217.
    • (2006) Cell , vol.125 , pp. 213-217
    • Trojer, P.1    Reinberg, D.2
  • 145
    • 79957892087 scopus 로고    scopus 로고
    • The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice
    • Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011;121:2447-2456.
    • (2011) J Clin Invest , vol.121 , pp. 2447-2456
    • Zhang, Q.J.1    Chen, H.Z.2    Wang, L.3    Liu, D.P.4    Hill, J.A.5    Liu, Z.P.6
  • 146
    • 84876871047 scopus 로고    scopus 로고
    • Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put
    • Simon JA, Kingston RE. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell. 2013;49:808-824.
    • (2013) Mol Cell , vol.49 , pp. 808-824
    • Simon, J.A.1    Kingston, R.E.2
  • 147
    • 78751662908 scopus 로고    scopus 로고
    • The Polycomb complex PRC2 and its mark in life
    • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343-349.
    • (2011) Nature , vol.469 , pp. 343-349
    • Margueron, R.1    Reinberg, D.2
  • 148
    • 84888001513 scopus 로고    scopus 로고
    • A new world of Polycombs: Unexpected partnerships and emerging functions
    • Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet. 2013;14:853-864.
    • (2013) Nat Rev Genet , vol.14 , pp. 853-864
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 149
    • 84864876023 scopus 로고    scopus 로고
    • Inner workings and regulatory inputs that control Polycomb repreßive complex 2
    • O'Meara MM, Simon JA. Inner workings and regulatory inputs that control Polycomb repreßive complex 2. Chromosoma. 2012;121:221-234.
    • (2012) Chromosoma , vol.121 , pp. 221-234
    • O'Meara, M.M.1    Simon, J.A.2
  • 153
    • 84875418596 scopus 로고    scopus 로고
    • Noncoding RNA and Polycomb recruitment
    • Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013;19:429-442.
    • (2013) RNA , vol.19 , pp. 429-442
    • Brockdorff, N.1
  • 154
    • 81055140863 scopus 로고    scopus 로고
    • NcRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs
    • Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147:773-788.
    • (2011) Cell , vol.147 , pp. 773-788
    • Yang, L.1    Lin, C.2    Liu, W.3    Zhang, J.4    Ohgi, K.A.5    Grinstein, J.D.6    Dorrestein, P.C.7    Rosenfeld, M.G.8
  • 156
    • 84893302190 scopus 로고    scopus 로고
    • The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expreßion in the heart
    • Mathiyalagan P, Okabe J, Chang L, Su Y, Du XJ, El-Osta A. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expreßion in the heart. Nucleic Acids Res. 2014;42:790-803.
    • (2014) Nucleic Acids Res , vol.42 , pp. 790-803
    • Mathiyalagan, P.1    Okabe, J.2    Chang, L.3    Su, Y.4    Du, X.J.5    El-Osta, A.6
  • 157
    • 84875129831 scopus 로고    scopus 로고
    • DNA methylation dynamics in health and disease
    • Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol. 2013;20:274-281.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 274-281
    • Bergman, Y.1    Cedar, H.2
  • 159
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: Roles in mammalian development
    • Smith ZD, Meißner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204-220.
    • (2013) Nat Rev Genet , vol.14 , pp. 204-220
    • Smith, Z.D.1    Meißner, A.2
  • 160
    • 84875167169 scopus 로고    scopus 로고
    • Non-canonical functions of the DNA methylome in gene regulation
    • Reddington JP, Pennings S, Meehan RR. Non-canonical functions of the DNA methylome in gene regulation. Biochem J. 2013;451:13-23.
    • (2013) Biochem J , vol.451 , pp. 13-23
    • Reddington, J.P.1    Pennings, S.2    Meehan, R.R.3
  • 161
    • 84877930005 scopus 로고    scopus 로고
    • DNA methylation and methylcytosine oxidation in cell fate decisions
    • Koh KP, Rao A. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol. 2013;25:152-161.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 152-161
    • Koh, K.P.1    Rao, A.2
  • 162
    • 84863986133 scopus 로고    scopus 로고
    • Functions of DNA methylation: Islands, start sites, gene bodies and beyond
    • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484-492.
    • (2012) Nat Rev Genet , vol.13 , pp. 484-492
    • Jones, P.A.1
  • 163
    • 0026708177 scopus 로고
    • Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
    • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915-926.
    • (1992) Cell , vol.69 , pp. 915-926
    • Li, E.1    Bestor, T.H.2    Jaenisch, R.3
  • 164
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are eßential for de novo methylation and mammalian development
    • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are eßential for de novo methylation and mammalian development. Cell. 1999;99:247-257.
