메뉴 건너뛰기




Volumn 40, Issue 4, 2015, Pages 189-199

Decoding and reprogramming complex polyketide assembly lines: Prospects for synthetic biology

Author keywords

Antibiotics; Biosynthesis; Macrolides; Modular polyketide synthase; Thiotemplate

Indexed keywords

MOLECULAR SCAFFOLD; POLYKETIDE; POLYKETIDE SYNTHASE; SCAFFOLD PROTEIN;

EID: 84925340903     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.02.001     Document Type: Review
Times cited : (64)

References (81)
  • 1
    • 69249202590 scopus 로고    scopus 로고
    • The biosynthetic logic of polyketide diversity
    • Hertweck C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 2009, 48:4688-4716.
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 4688-4716
    • Hertweck, C.1
  • 2
    • 78650080777 scopus 로고    scopus 로고
    • Synthesis of polyketide natural products and analogs as promising anticancer agents
    • Dalby S.M., Paterson I. Synthesis of polyketide natural products and analogs as promising anticancer agents. Curr. Opin. Drug. Discov. Devel. 2010, 13:777-794.
    • (2010) Curr. Opin. Drug. Discov. Devel. , vol.13 , pp. 777-794
    • Dalby, S.M.1    Paterson, I.2
  • 3
    • 84876685223 scopus 로고    scopus 로고
    • Total synthesis of antibiotics: recent achievements, limitations, and perspectives
    • Prusov E.V. Total synthesis of antibiotics: recent achievements, limitations, and perspectives. Appl. Microbiol. Biotechnol. 2013, 97:2773-2795.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 2773-2795
    • Prusov, E.V.1
  • 4
    • 84902529309 scopus 로고    scopus 로고
    • Biocatalysts for natural product biosynthesis
    • Tibrewal N., Tang Y. Biocatalysts for natural product biosynthesis. Annu. Rev. Chem. Biomol. Eng. 2014, 5:347-366.
    • (2014) Annu. Rev. Chem. Biomol. Eng. , vol.5 , pp. 347-366
    • Tibrewal, N.1    Tang, Y.2
  • 5
    • 68949159560 scopus 로고    scopus 로고
    • The chemical biology of modular biosynthetic enzymes
    • Meier J.L., Burkart M.D. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 2009, 38:2012-2045.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 2012-2045
    • Meier, J.L.1    Burkart, M.D.2
  • 6
    • 77954675603 scopus 로고    scopus 로고
    • Biosynthesis of polyketides by trans-AT polyketide synthases
    • Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 2010, 27:996-1047.
    • (2010) Nat. Prod. Rep. , vol.27 , pp. 996-1047
    • Piel, J.1
  • 7
    • 79960767887 scopus 로고    scopus 로고
    • The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases
    • Kwan D.H., Schulz F. The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases. Molecules 2011, 16:6092-6115.
    • (2011) Molecules , vol.16 , pp. 6092-6115
    • Kwan, D.H.1    Schulz, F.2
  • 8
    • 34547119075 scopus 로고    scopus 로고
    • Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis
    • Kopp M., Marahiel M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 2007, 24:735-749.
    • (2007) Nat. Prod. Rep. , vol.24 , pp. 735-749
    • Kopp, M.1    Marahiel, M.A.2
  • 9
    • 77950127253 scopus 로고    scopus 로고
    • Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis
    • Olano C., et al. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat. Prod. Rep. 2010, 27:571-616.
    • (2010) Nat. Prod. Rep. , vol.27 , pp. 571-616
    • Olano, C.1
  • 10
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms
    • Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 2006, 106:3468-3496.
    • (2006) Chem. Rev. , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 11
    • 30544434619 scopus 로고    scopus 로고
    • Combinatorial biosynthesis of reduced polyketides
    • Weissman K.J., Leadlay P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 2005, 3:925-936.
    • (2005) Nat. Rev. Microbiol. , vol.3 , pp. 925-936
    • Weissman, K.J.1    Leadlay, P.F.2
  • 12
    • 84859643086 scopus 로고    scopus 로고
    • Combinatorial biosynthesis of polyketides - a perspective
    • Wong F.T., Khosla C. Combinatorial biosynthesis of polyketides - a perspective. Curr. Opin. Chem. Biol. 2012, 16:117-123.
