메뉴 건너뛰기




Volumn 502, Issue 7472, 2013, Pages 499-506

Topology of mammalian developmental enhancers and their regulatory landscapes

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL DEVELOPMENT; BODY SHAPE; CHROMOSOME; GENE EXPRESSION; GENOME; MAMMAL; TOPOLOGY;

EID: 84886853624     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature12753     Document Type: Review
Times cited : (388)

References (76)
  • 1
    • 0019811465 scopus 로고
    • Expression of a β-globin gene is enhanced by remote SV40 DNA sequences
    • Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299-308 (1981).
    • (1981) Cell , vol.27 , pp. 299-308
    • Banerji, J.1    Rusconi, S.2    Schaffner, W.3
  • 2
    • 79551655285 scopus 로고    scopus 로고
    • Functional and mechanistic diversity of distal transcription enhancers
    • Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327-339 (2011).
    • (2011) Cell , vol.144 , pp. 327-339
    • Bulger, M.1    Groudine, M.2
  • 3
    • 84865249952 scopus 로고    scopus 로고
    • Transcription factors: From enhancer binding to developmental control
    • Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nature Rev. Genet. 13, 613-626 (2012).
    • (2012) Nature Rev. Genet. , vol.13 , pp. 613-626
    • Spitz, F.1    Furlong, E.E.2
  • 4
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
    • Dunham, I.1
  • 5
    • 84865859048 scopus 로고    scopus 로고
    • What does our genome encode?
    • Stamatoyannopoulos, J. A. What does our genome encode? Genome Res. 22, 1602-1611 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1602-1611
    • Stamatoyannopoulos, J.A.1
  • 6
    • 84865822182 scopus 로고    scopus 로고
    • Systematic localization of common disease-associated variation in regulatory DNA
    • Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-1195 (2012).
    • (2012) Science , vol.337 , pp. 1190-1195
    • Maurano, M.T.1
  • 7
    • 11144339384 scopus 로고    scopus 로고
    • Long-range control of gene expression: Emerging mechanisms and disruption in disease
    • Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8-32 (2005).
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 8-32
    • Kleinjan, D.A.1    Van Heyningen, V.2
  • 8
    • 84872506987 scopus 로고    scopus 로고
    • Phenotypic impact of genomic structural variation: Insights from and for human disease
    • Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Rev. Genet. 14, 125-138 (2013).
    • (2013) Nature Rev. Genet. , vol.14 , pp. 125-138
    • Weischenfeldt, J.1    Symmons, O.2    Spitz, F.3    Korbel, J.O.4
  • 9
    • 84862755561 scopus 로고    scopus 로고
    • Landscapes and archipelagos: Spatial organization of gene regulation in vertebrates
    • Montavon, T. & Duboule, D. Landscapes and archipelagos: spatial organization of gene regulation in vertebrates. Trends Cell Biol. 22, 347-354 (2012).
    • (2012) Trends Cell Biol. , vol.22 , pp. 347-354
    • Montavon, T.1    Duboule, D.2
  • 10
    • 84863882671 scopus 로고    scopus 로고
    • Mechanisms of transcriptional precision in animal development
    • Lagha, M., Bothma, J. P. & Levine, M. Mechanisms of transcriptional precision in animal development. Trends Genet. 28, 409-416 (2012).
    • (2012) Trends Genet. , vol.28 , pp. 409-416
    • Lagha, M.1    Bothma, J.P.2    Levine, M.3
  • 11
    • 79953162491 scopus 로고    scopus 로고
    • Gene expression in time and space: Additive vs hierarchical organization of cis-regulatory regions
    • Maeda, R. K. & Karch, F. Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions. Curr. Opin. Genet. Dev. 21, 187-193 (2011).
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 187-193
    • Maeda, R.K.1    Karch, F.2
  • 12
    • 77956495708 scopus 로고    scopus 로고
    • Transcriptional enhancers in animal development and evolution
    • Levine, M. Transcriptional enhancers in animal development and evolution. Curr. Biol. 20, R754-R763 (2010).
