메뉴 건너뛰기




Volumn 29, Issue 3, 2015, Pages 338-348

Minireview: Autophagy in pancreatic β-cells and its implication in diabetes

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY; CELL DEATH; CRINOPHAGY; DIABETES MELLITUS; ENDOPLASMIC RETICULUM STRESS; HUMAN; INFLAMMATION; INSULIN RELEASE; INSULIN RESISTANCE; MITOPHAGY; NON INSULIN DEPENDENT DIABETES MELLITUS; NONHUMAN; PANCREAS ISLET BETA CELL; PATHOPHYSIOLOGY; PRIORITY JOURNAL; PROTEIN EXPRESSION; PROTEIN FUNCTION; REVIEW; SIGNAL TRANSDUCTION; ANIMAL; METABOLISM; PATHOLOGY;

EID: 84923645539     PISSN: 08888809     EISSN: 19449917     Source Type: Journal    
DOI: 10.1210/me.2014-1367     Document Type: Review
Times cited : (81)

References (103)
  • 2
    • 79954422997 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy in protein quality control
    • Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol. 2011;23(2):184–189.
    • (2011) Curr Opin Cell Biol , vol.23 , Issue.2 , pp. 184-189
    • Arias, E.1    Cuervo, A.M.2
  • 3
    • 78651423598 scopus 로고    scopus 로고
    • Microautophagy of cytosolic proteins by late endosomes
    • Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell. 2011;20(1):131–139.
    • (2011) Dev Cell , vol.20 , Issue.1 , pp. 131-139
    • Sahu, R.1    Kaushik, S.2    Clement, C.C.3
  • 5
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–293.
    • (2010) Mol Cell , vol.40 , Issue.2 , pp. 280-293
    • Kroemer, G.1    Mariño, G.2    Levine, B.3
  • 6
    • 84901346313 scopus 로고    scopus 로고
    • Autophagy–a key player in cellular and body metabolism
    • Kim KH, Lee MS. Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–337.
    • (2014) Nat Rev Endocrinol , vol.10 , Issue.6 , pp. 322-337
    • Kim, K.H.1    Lee, M.S.2
  • 7
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741.
    • (2011) Cell , vol.147 , Issue.4 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 8
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice
    • Komatsu M, Waguri S, Ueno T, et al. Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–434.
    • (2005) J Cell Biol , vol.169 , Issue.3 , pp. 425-434
    • Komatsu, M.1    Waguri, S.2    Ueno, T.3
  • 9
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3
  • 10
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–889.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 885-889
    • Hara, T.1    Nakamura, K.2    Matsui, M.3
  • 11
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–624.
    • (2007) Nat Med , vol.13 , Issue.5 , pp. 619-624
    • Nakai, A.1    Yamaguchi, O.2    Takeda, T.3
  • 12
    • 84872035827 scopus 로고    scopus 로고
    • Butler PC. β-Cell mass and turnover in humans: Effects of obesity and aging
    • Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC. β-Cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–117.
    • (2013) Diabetes Care , vol.36 , Issue.1 , pp. 111-117
    • Saisho, Y.1    Butler, A.E.2    Manesso, E.3    Elashoff, D.4    Rizza, R.A.5
  • 14
    • 78650073927 scopus 로고    scopus 로고
    • An islet in distress: _ cell failure in type 2 diabetes
    • Ogihara T, Mirmira RG. An islet in distress: _ cell failure in type 2 diabetes. J Diabetes Investig. 2010;1(4):123–133.
    • (2010) J Diabetes Investig , vol.1 , Issue.4 , pp. 123-133
    • Ogihara, T.1    Mirmira, R.G.2
  • 15
    • 33745863033 scopus 로고    scopus 로고
    • Islet β cell failure in type 2 diabetes
    • Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–1812.
    • (2006) J Clin Invest , vol.116 , Issue.7 , pp. 1802-1812
    • Prentki, M.1    Nolan, C.J.2
  • 16
    • 0042879951 scopus 로고    scopus 로고
    • Insulin granule dynamics in pancreatic β cells
    • Rorsman P, Renström E. Insulin granule dynamics in pancreatic β cells. Diabetologia. 2003;46(8):1029–1045.
    • (2003) Diabetologia , vol.46 , Issue.8 , pp. 1029-1045
    • Rorsman, P.1    Renström, E.2
  • 17
    • 39549093998 scopus 로고    scopus 로고
    • Inhibition of autophagyprevents hippocampal pyramidal neuron death after hypoxic-ischemic injury
    • Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagyprevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172(2):454–469.
    • (2008) Am J Pathol , vol.172 , Issue.2 , pp. 454-469
    • Koike, M.1    Shibata, M.2    Tadakoshi, M.3
  • 18
    • 23244447063 scopus 로고    scopus 로고
    • Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice
    • Ohmuraya M, Hirota M, Araki M, et al. Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology. 2005;129(2):696–705.
    • (2005) Gastroenterology , vol.129 , Issue.2 , pp. 696-705
    • Ohmuraya, M.1    Hirota, M.2    Araki, M.3
  • 19
    • 70350343033 scopus 로고    scopus 로고
    • Autophagy regulates pancreatic β cell death in response to Pdx1 deficiency and nutrient deprivation
    • Fujimoto K, Hanson PT, Tran H, et al. Autophagy regulates pancreatic β cell death in response to Pdx1 deficiency and nutrient deprivation. J Biol Chem. 2009;284(40):27664–27673.
    • (2009) J Biol Chem , vol.284 , Issue.40 , pp. 27664-27673
    • Fujimoto, K.1    Hanson, P.T.2    Tran, H.3
  • 20