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 117-123
    • Wong, F.T.1    Khosla, C.2
  • 13
    • 84900032261 scopus 로고    scopus 로고
    • Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform
    • Poust S., et al. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr. Opin. Biotechnol. 2014, 30C:32-39.
    • (2014) Curr. Opin. Biotechnol. , vol.30 C , pp. 32-39
    • Poust, S.1
  • 14
    • 84900552743 scopus 로고    scopus 로고
    • Assembly line polyketide synthases: mechanistic insights and unsolved problems
    • Khosla C., et al. Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 2014, 53:2875-2883.
    • (2014) Biochemistry , vol.53 , pp. 2875-2883
    • Khosla, C.1
  • 15
    • 84871840984 scopus 로고    scopus 로고
    • The structures of type I polyketide synthases
    • Keatinge-Clay A.T. The structures of type I polyketide synthases. Nat. Prod. Rep. 2012, 29:1050-1073.
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 1050-1073
    • Keatinge-Clay, A.T.1
  • 16
    • 84903436332 scopus 로고    scopus 로고
    • Structure of a modular polyketide synthase
    • Dutta S., et al. Structure of a modular polyketide synthase. Nature 2014, 510:512-517.
    • (2014) Nature , vol.510 , pp. 512-517
    • Dutta, S.1
  • 17
    • 84903481589 scopus 로고    scopus 로고
    • Structural rearrangements of a polyketide synthase module during its catalytic cycle
    • Whicher J.R., et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 2014, 510:560-564.
    • (2014) Nature , vol.510 , pp. 560-564
    • Whicher, J.R.1
  • 18
    • 84858184688 scopus 로고    scopus 로고
    • Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation
    • Kapur S., et al. Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:4110-4115.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 4110-4115
    • Kapur, S.1
  • 19
    • 84864447607 scopus 로고    scopus 로고
    • Interchenar retrotransfer of aureothin intermediates in an iterative polyketide synthase module
    • Busch B., et al. Interchenar retrotransfer of aureothin intermediates in an iterative polyketide synthase module. J. Am. Chem. Soc. 2012, 134:12382-12385.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 12382-12385
    • Busch, B.1
  • 20
    • 84877255074 scopus 로고    scopus 로고
    • Multifactorial control of iteration events in a modular polyketide assembly line
    • Busch B., et al. Multifactorial control of iteration events in a modular polyketide assembly line. Angew. Chem. Int. Ed. 2013, 52:5285-5289.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 5285-5289
    • Busch, B.1
  • 21
    • 38949203821 scopus 로고    scopus 로고
    • Exploiting the mosaic structure of trans-acyl transferase polyketide synthases for natural product discovery and pathway dissection
    • Nguyen T., et al. Exploiting the mosaic structure of trans-acyl transferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 2008, 26:225-233.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 225-233
    • Nguyen, T.1
  • 22
    • 84872412190 scopus 로고    scopus 로고
    • Substrate specificity in ketosynthase domains from trans-AT polyketide synthases
    • Jenner M., et al. Substrate specificity in ketosynthase domains from trans-AT polyketide synthases. Angew. Chem. Int. Ed. 2012, 52:1143-1147.
    • (2012) Angew. Chem. Int. Ed. , vol.52 , pp. 1143-1147
    • Jenner, M.1
  • 23
    • 84858954441 scopus 로고    scopus 로고
    • Polyketide proofreading by an acyltransferase-like enzyme
    • Jensen K., et al. Polyketide proofreading by an acyltransferase-like enzyme. Chem. Biol. 2012, 19:329-339.
    • (2012) Chem. Biol. , vol.19 , pp. 329-339
    • Jensen, K.1
  • 24
    • 79955412459 scopus 로고    scopus 로고
    • Supramolecular templating in kirromycin biosynthesis: the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS
    • Musiol E.M., et al. Supramolecular templating in kirromycin biosynthesis: the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS. Chem. Biol. 2011, 18:438-444.
    • (2011) Chem. Biol. , vol.18 , pp. 438-444
    • Musiol, E.M.1
  • 25
    • 84901009939 scopus 로고    scopus 로고
    • Recent advances in genome-based polyketide discovery
    • Helfrich E.J., et al. Recent advances in genome-based polyketide discovery. Curr. Opin. Biotechnol. 2014, 29:107-115.
