-
1
-
-
84859357588
-
Novel molecular targets for atrial fibrillation therapy
-
Dobrev D, Carlsson L, Nattel S. Novel molecular targets for atrial fibrillation therapy. Nat Rev Drug Discov. 2012;11:275-291.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 275-291
-
-
Dobrev, D.1
Carlsson, L.2
Nattel, S.3
-
2
-
-
78149284803
-
Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: Epicardial breakthrough
-
de Groot NM, Houben RP, Smeets JL, Boersma E, Schotten U, Schalij MJ, Crijns H, Allessie MA. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 2010;122:1674-1682.
-
(2010)
Circulation
, vol.122
, pp. 1674-1682
-
-
De Groot, N.M.1
Houben, R.P.2
Smeets, J.L.3
Boersma, E.4
Schotten, U.5
Schalij, M.J.6
Crijns, H.7
Allessie, M.A.8
-
3
-
-
84866279645
-
Loss of proteostatic control as a substrate for atrial fibrillation; A novel target for upstream therapy by heat shock proteins
-
Meijering RAM, Zhang D, Hoogstra-Berends F, Henning RH, Brundel BJJM. Loss of proteostatic control as a substrate for atrial fibrillation; a novel target for upstream therapy by heat shock proteins. Front Card Electrophysiol. 2012;3:36.
-
(2012)
Front Card Electrophysiol
, vol.3
, pp. 36
-
-
Meijering, R.A.M.1
Zhang, D.2
Hoogstra-Berends, F.3
Henning, R.H.4
Brundel, B.J.J.M.5
-
4
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
-
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32-42.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
6
-
-
0035839136
-
Translating the histone code
-
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074-1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
7
-
-
0030770732
-
Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation
-
Ausma J, Wijffels M, van Eys G, Koide M, Ramaekers F, Allessie M, Borgers M. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997;151:985-997.
-
(1997)
Am J Pathol
, vol.151
, pp. 985-997
-
-
Ausma, J.1
Wijffels, M.2
Van Eys, G.3
Koide, M.4
Ramaekers, F.5
Allessie, M.6
Borgers, M.7
-
8
-
-
4143093516
-
Troponin i isoform expression in human and experimental atrial fibrillation
-
Thijssen VL, Ausma J, Gorza L, van der Velden HM, Allessie MA, Van Gelder IC, Borgers M, van Eys GJ. Troponin I isoform expression in human and experimental atrial fibrillation. Circulation. 2004;110:770-775.
-
(2004)
Circulation
, vol.110
, pp. 770-775
-
-
Thijssen, V.L.1
Ausma, J.2
Gorza, L.3
Van Der Velden, H.M.4
Allessie, M.A.5
Van Gelder, I.C.6
Borgers, M.7
Van Eys, G.J.8
-
9
-
-
55649123444
-
Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin
-
Liu F, Levin MD, Petrenko NB, Lu MM, Wang T, Yuan LJ, Stout AL, Epstein JA, Patel VV. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol. 2008;45:715-723.
-
(2008)
J Mol Cell Cardiol
, vol.45
, pp. 715-723
-
-
Liu, F.1
Levin, M.D.2
Petrenko, N.B.3
Lu, M.M.4
Wang, T.5
Yuan, L.J.6
Stout, A.L.7
Epstein, J.A.8
Patel, V.V.9
-
10
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455-458.
-
(2002)
Nature
, vol.417
, pp. 455-458
-
-
Hubbert, C.1
Guardiola, A.2
Shao, R.3
Kawaguchi, Y.4
Ito, A.5
Nixon, A.6
Yoshida, M.7
Wang, X.F.8
Yao, T.P.9
-
11
-
-
0344640906
-
Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation
-
Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A. 2003;100:4389-4394.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 4389-4394
-
-
Haggarty, S.J.1
Koeller, K.M.2
Wong, J.C.3
Grozinger, C.M.4
Schreiber, S.L.5
-
12
-
-
12244295468
-
In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation
-
Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N, Khochbin S, Horinouchi S, Yoshida M. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 2002;21:6820-6831.