    • (2010) Curr. Biol. , vol.20
    • Levine, M.1
  • 13
    • 0032006747 scopus 로고    scopus 로고
    • The evolution of 'bricolage'
    • Duboule, D. & Wilkins, A. S. The evolution of 'bricolage'. Trends Genet. 14, 54-59 (1998).
    • (1998) Trends Genet. , vol.14 , pp. 54-59
    • Duboule, D.1    Wilkins, A.S.2
  • 16
    • 79953176250 scopus 로고    scopus 로고
    • Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor
    • Ruf, S. et al. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nature Genet. 43, 379-386 (2011).
    • (2011) Nature Genet. , vol.43 , pp. 379-386
    • Ruf, S.1
  • 17
    • 0023488840 scopus 로고
    • Detection in situ of genomic regulatory elements in Drosophila
    • O'Kane, C. J. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123-9127 (1987).
    • (1987) Proc. Natl Acad. Sci. USA , vol.84 , pp. 9123-9127
    • O'Kane, C.J.1    Gehring, W.J.2
  • 18
    • 33751316959 scopus 로고    scopus 로고
    • In vivo enhancer analysis of human conserved non-coding sequences
    • Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499-502 (2006).
    • (2006) Nature , vol.444 , pp. 499-502
    • Pennacchio, L.A.1
  • 19
    • 34249818182 scopus 로고    scopus 로고
    • Tissue-specific transcriptional regulation has diverged significantly between human and mouse
    • Odom, D. T. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genet. 39, 730-732 (2007).
    • (2007) Nature Genet. , vol.39 , pp. 730-732
    • Odom, D.T.1
  • 20
    • 54249099196 scopus 로고    scopus 로고
    • Species-specific transcription in mice carrying human chromosome 21
    • Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome 21. Science 322, 434-438 (2008).
    • (2008) Science , vol.322 , pp. 434-438
    • Wilson, M.D.1
  • 21
    • 70449132583 scopus 로고    scopus 로고
    • Combinatorial binding predicts spatio-temporal cis-regulatory activity
    • Zinzen, R. P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E. E. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462, 65-70 (2009).
    • (2009) Nature , vol.462 , pp. 65-70
    • Zinzen, R.P.1    Girardot, C.2    Gagneur, J.3    Braun, M.4    Furlong, E.E.5
  • 22
    • 83055181959 scopus 로고    scopus 로고
    • Discriminative prediction of mammalian enhancers from DNA sequence
    • Lee, D., Karchin, R. & Beer, M. A. Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 21, 2167-2180 (2011).
    • (2011) Genome Res. , vol.21 , pp. 2167-2180
    • Lee, D.1    Karchin, R.2    Beer, M.A.3
  • 23
    • 84868318661 scopus 로고    scopus 로고
    • Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes
    • Gorkin, D. U. et al. Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Res. 22, 2290-2301 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2290-2301
    • Gorkin, D.U.1
  • 24
    • 33745409293 scopus 로고    scopus 로고
    • DNase-chip: A high-resolution method to identify DNase i hypersensitive sites using tiled microarrays
    • Crawford, G. E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature Methods 3, 503-509 (2006).
    • (2006) Nature Methods , vol.3 , pp. 503-509
    • Crawford, G.E.1
  • 25
    • 84865755978 scopus 로고    scopus 로고
    • The accessible chromatin landscape of the human genome
    • Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75-821 (2012).
    • (2012) Nature , vol.489 , pp. 75-821
    • Thurman, R.E.1
  • 26
    • 84863890567 scopus 로고    scopus 로고
    • Genomic approaches towards finding cis-regulatory modules in animals
    • Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nature Rev. Genet. 13, 469-483 (2012).
    • (2012) Nature Rev. Genet. , vol.13 , pp. 469-483
    • Hardison, R.C.1    Taylor, J.2
  • 27
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wide quantitative enhancer activity maps identified by STARR-seq
    • Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074-1077 (2013).
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.D.1
  • 28
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306-1311 (2002).