    • (2014) Curr. Opin. Biotechnol. , vol.29 , pp. 107-115
    • Helfrich, E.J.1
  • 26
    • 79851507787 scopus 로고    scopus 로고
    • Genomics-inspired discovery of natural products
    • Winter J.M., et al. Genomics-inspired discovery of natural products. Curr. Opin. Chem. Biol. 2011, 15:22-31.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 22-31
    • Winter, J.M.1
  • 27
    • 84857808964 scopus 로고    scopus 로고
    • Site-specific recombination strategies for engineering actinomycete genomes
    • Herrmann S., et al. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 2012, 78:1804-1812.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 1804-1812
    • Herrmann, S.1
  • 28
    • 84896733954 scopus 로고    scopus 로고
    • Steps towards the synthetic biology of polyketide biosynthesis
    • Cummings M., et al. Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol. Lett. 2014, 351:116-125.
    • (2014) FEMS Microbiol. Lett. , vol.351 , pp. 116-125
    • Cummings, M.1
  • 29
    • 84893170608 scopus 로고    scopus 로고
    • Recent advances in the heterologous expression of microbial natural product biosynthetic pathways
    • Ongley S.E., et al. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat. Prod. Rep. 2013, 30:1121-1138.
    • (2013) Nat. Prod. Rep. , vol.30 , pp. 1121-1138
    • Ongley, S.E.1
  • 30
    • 84865144344 scopus 로고    scopus 로고
    • Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli
    • Yuzawa S., et al. Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli. Curr. Opin. Biotechnol. 2012, 23:727-735.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 727-735
    • Yuzawa, S.1
  • 31
    • 84908067985 scopus 로고    scopus 로고
    • Modular construction of a functional artificial epothilone polyketide pathway
    • Oßwald C., et al. Modular construction of a functional artificial epothilone polyketide pathway. ACS Synth. Biol. 2014, 3:759-772.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 759-772
    • Oßwald, C.1
  • 32
    • 84867512666 scopus 로고    scopus 로고
    • Minimally invasive mutagenesis gives rise to a biosynthetic polyketide library
    • Kushnir S., et al. Minimally invasive mutagenesis gives rise to a biosynthetic polyketide library. Angew. Chem. Int. Ed. 2012, 51:10664-10669.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 10664-10669
    • Kushnir, S.1
  • 33
    • 84893465357 scopus 로고    scopus 로고
    • Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line
    • Sugimoto Y., et al. Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew. Chem. Int. Ed. 2014, 53:1560-1564.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 1560-1564
    • Sugimoto, Y.1
  • 34
    • 84923139137 scopus 로고    scopus 로고
    • Freedom and constraint in engineered noncolinear polyketide assembly lines
    • Sugimoto Y., et al. Freedom and constraint in engineered noncolinear polyketide assembly lines. Chem. Biol. 2015, 22:229-240.
    • (2015) Chem. Biol. , vol.22 , pp. 229-240
    • Sugimoto, Y.1
  • 35
    • 0036007875 scopus 로고    scopus 로고
    • Biosynthesis and attachment of novel bacterial polyketide synthase starter units
    • Moore B.S., Hertweck C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep. 2002, 19:70-99.
    • (2002) Nat. Prod. Rep. , vol.19 , pp. 70-99
    • Moore, B.S.1    Hertweck, C.2
  • 36
    • 84859957277 scopus 로고    scopus 로고
    • Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries
    • Kirschning A., Hahn F. Merging chemical synthesis and biosynthesis: a new chapter in the total synthesis of natural products and natural product libraries. Angew. Chem. Int. Ed. 2012, 51:4012-4022.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 4012-4022
    • Kirschning, A.1    Hahn, F.2
  • 37
    • 58149095417 scopus 로고    scopus 로고
    • Biosynthesis of polyketide synthase extender units
    • Chan Y.A., et al. Biosynthesis of polyketide synthase extender units. Nat. Prod. Rep. 2009, 26:90-114.
    • (2009) Nat. Prod. Rep. , vol.26 , pp. 90-114
    • Chan, Y.A.1
  • 38
    • 83455210375 scopus 로고    scopus 로고
    • Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity
    • Wilson M.C., Moore B.S. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat. Prod. Rep. 2012, 29:72-86.