-
(2002)
EMBO J
, vol.21
, pp. 6820-6831
-
-
Matsuyama, A.1
Shimazu, T.2
Sumida, Y.3
Saito, A.4
Yoshimatsu, Y.5
Seigneurin-Berny, D.6
Osada, H.7
Komatsu, Y.8
Nishino, N.9
Khochbin, S.10
Horinouchi, S.11
Yoshida, M.12
-
13
-
-
44349184388
-
HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity
-
Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008;283:10135-10146.
-
(2008)
J Biol Chem
, vol.283
, pp. 10135-10146
-
-
Gupta, M.P.1
Samant, S.A.2
Smith, S.H.3
Shroff, S.G.4
-
14
-
-
0343938808
-
Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes
-
Gómez AM, Kerfant BG, Vassort G. Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes. Circ Res. 2000;86:30-36.
-
(2000)
Circ Res
, vol.86
, pp. 30-36
-
-
Gómez, A.M.1
Kerfant, B.G.2
Vassort, G.3
-
15
-
-
67650418364
-
Targeting histone deacetylases for heart failure
-
Bush EW, McKinsey TA. Targeting histone deacetylases for heart failure. Expert Opin Ther Targets. 2009;13:767-784.
-
(2009)
Expert Opin Ther Targets
, vol.13
, pp. 767-784
-
-
Bush, E.W.1
McKinsey, T.A.2
-
16
-
-
33845671633
-
Induction of heat shock response protects the heart against atrial fibrillation
-
Brundel BJ, Shiroshita-Takeshita A, Qi X, Yeh YH, Chartier D, van Gelder IC, Henning RH, Kampinga HH, Nattel S. Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 2006;99:1394-1402.
-
(2006)
Circ Res
, vol.99
, pp. 1394-1402
-
-
Brundel, B.J.1
Shiroshita-Takeshita, A.2
Qi, X.3
Yeh, Y.H.4
Chartier, D.5
Van Gelder, I.C.6
Henning, R.H.7
Kampinga, H.H.8
Nattel, S.9
-
17
-
-
55649083093
-
Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation
-
Ke L, Qi XY, Dijkhuis AJ, Chartier D, Nattel S, Henning RH, Kampinga HH, Brundel BJ. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J Mol Cell Cardiol. 2008;45:685-693.
-
(2008)
J Mol Cell Cardiol
, vol.45
, pp. 685-693
-
-
Ke, L.1
Qi, X.Y.2
Dijkhuis, A.J.3
Chartier, D.4
Nattel, S.5
Henning, R.H.6
Kampinga, H.H.7
Brundel, B.J.8
-
18
-
-
77955355838
-
Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A
-
Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010;132:10842-10846.
-
(2010)
J Am Chem Soc
, vol.132
, pp. 10842-10846
-
-
Butler, K.V.1
Kalin, J.2
Brochier, C.3
Vistoli, G.4
Langley, B.5
Kozikowski, A.P.6
-
19
-
-
77955463320
-
Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease
-
Bradner JE, Mak R, Tanguturi SK, et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. PNAS. 2010;107:12617-12622.