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–467.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , Issue.7 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 22
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.
    • (2009) Mol Biol Cell , vol.20 , Issue.7 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3
  • 23
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–1991.
    • (2009) Mol Biol Cell , vol.20 , Issue.7 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3
  • 24
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-12305.
    • (2009) J Biol Chem , vol.284 , Issue.18 , pp. 12297-12305
    • Ganley, I.G.1    Lam Du, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 25
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.
    • (2008) J Cell Biol , vol.182 , Issue.4 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3
  • 26
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson HE, de Lartigue J, Rigden DJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506–522.
    • (2010) Autophagy , vol.6 , Issue.4 , pp. 506-522
    • Polson, H.E.1    De Lartigue, J.2    Rigden, D.J.3
  • 27
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • Di Bartolomeo S, Corazzari M, Nazio F, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010;191(1):155–168.
    • (2010) J Cell Biol , vol.191 , Issue.1 , pp. 155-168
    • Di Bartolomeo, S.1    Corazzari, M.2    Nazio, F.3
  • 28
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013; 15(4):406–416.
    • (2013) Nat Cell Biol , vol.15 , Issue.4 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3
  • 29
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–750.
    • (2013) Nat Cell Biol , vol.15 , Issue.7 , pp. 741-750
    • Russell, R.C.1    Tian, Y.2    Yuan, H.3
  • 30
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes byAMPKin nutrient stress and autophagy
    • Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes byAMPKin nutrient stress and autophagy. Cell. 2013;152(1–2):290–303.
    • (2013) Cell , vol.152 , Issue.12 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3
  • 31
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956–959.
    • (2012) Science , vol.338 , Issue.6109 , pp. 956-959
    • Wang, R.C.1    Wei, Y.2    An, Z.3
  • 32
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.
    • (2008) Cell , vol.132 , Issue.1 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 33
    • 53049103308 scopus 로고    scopus 로고
    • Structural basis for sorting mechanism of p62 in selective autophagy
    • Ichimura Y, Kumanomidou T, Sou YS, et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008;283(33):22847–22857.
    • (2008) J Biol Chem , vol.283 , Issue.33 , pp. 22847-22857
    • Ichimura, Y.1    Kumanomidou, T.2    Sou, Y.S.3
  • 34
    • 65549142204 scopus 로고    scopus 로고
    • A role for biquitin in selective autophagy
    • Kirkin V, McEwan DG, Novak I, Dikic I. A role for biquitin in selective autophagy. Mol Cell. 2009;34(3):259–269.
    • (2009) Mol Cell , vol.34 , Issue.3 , pp. 259-269
    • Kirkin, V.1    McEwan, D.G.2    Novak, I.3    Dikic, I.4
  • 35
    • 84908065760 scopus 로고    scopus 로고
    • Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
    • Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA. 2014; 111(42):E4439–E4448.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.42 , pp. E4439-E4448
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 36
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151(6):1256–1269.
    • (2012) Cell , vol.151 , Issue.6 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 37
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.
    • (2012) Autophagy , vol.8 , Issue.4 , pp. 445-544
    • Klionsky, D.J.1    Abdalla, F.C.2    Abeliovich, H.3
  • 38
    • 84896970273 scopus 로고    scopus 로고
    • Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagyderived amino acids
    • Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagyderived amino acids. Autophagy. 2014;10(3):431–441.
    • (2014) Autophagy , vol.10 , Issue.3 , pp. 431-441
    • Sahani, M.H.1    Itakura, E.2    Mizushima, N.3
  • 39
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet
    • Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325–332.
    • (2008) Cell Metab , vol.8 , Issue.4 , pp. 325-332
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3
  • 40
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
    • Jung HS, Chung KW, Won Kim J, et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 2008;8(4):318–324.
    • (2008) Cell Metab , vol.8 , Issue.4 , pp. 318-324
    • Jung, H.S.1    Chung, K.W.2    Won Kim, J.3
  • 41
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004; 432(7020):1032–1036.
    • (2004) Nature , vol.432 , Issue.7020 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3
  • 42
    • 84856764175 scopus 로고    scopus 로고
    • Autophagy deficiency in _ cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
    • Quan W, Hur KY, Lim Y, et al. Autophagy deficiency in _ cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia. 2012;55(2):392-403.
    • (2012) Diabetologia , vol.55 , Issue.2 , pp. 392-403