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 72-86
    • Wilson, M.C.1    Moore, B.S.2
  • 39
    • 83655163980 scopus 로고    scopus 로고
    • Unusual carbon fixation gives rise to diverse polyketide extender units
    • Quade N., et al. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat. Chem. Biol. 2012, 8:117-124.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 117-124
    • Quade, N.1
  • 40
    • 79851505835 scopus 로고    scopus 로고
    • Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues
    • Mo S., et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 2011, 133:976-985.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 976-985
    • Mo, S.1
  • 41
    • 79955668971 scopus 로고    scopus 로고
    • A branched extender unit shared between two orthogonal polyketide pathways in an endophyte
    • Xu Z., et al. A branched extender unit shared between two orthogonal polyketide pathways in an endophyte. Angew. Chem. Int. Ed. 2011, 50:4667-4670.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 4667-4670
    • Xu, Z.1
  • 42
    • 79951841094 scopus 로고    scopus 로고
    • Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB
    • Hughes A.J., Keatinge-Clay A. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. Chem. Biol. 2011, 18:165-176.
    • (2011) Chem. Biol. , vol.18 , pp. 165-176
    • Hughes, A.J.1    Keatinge-Clay, A.2
  • 43
    • 84879996598 scopus 로고    scopus 로고
    • Promiscuity of a modular polyketide synthase towards natural and non-natural extender units
    • Koryakina I., et al. Promiscuity of a modular polyketide synthase towards natural and non-natural extender units. Org. Biomol. Chem. 2013, 11:4449-4458.
    • (2013) Org. Biomol. Chem. , vol.11 , pp. 4449-4458
    • Koryakina, I.1
  • 44
    • 84891396350 scopus 로고    scopus 로고
    • Engineering the acyltransferase substrate specificity of assembly line polyketide synthases
    • Dunn B.J., Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J. R. Soc. Interface 2013, 10:20130297.
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20130297
    • Dunn, B.J.1    Khosla, C.2
  • 45
    • 80053608537 scopus 로고    scopus 로고
    • Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation
    • Koryakina I., Williams G.J. Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation. ChemBioChem 2011, 12:2289-2293.
    • (2011) ChemBioChem , vol.12 , pp. 2289-2293
    • Koryakina, I.1    Williams, G.J.2
  • 46
    • 85027927172 scopus 로고    scopus 로고
    • Predicted incorporation of non-native substrates by a polyketide synthase yields bioactive natural product derivatives
    • Bravo-Rodriguez K., et al. Predicted incorporation of non-native substrates by a polyketide synthase yields bioactive natural product derivatives. ChemBioChem 2014, 15:1991-1997.
    • (2014) ChemBioChem , vol.15 , pp. 1991-1997
    • Bravo-Rodriguez, K.1
  • 47
    • 84874030515 scopus 로고    scopus 로고
    • Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase
    • Sundermann U., et al. Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase. ACS Chem. Biol. 2013, 8:443-450.
    • (2013) ACS Chem. Biol. , vol.8 , pp. 443-450
    • Sundermann, U.1
  • 48
    • 84883484875 scopus 로고    scopus 로고
    • Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways
    • Walker M.C., et al. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 2013, 341:1089-1094.
    • (2013) Science , vol.341 , pp. 1089-1094
    • Walker, M.C.1
  • 49
    • 84886596825 scopus 로고    scopus 로고
    • A conserved motif flags acyl carrier proteins for beta-branching in polyketide synthesis
    • Haines A.S., et al. A conserved motif flags acyl carrier proteins for beta-branching in polyketide synthesis. Nat. Chem. Biol. 2013, 9:685-692.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 685-692
    • Haines, A.S.1
  • 50
    • 70349909730 scopus 로고    scopus 로고
    • Polyketide-chain branching by an enzymatic Michael addition
    • Kusebauch B., et al. Polyketide-chain branching by an enzymatic Michael addition. Angew. Chem. Int. Ed. 2009, 48:5001-5004.
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 5001-5004
    • Kusebauch, B.1
  • 51
    • 84885595954 scopus 로고    scopus 로고
    • Vinylogous chain branching catalysed by a dedicated polyketide synthase module
    • Bretschneider T., et al. Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 2013, 502:124-128.
    • (2013) Nature , vol.502 , pp. 124-128
    • Bretschneider, T.1
  • 52
    • 84902081276 scopus 로고    scopus 로고
    • Cycloheximide and actiphenol production in Streptomyces sp. YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase
    • Yin M., et al. Cycloheximide and actiphenol production in Streptomyces sp. YIM56141 governed by single biosynthetic machinery featuring an acyltransferase-less type I polyketide synthase. Org. Lett. 2014, 16:3072-3075.