-
(2010)
PNAS
, vol.107
, pp. 12617-12622
-
-
Bradner, J.E.1
Mak, R.2
Tanguturi, S.K.3
-
21
-
-
84878726099
-
Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders
-
den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans DM, Nolte IM, Segrè AV, Holm H, Handsaker RE, Westra HJ, Johnson T, Isaacs A, Yang J, Lundby A, Zhao JH, Kim YJ, Go MJ, Almgren P, Bochud M, Boucher G, Cornelis MC, Gudbjartsson D, Hadley D, van der Harst P, Hayward C, den Heijer M, Igl W, Jackson AU, Kutalik Z, Luan J, Kemp JP, Kristiansson K, Ladenvall C, Lorentzon M, Montasser ME, Njajou OT, O'Reilly PF, Padmanabhan S, St. Pourcain B, Rankinen T, Salo P, Tanaka T, Timpson NJ, Vitart V, Waite L, Wheeler W, Zhang W, Draisma HH, Feitosa MF, Kerr KF, Lind PA, Mihailov E, Onland-Moret NC, Song C, Weedon MN, Xie W, Yengo L, Absher D, Albert CM, Alonso A, Arking DE, de Bakker PI, Balkau B, Barlassina C, Benaglio P, Bis JC, Bouatia-Naji N, Brage S, Chanock SJ, Chines PS, Chung M, Darbar D, Dina C, Dörr M, Elliott P, Felix SB, Fischer K, Fuchsberger C, de Geus EJ, Goyette P, Gudnason V, Harris TB, Hartikainen AL, Havulinna AS, Heckbert SR, Hicks AA, Hofman A, Holewijn S, Hoogstra-Berends F, Hottenga JJ, Jensen MK, Johansson A, Junttila J, Kääb S, Kanon B, Ketkar S, Khaw KT, Knowles JW, Kooner AS, Kors JA, Kumari M, Milani L, Laiho P, Lakatta EG, Langenberg C, Leusink M, Liu Y, Luben RN, Lunetta KL, Lynch SN, Markus MR, Marques-Vidal P, Mateo Leach I, McArdle WL, McCarroll SA, Medland SE, Miller KA, Montgomery GW, Morrison AC, Müller-Nurasyid M, Navarro P, Nelis M, O'Connell JR, O'Donnell CJ, Ong KK, Newman AB, Peters A, Polasek O, Pouta A, Pramstaller PP, Psaty BM, Rao DC, Ring SM, Rossin EJ, Rudan D, Sanna S, Scott RA, Sehmi JS, Sharp S, Shin JT, Singleton AB, Smith AV, Soranzo N, Spector TD, Stewart C, Stringham HM, Tarasov KV, Uitterlinden AG, Vandenput L, Hwang SJ, Whitfield JB, Wijmenga C, Wild SH, Willemsen G, Wilson JF, Witteman JC, Wong A, Wong Q, Jamshidi Y, Zitting P, Boer JM, Boomsma DI, Borecki IB, van Duijn CM, Ekelund U, Forouhi NG, Froguel P, Hingorani A, Ingelsson E, Kivimaki M, Kronmal RA, Kuh D, Lind L, Martin NG, Oostra BA, Pedersen NL, Quertermous T, Rotter JI, van der Schouw YT, Verschuren WM, Walker M, Albanes D, Arnar DO, Assimes TL, Bandinelli S, Boehnke M, de Boer RA, Bouchard C, Caulfield WL, Chambers JC, Curhan G, Cusi D, Eriksson J, Ferrucci L, van Gilst WH, Glorioso N, de Graaf J, Groop L, Gyllensten U, Hsueh WC, Hu FB, Huikuri HV, Hunter DJ, Iribarren C, Isomaa B, Jarvelin MR, Jula A, Kähönen M, Kiemeney LA, van der Klauw MM, Kooner JS, Kraft P, Iacoviello L, Lehtimäki T, Lokki ML, Mitchell BD, Navis G, Nieminen MS, Ohlsson C, Poulter NR, Qi L, Raitakari OT, Rimm EB, Rioux JD, Rizzi F, Rudan I, Salomaa V, Sever PS, Shields DC, Shuldiner AR, Sinisalo J, Stanton AV, Stolk RP, Strachan DP, Tardif JC, Thorsteinsdottir U, Tuomilehto J, van Veldhuisen DJ, Virtamo J, Viikari J, Vollenweider P, Waeber G, Widen E, Cho YS, Olsen JV, Visscher PM, Willer C, Franke L, Erdmann J, Thompson JR, Pfeufer A, Sotoodehnia N, Newton-Cheh C, Ellinor PT, Stricker BH, Metspalu A, Perola M, Beckmann JS, Smith GD, Stefansson K, Wareham NJ, Munroe PB, Sibon OC, Milan DJ, Snieder H, Samani NJ, Loos RJ; Global BPgen Consortium; CARDIoGRAM Consortium; PR GWAS Consortium; QRS GWAS Consortium; QT-IGC Consortium; CHARGE-AF Consortium. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet. 2013;45:621-631.