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4
  • 29
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: Insights into nuclear organization
    • de Wit, E. & de Laat, W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11-24 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 11-24
    • De Wit, E.1    De Laat, W.2
  • 31
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active β-globin locus
    • Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453-1465 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1    Palstra, R.J.2    Splinter, E.3    Grosveld, F.4    De Laat, W.5
  • 32
    • 45749154811 scopus 로고    scopus 로고
    • Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription
    • Palstra, R. J. et al. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PloS ONE 3, e1661 (2008).
    • (2008) PloS ONE , vol.3
    • Palstra, R.J.1
  • 33
    • 84861964135 scopus 로고    scopus 로고
    • Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
    • Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233-1244 (2012).
    • (2012) Cell , vol.149 , pp. 1233-1244
    • Deng, W.1
  • 34
    • 79960980390 scopus 로고    scopus 로고
    • Variegated gene expression caused by cell-specific long-range DNA interactions
    • Noordermeer, D. et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nature Cell Biol. 13, 944-951 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 944-951
    • Noordermeer, D.1
  • 35
    • 84878754528 scopus 로고    scopus 로고
    • A switch between topological domains underlies HoxD genes collinearity in mouse limbs
    • Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340, 1234167 (2013).
    • (2013) Science , vol.340 , pp. 1234167
    • Andrey, G.1
  • 36
    • 0141730403 scopus 로고    scopus 로고
    • The β-globin nuclear compartment in development and erythroid differentiation
    • Palstra, R. J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190-194 (2003).
    • (2003) Nature Genet. , vol.35 , pp. 190-194
    • Palstra, R.J.1
  • 37
    • 34247272882 scopus 로고    scopus 로고
    • Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression
    • Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G. & Higgs, D. R. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041-2051 (2007).
    • (2007) EMBO J. , vol.26 , pp. 2041-2051
    • Vernimmen, D.1    De Gobbi, M.2    Sloane-Stanley, J.A.3    Wood, W.G.4    Higgs, D.R.5
  • 38
    • 5444255213 scopus 로고    scopus 로고
    • The active spatial organization of the β-globin locus requires the transcription factor EKLF
    • Drissen, R. et al. The active spatial organization of the β-globin locus requires the transcription factor EKLF. Genes Dev. 18, 2485-2490 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2485-2490
    • Drissen, R.1
  • 39
    • 13244272059 scopus 로고    scopus 로고
    • Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1
    • 2004. 12. 028
    • Vakoc, C. R. et al. Proximity among distant regulatory elements at the β-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453-462 (2004. 12. 028 (2005).
    • (2005) Mol. Cell , vol.17 , pp. 453-462
    • Vakoc, C.R.1
  • 40
    • 84867003195 scopus 로고    scopus 로고
    • Robust 4C-seq data analysis to screen for regulatory DNA interactions
    • van de Werken, H. J. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods 9, 969-972 (2012).
    • (2012) Nature Methods , vol.9 , pp. 969-972
    • Van De Werken, H.J.1
  • 41
    • 0027760995 scopus 로고
    • Sonic hedgehog mediates the polarizing activity of the ZPA
    • Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401-1416 (1993).
    • (1993) Cell , vol.75 , pp. 1401-1416
    • Riddle, R.D.1    Johnson, R.L.2    Laufer, E.3    Tabin, C.4
  • 42
    • 0042810698 scopus 로고    scopus 로고
    • A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly
    • Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725-1735 (2003).
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1725-1735
    • Lettice, L.A.1
  • 43
    • 14844341770 scopus 로고    scopus 로고
    • Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb
    • Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M. & Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132, 797-803 (2005).
    • (2005) Development , vol.132 , pp. 797-803
    • Sagai, T.1    Hosoya, M.2    Mizushina, Y.3    Tamura, M.4    Shiroishi, T.5
  • 44
    • 58149463874 scopus 로고    scopus 로고
    • Chromosomal dynamics at the Shh locus: Limb bud-specific differential regulation of competence and active transcription
    • Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47-57 (2009).
    • (2009) Dev. Cell , vol.16 , pp. 47-57
    • Amano, T.1
  • 45
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380 (2012).