    • (2014) Org. Lett. , vol.16 , pp. 3072-3075
    • Yin, M.1
  • 53
    • 84908077928 scopus 로고    scopus 로고
    • Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles
    • Heine D., et al. Enzymatic polyketide chain branching to give substituted lactone, lactam, and glutarimide heterocycles. Angew. Chem. Int. Ed. 2014, 53:11645-11649.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 11645-11649
    • Heine, D.1
  • 54
    • 84915763024 scopus 로고    scopus 로고
    • An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases
    • Hari T.P., et al. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases. ChemBioChem 2014, 15:2656-2661.
    • (2014) ChemBioChem , vol.15 , pp. 2656-2661
    • Hari, T.P.1
  • 55
    • 84868028202 scopus 로고    scopus 로고
    • Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line
    • He H.Y., et al. Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem. Biol. 2012, 19:1313-1323.
    • (2012) Chem. Biol. , vol.19 , pp. 1313-1323
    • He, H.Y.1
  • 56
    • 84921516173 scopus 로고    scopus 로고
    • Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides
    • Hashimoto T., et al. Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J. Am. Chem. Soc. 2015, 137:572-575.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 572-575
    • Hashimoto, T.1
  • 57
    • 79851497066 scopus 로고    scopus 로고
    • Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes
    • Lou L., et al. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J. Am. Chem. Soc. 2011, 133:643-645.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 643-645
    • Lou, L.1
  • 58
    • 84890086658 scopus 로고    scopus 로고
    • Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster
    • Luo Y., et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 2013, 4:2894.
    • (2013) Nat. Commun. , vol.4 , pp. 2894
    • Luo, Y.1
  • 59
    • 84904515170 scopus 로고    scopus 로고
    • Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF
    • Li Y., et al. Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF. Angew. Chem. Int. Ed. 2014, 53:7524-7530.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 7524-7530
    • Li, Y.1
  • 60
    • 84899911031 scopus 로고    scopus 로고
    • Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis
    • Zhang G., et al. Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew. Chem. Int. Ed. 2014, 53:4840-4844.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 4840-4844
    • Zhang, G.1
  • 61
    • 84896780839 scopus 로고    scopus 로고
    • Heterologous reconstitution of ikarugamycin biosynthesis in E. coli
    • Antosch J., et al. Heterologous reconstitution of ikarugamycin biosynthesis in E. coli. Angew. Chem. Int. Ed. 2014, 53:3011-3014.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 3011-3014
    • Antosch, J.1
  • 62
    • 84869409326 scopus 로고    scopus 로고
    • Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center
    • Nakamura H., et al. Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center. J. Am. Chem. Soc. 2012, 134:18518-18521.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 18518-18521
    • Nakamura, H.1
  • 63
    • 84875843002 scopus 로고    scopus 로고
    • Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase
    • Fuchs S.W., et al. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase. Angew. Chem. Int. Ed. 2013, 52:4108-4112.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 4108-4112
    • Fuchs, S.W.1
  • 64
    • 77953455694 scopus 로고    scopus 로고
    • Biosynthesis of the myxobacterial antibiotic corallopyronin A
    • Erol O., et al. Biosynthesis of the myxobacterial antibiotic corallopyronin A. ChemBioChem 2010, 11:1253-1265.
    • (2010) ChemBioChem , vol.11 , pp. 1253-1265
    • Erol, O.1
  • 65
    • 84883157890 scopus 로고    scopus 로고
    • Exploring chemical diversity of g-pyrone antibiotics: molecular basis of myxopyronin biosynthesis
    • Sucipto H., et al. Exploring chemical diversity of g-pyrone antibiotics: molecular basis of myxopyronin biosynthesis. ChemBioChem 2013, 14:1581-1589.
    • (2013) ChemBioChem , vol.14 , pp. 1581-1589
    • Sucipto, H.1
  • 66
    • 84868515764 scopus 로고    scopus 로고
    • Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species
    • Franke J., et al. Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew. Chem. Int. Ed. 2012, 51:11611-11615.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 11611-11615
    • Franke, J.1
  • 67
    • 84865138150 scopus 로고    scopus 로고
    • Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens
    • Biggins J.B., et al. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J. Am. Chem. Soc. 2012, 134:13192-13195.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 13192-13195
    • Biggins, J.B.1
  • 68
    • 59349104854 scopus 로고    scopus 로고
    • The biosynthesis of polyketide-derived polycyclic ethers
    • Gallimore A.R. The biosynthesis of polyketide-derived polycyclic ethers. Nat. Prod. Rep. 2009, 26:266-280.