-
(2013)
Nat Genet
, vol.45
, pp. 621-631
-
-
Den Hoed, M.1
Eijgelsheim, M.2
Esko, T.3
Brundel, B.J.4
Peal, D.S.5
Evans, D.M.6
Nolte, I.M.7
Segrè, A.V.8
Holm, H.9
Handsaker, R.E.10
Westra, H.J.11
Johnson, T.12
Isaacs, A.13
Yang, J.14
Lundby, A.15
Zhao, J.H.16
Kim, Y.J.17
Go, M.J.18
Almgren, P.19
Bochud, M.20
Boucher, G.21
Cornelis, M.C.22
Gudbjartsson, D.23
Hadley, D.24
Van Der Harst, P.25
Hayward, C.26
Den Heijer, M.27
Igl, W.28
Jackson, A.U.29
Kutalik, Z.30
Luan, J.31
Kemp, J.P.32
Kristiansson, K.33
Ladenvall, C.34
Lorentzon, M.35
Montasser, M.E.36
Njajou, O.T.37
O'Reilly, P.F.38
Padmanabhan, S.39
St. Pourcain, B.40
Rankinen, T.41
Salo, P.42
Tanaka, T.43
Timpson, N.J.44
Vitart, V.45
Waite, L.46
Wheeler, W.47
Zhang, W.48
Draisma, H.H.49
Feitosa, M.F.50
Kerr, K.F.51
Lind, P.A.52
Mihailov, E.53
Onland-Moret, N.C.54
Song, C.55
Weedon, M.N.56
Xie, W.57
Yengo, L.58
Absher, D.59
Albert, C.M.60
Alonso, A.61
Arking, D.E.62
De Bakker, P.I.63
Balkau, B.64
Barlassina, C.65
Benaglio, P.66
Bis, J.C.67
Bouatia-Naji, N.68
Brage, S.69
Chanock, S.J.70
Chines, P.S.71
Chung, M.72
Darbar, D.73
Dina, C.74
Dörr, M.75
Elliott, P.76
Felix, S.B.77
Fischer, K.78
Fuchsberger, C.79
De Geus, E.J.80
Goyette, P.81
Gudnason, V.82
Harris, T.B.83
Hartikainen, A.L.84
Havulinna, A.S.85
Heckbert, S.R.86
Hicks, A.A.87
Hofman, A.88
Holewijn, S.89
Hoogstra-Berends, F.90
Hottenga, J.J.91
Jensen, M.K.92
Johansson, A.93
Junttila, J.94
Kääb, S.95
Kanon, B.96
Ketkar, S.97
Khaw, K.T.98
Knowles, J.W.99
more..
-
22
-
-
79960909976
-
Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation
-
Zhang D, Ke L, Mackovicova K, Van Der Want JJ, Sibon OC, Tanguay RM, Morrow G, Henning RH, Kampinga HH, Brundel BJ. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol. 2011;51:381-389.
-
(2011)
J Mol Cell Cardiol
, vol.51
, pp. 381-389
-
-
Zhang, D.1
Ke, L.2
Mackovicova, K.3
Van Der Want, J.J.4
Sibon, O.C.5
Tanguay, R.M.6
Morrow, G.7
Henning, R.H.8
Kampinga, H.H.9
Brundel, B.J.10
-
23
-
-
79956317095
-
Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension
-
Lemon DD, Horn TR, Cavasin MA, Jeong MY, Haubold KW, Long CS, Irwin DC, McCune SA, Chung E, Leinwand LA, McKinsey TA. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol. 2011;51:41-50.