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 46
    • 84856995675 scopus 로고    scopus 로고
    • Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly
    • Lettice, L. A. et al. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell 22, 459-467 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 459-467
    • Lettice, L.A.1
  • 47
    • 84873842521 scopus 로고    scopus 로고
    • Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling
    • Eijkelenboom, A. et al. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol. Syst. Biol. 9, 638 (2013).
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 638
    • Eijkelenboom, A.1
  • 48
    • 84873456575 scopus 로고    scopus 로고
    • ERNAs are required for p53-dependent enhancer activity and gene transcription
    • Melo, C. A. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524-535 (2012).
    • (2012) Mol. Cell , vol.49 , pp. 524-535
    • Melo, C.A.1
  • 49
    • 84886844474 scopus 로고    scopus 로고
    • Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?
    • Nora, E. P., Dekker, J. & Heard, E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bio Essays 5, 201300040 (2013).
    • (2013) Bio Essays , vol.5 , pp. 201300040
    • Nora, E.P.1    Dekker, J.2    Heard, E.3
  • 50
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109-113 (2012).
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1    Lajoie, B.R.2    Jain, G.3    Dekker, J.4
  • 51
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84-98 (2012).
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1
  • 52
    • 33748259774 scopus 로고    scopus 로고
    • CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus
    • Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 2349-2354 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2349-2354
    • Splinter, E.1
  • 53
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147, 1132-1145 (2011).
    • (2011) Cell , vol.147 , pp. 1132-1145
    • Montavon, T.1
  • 54
    • 33747174553 scopus 로고    scopus 로고
    • Flanking HS-62. 5 and 3-HS1, and regions upstream of the LCR, are not required for β-globin transcription
    • Bender, M. A. et al. Flanking HS-62. 5 and 3-HS1, and regions upstream of the LCR, are not required for β-globin transcription. Blood 108, 1395-1401 (2006).
    • (2006) Blood , vol.108 , pp. 1395-1401
    • Bender, M.A.1
  • 55
    • 41949142533 scopus 로고    scopus 로고
    • Transcription and chromatin organization of a housekeeping gene cluster containing an integrated β-globin locus control region
    • Noordermeer, D. et al. Transcription and chromatin organization of a housekeeping gene cluster containing an integrated β-globin locus control region. PLoS Genet. 4, e1000016 (2008).
    • (2008) PLoS Genet. , vol.4
    • Noordermeer, D.1
  • 56
    • 84875249885 scopus 로고    scopus 로고
    • An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape
    • Marinic, M., Aktas, T., Ruf, S. & Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24, 530-542 (2013).
    • (2013) Dev. Cell , vol.24 , pp. 530-542
    • Marinic, M.1    Aktas, T.2    Ruf, S.3    Spitz, F.4
  • 57
    • 6344266958 scopus 로고    scopus 로고
    • Bystander gene activation by a locus control region
    • Cajiao, I., Zhang, A., Yoo, E. J., Cooke, N. E. & Liebhaber, S. A. Bystander gene activation by a locus control region. EMBO J. 23, 3854-3863 (2004).
    • (2004) EMBO J. , vol.23 , pp. 3854-3863
    • Cajiao, I.1    Zhang, A.2    Yoo, E.J.3    Cooke, N.E.4    Liebhaber, S.A.5
  • 58
    • 0038613098 scopus 로고    scopus 로고
    • A global control region defines a chromosomal regulatory landscape containing the HoxD cluster
    • Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405-417 (2003).
    • (2003) Cell , vol.113 , pp. 405-417
    • Spitz, F.1    Gonzalez, F.2    Duboule, D.3
  • 59
    • 3042696502 scopus 로고    scopus 로고
    • Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression
    • Zuniga, A. et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev. 18, 1553-1564 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 1553-1564
    • Zuniga, A.1
  • 60
    • 76049106672 scopus 로고    scopus 로고
    • Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition
    • Lower, K. M. et al. Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc. Natl Acad. Sci. USA 106, 21771-21776 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 21771-21776
    • Lower, K.M.1
  • 61
    • 79960613609 scopus 로고    scopus 로고
    • Reshuffling genomic landscapes to study the regulatory evolution of Hox gene clusters
    • Tschopp, P., Fraudeau, N., Bena, F. & Duboule, D. Reshuffling genomic landscapes to study the regulatory evolution of Hox gene clusters. Proc. Natl Acad. Sci. USA 108, 10632-10637 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 10632-10637
    • Tschopp, P.1    Fraudeau, N.2    Bena, F.3    Duboule, D.4
  • 62
    • 33744475085 scopus 로고    scopus 로고
    • A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter
    • De Gobbi, M. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312, 1215-1217 (2006).