    • (2009) Nat. Prod. Rep. , vol.26 , pp. 266-280
    • Gallimore, A.R.1
  • 69
    • 59649117597 scopus 로고    scopus 로고
    • Analysis of specific mutants in the lasalocid gene cluster: evidence for enzymatic catalysis of a disfavoured polyether ring closure
    • Smith L., et al. Analysis of specific mutants in the lasalocid gene cluster: evidence for enzymatic catalysis of a disfavoured polyether ring closure. ChemBioChem 2008, 9:2967-2975.
    • (2008) ChemBioChem , vol.9 , pp. 2967-2975
    • Smith, L.1
  • 70
    • 84862776851 scopus 로고    scopus 로고
    • Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis
    • Hotta K., et al. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis. Nature 2012, 483:355-358.
    • (2012) Nature , vol.483 , pp. 355-358
    • Hotta, K.1
  • 71
    • 79951823575 scopus 로고    scopus 로고
    • Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase
    • Zocher G., et al. Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase. J. Am. Chem. Soc. 2011, 133:2292-2302.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 2292-2302
    • Zocher, G.1
  • 72
    • 84866426333 scopus 로고    scopus 로고
    • Convergent asymmetric synthesis of (+)-aureothin employing an oxygenase-mediated resolution step
    • Henrot M., et al. Convergent asymmetric synthesis of (+)-aureothin employing an oxygenase-mediated resolution step. Angew. Chem. Int. Ed. 2012, 51:9587-9591.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9587-9591
    • Henrot, M.1
  • 73
    • 84889650722 scopus 로고    scopus 로고
    • An enzymatic domain for the formation of cyclic ethers in complex polyketides
    • Pöplau P., et al. An enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew. Chem. Int. Ed. 2013, 52:13215-13218.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 13215-13218
    • Pöplau, P.1
  • 74
    • 84917709236 scopus 로고    scopus 로고
    • A dehydratase domain in ambruticin biosynthesis displays additional activity as a pyran-forming cyclase
    • Berkhan G., Hahn F. A dehydratase domain in ambruticin biosynthesis displays additional activity as a pyran-forming cyclase. Angew. Chem. Int. Ed. 2014, 53:14240-14244.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 14240-14244
    • Berkhan, G.1    Hahn, F.2
  • 75
    • 79959378209 scopus 로고    scopus 로고
    • Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation
    • Takahashi S., et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat. Chem. Biol. 2011, 7:461-468.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 461-468
    • Takahashi, S.1
  • 76
    • 84873878536 scopus 로고    scopus 로고
    • Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC
    • Sun P., et al. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J. Am. Chem. Soc. 2013, 135:1540-1548.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 1540-1548
    • Sun, P.1
  • 77
    • 84900840886 scopus 로고    scopus 로고
    • Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848)
    • Hiratsuka T., et al. Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848). Angew. Chem. Int. Ed. 2014, 53:5423-5426.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 5423-5426
    • Hiratsuka, T.1
  • 78
    • 78650012665 scopus 로고    scopus 로고
    • Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum bacteroidetes
    • Teta R., et al. Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum bacteroidetes. ChemBioChem 2010, 18:2506-2512.
    • (2010) ChemBioChem , vol.18 , pp. 2506-2512
    • Teta, R.1
  • 79
    • 79954622948 scopus 로고    scopus 로고
    • Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization
    • Dehn R., et al. Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization. Angew. Chem. Int. Ed. 2011, 50:3882-3887.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 3882-3887
    • Dehn, R.1
  • 80
    • 79851504523 scopus 로고    scopus 로고
    • Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis
    • Ding L., et al. Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew. Chem. Int. Ed. 2011, 50:1630-1634.
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 1630-1634
    • Ding, L.1
  • 81
    • 84902356398 scopus 로고    scopus 로고
    • Biosynthetic code for divergolide assembly in a bacterial mangrove endophyte
    • Xu Z., et al. Biosynthetic code for divergolide assembly in a bacterial mangrove endophyte. ChemBioChem 2014, 15:1274-1279.
    • (2014) ChemBioChem , vol.15 , pp. 1274-1279
    • Xu, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.