-
(2011)
J Mol Cell Cardiol
, vol.51
, pp. 41-50
-
-
Lemon, D.D.1
Horn, T.R.2
Cavasin, M.A.3
Jeong, M.Y.4
Haubold, K.W.5
Long, C.S.6
Irwin, D.C.7
McCune, S.A.8
Chung, E.9
Leinwand, L.A.10
McKinsey, T.A.11
-
24
-
-
0022341939
-
Autoregulation of tubulin synthesis in hepatocytes and fibroblasts
-
Caron JM, Jones AL, Kirschner MW. Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. J Cell Biol. 1985;101(pt 1):1763-1772.
-
(1985)
J Cell Biol
, vol.101
, Issue.PART 1
, pp. 1763-1772
-
-
Caron, J.M.1
Jones, A.L.2
Kirschner, M.W.3
-
25
-
-
77955459468
-
ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules
-
Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol. 2010;190:363-375.
-
(2010)
J Cell Biol
, vol.190
, pp. 363-375
-
-
Friedman, J.R.1
Webster, B.M.2
Mastronarde, D.N.3
Verhey, K.J.4
Voeltz, G.K.5
-
26
-
-
70350359874
-
Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6
-
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. 2009;122(pt 19):3531-3541.
-
(2009)
J Cell Sci
, vol.122
, Issue.PART 19
, pp. 3531-3541
-
-
Zilberman, Y.1
Ballestrem, C.2
Carramusa, L.3
Mazitschek, R.4
Khochbin, S.5
Bershadsky, A.6
-
27
-
-
77958457927
-
Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation
-
Nam HJ, Kang JK, Kim SK, Ahn KJ, Seok H, Park SJ, Chang JS, Pothoulakis C, Lamont JT, Kim H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J Biol Chem. 2010;285:32888-32896.
-
(2010)
J Biol Chem
, vol.285
, pp. 32888-32896
-
-
Nam, H.J.1
Kang, J.K.2
Kim, S.K.3
Ahn, K.J.4
Seok, H.5
Park, S.J.6
Chang, J.S.7
Pothoulakis, C.8
Lamont, J.T.9
Kim, H.10
-
28
-
-
0023931244
-
Proteolysis of tubulin and microtubuleassociated proteins 1 and 2 by calpain i and II: Difference in sensitivity of assembled and disassembled microtubules
-
Billger M, Wallin M, Karlsson JO. Proteolysis of tubulin and microtubuleassociated proteins 1 and 2 by calpain I and II: difference in sensitivity of assembled and disassembled microtubules. Cell Calcium. 1988;9:33-44.
-
(1988)
Cell Calcium
, vol.9
, pp. 33-44
-
-
Billger, M.1
Wallin, M.2
Karlsson, J.O.3
-
29
-
-
0036216387
-
Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation
-
Brundel BJ, Ausma J, van Gelder IC, Van der Want JJ, van Gilst WH, Crijns HJ, Henning RH. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res. 2002;54:380-389.
-
(2002)
Cardiovasc Res
, vol.54
, pp. 380-389
-
-
Brundel, B.J.1
Ausma, J.2
Van Gelder, I.C.3
Van Der Want, J.J.4
Van Gilst, W.H.5
Crijns, H.J.6
Henning, R.H.7
-
30
-
-
0034659405
-
Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm
-
Verdel A, Curtet S, Brocard MP, Rousseaux S, Lemercier C, Yoshida M, Khochbin S. Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr Biol. 2000;10:747-749.
-
(2000)
Curr Biol
, vol.10
, pp. 747-749
-
-
Verdel, A.1
Curtet, S.2
Brocard, M.P.3
Rousseaux, S.4
Lemercier, C.5
Yoshida, M.6
Khochbin, S.7
-
31
-
-
0346020435
-
The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
-
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003;115:727-738.
-
(2003)
Cell
, vol.115
, pp. 727-738
-
-
Kawaguchi, Y.1
Kovacs, J.J.2
McLaurin, A.3
Vance, J.M.4
Ito, A.5
Yao, T.P.6
-
32
-
-
28844475400
-
HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin
-
Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005;280:40282-40292.
-
(2005)
J Biol Chem
, vol.280
, pp. 40282-40292
-
-
Iwata, A.1
Riley, B.E.2
Johnston, J.A.3
Kopito, R.R.4
-
34
-
-
34547684065
-
HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination
-
Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007;26:5468-5476.