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1    Bell, D.W.2    Haber, D.A.3    Li, E.4
  • 165
    • 79951903268 scopus 로고    scopus 로고
    • Genome-wide DNA methylation in human heart failure
    • Movaßagh M, Vujic A, Foo R. Genome-wide DNA methylation in human heart failure. Epigenomics. 2011;3:103-109.
    • (2011) Epigenomics , vol.3 , pp. 103-109
    • Movaßagh, M.1    Vujic, A.2    Foo, R.3
  • 168
    • 77649197044 scopus 로고    scopus 로고
    • Differential DNA methylation correlates with differential expreßion of angiogenic factors in human heart failure
    • Movaßagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS. Differential DNA methylation correlates with differential expreßion of angiogenic factors in human heart failure. PLoS One. 2010;5:e8564.
    • (2010) PLoS One , vol.5 , pp. e8564
    • Movaßagh, M.1    Choy, M.K.2    Goddard, M.3    Bennett, M.R.4    Down, T.A.5    Foo, R.S.6
  • 170
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861-874.
    • (2011) Nat Rev Genet , vol.12 , pp. 861-874
    • Esteller, M.1
  • 171
    • 84868705910 scopus 로고    scopus 로고
    • Long noncoding RNAs in cardiac development and pathophysiology
    • Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res. 2012;111:1349-1362.
    • (2012) Circ Res , vol.111 , pp. 1349-1362
    • Schonrock, N.1    Harvey, R.P.2    Mattick, J.S.3
  • 172
    • 84895552736 scopus 로고    scopus 로고
    • Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
    • Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129:1009-1021.
    • (2014) Circulation , vol.129 , pp. 1009-1021
    • Yang, K.C.1    Yamada, K.A.2    Patel, A.Y.3    Topkara, V.K.4    George, I.5    Cheema, F.H.6    Ewald, G.A.7    Mann, D.L.8    Nerbonne, J.M.9
  • 174
    • 12844269788 scopus 로고    scopus 로고
    • Role of endogenous antisense RNA in cardiac gene regulation
    • Luther HP. Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med (Berl). 2005;83:26-32.
    • (2005) J Mol Med (Berl) , vol.83 , pp. 26-32
    • Luther, H.P.1
  • 175
    • 59649084181 scopus 로고    scopus 로고
    • Cell type-specific expreßion of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart
    • Voigtsberger S, Bartsch H, Baumann G, Luther HP. Cell type-specific expreßion of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart. Mol Cell Biochem. 2009;324:1-11.
    • (2009) Mol Cell Biochem , vol.324 , pp. 1-11
    • Voigtsberger, S.1    Bartsch, H.2    Baumann, G.3    Luther, H.P.4
  • 177
    • 69349092918 scopus 로고    scopus 로고
    • Natural antisense transcript of natriuretic peptide precursor A (NPPA): Structural organization and modulation of NPPA expreßion
    • Annilo T, Kepp K, Laan M. Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expreßion. BMC Mol Biol. 2009;10:81.
    • (2009) BMC Mol Biol , vol.10 , pp. 81
    • Annilo, T.1    Kepp, K.2    Laan, M.3
  • 178
    • 0033567836 scopus 로고    scopus 로고
    • Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors
    • Ritter O, Haase H, Schulte HD, Lange PE, Morano I. Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J Cell Biochem. 1999;74:551-561.
    • (1999) J Cell Biochem , vol.74 , pp. 551-561
    • Ritter, O.1    Haase, H.2    Schulte, H.D.3    Lange, P.E.4    Morano, I.5
  • 181
    • 77953096072 scopus 로고    scopus 로고
    • Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
    • Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662-674.
    • (2010) Mol Cell , vol.38 , pp. 662-674
    • Yap, K.L.1    Li, S.2    Muñoz-Cabello, A.M.3    Raguz, S.4    Zeng, L.5    Mujtaba, S.6    Gil, J.7    Walsh, M.J.8    Zhou, M.M.9
  • 182
    • 65349121886 scopus 로고    scopus 로고
    • Genomics, transcriptional profiling, and heart failure
    • Margulies KB, Bednarik DP, Dries DL. Genomics, transcriptional profiling, and heart failure. J Am Coll Cardiol. 2009;53:1752-1759.
    • (2009) J Am Coll Cardiol , vol.53 , pp. 1752-1759
    • Margulies, K.B.1    Bednarik, D.P.2    Dries, D.L.3
  • 184
    • 84883573937 scopus 로고    scopus 로고
    • Genetic cardiomyopathies causing heart failure
    • Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113:660-675.
    • (2013) Circ Res , vol.113 , pp. 660-675
    • Cahill, T.J.1    Ashrafian, H.2    Watkins, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.