    • (2006) Science , vol.312 , pp. 1215-1217
    • De Gobbi, M.1
  • 63
    • 0035496898 scopus 로고    scopus 로고
    • Targeted deletion of 5-HS1 and 5-HS4 of the β-globin locus control region reveals additive activity of the DNaseI hypersensitive sites
    • Bender, M. A. et al. Targeted deletion of 5-HS1 and 5-HS4 of the β-globin locus control region reveals additive activity of the DNaseI hypersensitive sites. Blood 98, 2022-2027 (2001).
    • (2001) Blood , vol.98 , pp. 2022-2027
    • Bender, M.A.1
  • 64
    • 0029051646 scopus 로고
    • Transcription complex stability and chromatin dynamics in vivo
    • Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209-213 (1995).
    • (1995) Nature , vol.377 , pp. 209-213
    • Wijgerde, M.1    Grosveld, F.2    Fraser, P.3
  • 65
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385 (2012).
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 66
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472 (2012).
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 67
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 (2009).
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 68
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281-1295 (2013).
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1
  • 69
    • 77949919093 scopus 로고    scopus 로고
    • Interchromosomal association and gene regulation in trans
    • Williams, A., Spilianakis, C. G. & Flavell, R. A. Interchromosomal association and gene regulation in trans. Trends Genet. 26, 188-197 (2010).
    • (2010) Trends Genet. , vol.26 , pp. 188-197
    • Williams, A.1    Spilianakis, C.G.2    Flavell, R.A.3
  • 70
    • 34447510932 scopus 로고    scopus 로고
    • Local and cis effects of the H element on expression of odorant receptor genes in mouse
    • Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130, 373-384 (2007).
    • (2007) Cell , vol.130 , pp. 373-384
    • Fuss, S.H.1    Omura, M.2    Mombaerts, P.3
  • 71
    • 84862012077 scopus 로고    scopus 로고
    • Evidence for a critical role of gene occlusion in cell fate restriction
    • Gaetz, J. et al. Evidence for a critical role of gene occlusion in cell fate restriction. Cell Res. 22, 848-858 (2012).
    • (2012) Cell Res. , vol.22 , pp. 848-858
    • Gaetz, J.1
  • 72
    • 79551685675 scopus 로고    scopus 로고
    • A TALE nuclease architecture for efficient genome editing
    • Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotechnol. 29, 143-148 (2011).
    • (2011) Nature Biotechnol. , vol.29 , pp. 143-148
    • Miller, J.C.1
  • 73
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 74
    • 70349611559 scopus 로고    scopus 로고
    • Cis-ruption mechanisms: Disruption of cis-regulatory control as a cause of human genetic disease
    • Kleinjan, D. J. & Coutinho, P. Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. Brief. Funct. Genomic Proteomic 8, 317-332 (2009).
    • (2009) Brief. Funct. Genomic Proteomic , vol.8 , pp. 317-332
    • Kleinjan, D.J.1    Coutinho, P.2
  • 75
    • 12744261452 scopus 로고    scopus 로고
    • Evolution and functional classification of vertebrate gene deserts
    • Ovcharenko, I. et al. Evolution and functional classification of vertebrate gene deserts. Genome Res. 15, 137-145 (2005).
    • (2005) Genome Res. , vol.15 , pp. 137-145
    • Ovcharenko, I.1
  • 76
    • 34548697503 scopus 로고    scopus 로고
    • Deletion of ultraconserved elements yields viable mice
    • Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234 (2007).
    • (2007) PLoS Biol. , vol.5
    • Ahituv, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.