-
(2007)
Oncogene
, vol.26
, pp. 5468-5476
-
-
Boyault, C.1
Sadoul, K.2
Pabion, M.3
Khochbin, S.4
-
35
-
-
0028800221
-
Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain
-
Kolodney MS, Elson EL. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci U S A. 1995;92:10252-10256.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 10252-10256
-
-
Kolodney, M.S.1
Elson, E.L.2
-
36
-
-
0028081489
-
Inactivation of L-type Ca channels in embryonic chick ventricle cells: Dependence on the cytoskeletal agents colchicine and taxol
-
Galli A, DeFelice LJ. Inactivation of L-type Ca channels in embryonic chick ventricle cells: dependence on the cytoskeletal agents colchicine and taxol. Biophys J. 1994;67:2296-2304.
-
(1994)
Biophys J
, vol.67
, pp. 2296-2304
-
-
Galli, A.1
Defelice, L.J.2
-
37
-
-
26044462238
-
Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes
-
Leach RN, Desai JC, Orchard CH. Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. Cell Calcium. 2005;38:515-526.
-
(2005)
Cell Calcium
, vol.38
, pp. 515-526
-
-
Leach, R.N.1
Desai, J.C.2
Orchard, C.H.3
-
38
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11:437-444.
-
(2003)
Mol Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
39
-
-
33750445309
-
NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity
-
Yang T, Sauve AA. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J. 2006;8:E632-E643.
-
(2006)
AAPS J
, vol.8
-
-
Yang, T.1
Sauve, A.A.2
-
40
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
-
Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095-1107.
-
(2007)
Cell
, vol.130
, pp. 1095-1107
-
-
Yang, H.1
Yang, T.2
Baur, J.A.3
Perez, E.4
Matsui, T.5
Carmona, J.J.6
Lamming, D.W.7
Souza-Pinto, N.C.8
Bohr, V.A.9
Rosenzweig, A.10
De Cabo, R.11
Sauve, A.A.12
Sinclair, D.A.13
-
41
-
-
73349143672
-
HDAC6 is a target for protection and regeneration following injury in the nervous system
-
Rivieccio MA, Brochier C, Willis DE, Walker BA, D'Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, Ratan RR, Langley B. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA. 2009;106:19599-19604.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 19599-19604
-
-
Rivieccio, M.A.1
Brochier, C.2
Willis, D.E.3
Walker, B.A.4
D'Annibale, M.A.5
McLaughlin, K.6
Siddiq, A.7
Kozikowski, A.P.8
Jaffrey, S.R.9
Twiss, J.L.10
Ratan, R.R.11
Langley, B.12
-
42
-
-
84858640254
-
Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma
-
Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, Cirstea D, Rodig S, Eda H, Scullen T, Canavese M, Bradner J, Anderson KC, Jones SS, Raje N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579-2589.
-
(2012)
Blood
, vol.119
, pp. 2579-2589
-
-
Santo, L.1
Hideshima, T.2
Kung, A.L.3
Tseng, J.C.4
Tamang, D.5
Yang, M.6
Jarpe, M.7
Van Duzer, J.H.8
Mazitschek, R.9
Ogier, W.C.10
Cirstea, D.11
Rodig, S.12
Eda, H.13
Scullen, T.14
Canavese, M.15
Bradner, J.16
Anderson, K.C.17
Jones, S.S.18
Raje, N.19
-
43
-
-
79961168180
-
HDAC6 inhibitors reverse axonal loss in a mouse model of mutant hspb1-induced charcot-marie-tooth disease
-
d'Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 2011;17:968-974.
-
(2011)
Nat Med
, vol.17
, pp. 968-974
-
-
D'Ydewalle, C.1
Krishnan, J.2
Chiheb, D.M.3
Van Damme, P.4
Irobi, J.5
Kozikowski, A.P.6
Vanden Berghe, P.7
Timmerman, V.8
Robberecht, W.9
Van Den Bosch, L.10
|