    • Quan, W.1    Hur, K.Y.2    Lim, Y.3
  • 43
    • 84875416620 scopus 로고    scopus 로고
    • Stimulation ofautophagy improves endoplasmic reticulum stress-induced diabetes
    • Bachar-Wikstrom E, Wikstrom JD, Ariav Y, et al. Stimulation ofautophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes. 2013;62(4):1227–1237.
    • (2013) Diabetes , vol.62 , Issue.4 , pp. 1227-1237
    • Bachar-Wikstrom, E.1    Wikstrom, J.D.2    Ariav, Y.3
  • 44
    • 33845582804 scopus 로고    scopus 로고
    • Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
    • Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55(11):2965–2973.
    • (2006) Diabetes , vol.55 , Issue.11 , pp. 2965-2973
    • Li, X.1    Zhang, L.2    Meshinchi, S.3
  • 45
    • 84888224672 scopus 로고    scopus 로고
    • Exendin-4 improves _-cell function in autophagy-deficient β-cells
    • Abe H, Uchida T, Hara A, et al. Exendin-4 improves _-cell function in autophagy-deficient β-cells. Endocrinology. 2013;154(12): 4512–4524.
    • (2013) Endocrinology , vol.154 , Issue.12 , pp. 4512-4524
    • Abe, H.1    Uchida, T.2    Hara, A.3
  • 46
    • 67349150186 scopus 로고    scopus 로고
    • Autophagy in human type 2 diabetes pancreatic β cells
    • Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic β cells. Diabetologia. 2009;52(6):1083–1086.
    • (2009) Diabetologia , vol.52 , Issue.6 , pp. 1083-1086
    • Masini, M.1    Bugliani, M.2    Lupi, R.3
  • 47
    • 84903516492 scopus 로고    scopus 로고
    • Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients
    • Mizukami H, Takahashi K, Inaba W, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37(7):1966–1974.
    • (2014) Diabetes Care , vol.37 , Issue.7 , pp. 1966-1974
    • Mizukami, H.1    Takahashi, K.2    Inaba, W.3
  • 48
    • 0036144410 scopus 로고    scopus 로고
    • Fuchsbichler A, et al. P62 Is a common component of cytoplasmic inclusions in protein aggregation diseases
    • Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol. 2002;160(1):255–263.
    • (2002) Am J Pathol , vol.160 , Issue.1 , pp. 255-263
    • Zatloukal, K.1    Stumptner, C.2
  • 49
    • 2442585133 scopus 로고    scopus 로고
    • Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: Possible mechanisms and the role in Lewy body formation in Parkinson’s disease
    • Nakaso K, Yoshimoto Y, Nakano T, et al. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease. Brain Res. 2004;1012(1–2):42–51.
    • (2004) Brain Res , vol.1012 , Issue.1-2 , pp. 42-51
    • Nakaso, K.1    Yoshimoto, Y.2    Nakano, T.3
  • 50
    • 34047179973 scopus 로고    scopus 로고
    • Brumell JH. Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy
    • Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes. 2007;56(4):930–939.
    • (2007) Diabetes , vol.56 , Issue.4 , pp. 930-939
    • Kaniuk, N.A.1    Kiraly, M.2    Bates, H.3    Vranic, M.4    Volchuk, A.5
  • 51
    • 77953784925 scopus 로고    scopus 로고
    • β-Cell autophagy: A novel mechanism regulating β-cell function and mass: Lessons from β-cell-specific Atg7-deficient mice
    • Fujitani Y, Ebato C, Uchida T, Kawamori R, Watada H. β-Cell autophagy: a novel mechanism regulating β-cell function and mass: lessons from β-cell-specific Atg7-deficient mice. Islets. 2009;1(2):151–153.
    • (2009) Islets , vol.1 , Issue.2 , pp. 151-153
    • Fujitani, Y.1    Ebato, C.2    Uchida, T.3    Kawamori, R.4    Watada, H.5
  • 52
    • 61649124031 scopus 로고    scopus 로고
    • The role of autophagy in pancreatic β-cell and diabetes
    • Fujitani Y, Kawamori R, Watada H. The role of autophagy in pancreatic β-cell and diabetes. Autophagy. 2009;5(2):280–282.
    • (2009) Autophagy , vol.5 , Issue.2 , pp. 280-282
    • Fujitani, Y.1    Kawamori, R.2    Watada, H.3
  • 53
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013; 20(1):31-42.
    • (2013) Cell Death Differ , vol.20 , Issue.1 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 54
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1
    • Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–1160.
    • (2004) Science , vol.304 , Issue.5674 , pp. 1158-1160
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3
  • 55
    • 0032499264 scopus 로고    scopus 로고
    • Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
    • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–608.
    • (1998) Nature , vol.392 , Issue.6676 , pp. 605-608
    • Kitada, T.1    Asakawa, S.2    Hattori, N.3
  • 56
    • 77950371695 scopus 로고    scopus 로고
    • PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
    • Kawajiri S, Saiki S, Sato S, et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 2010;584(6):1073–1079.
    • (2010) FEBS Lett , vol.584 , Issue.6 , pp. 1073-1079
    • Kawajiri, S.1    Saiki, S.2    Sato, S.3
  • 57
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
    • Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):1000298.
    • (2010) Plos Biol , vol.8 , Issue.1 , pp. 1000298
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3
  • 58
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–131.
    • (2010) Nat Cell Biol , vol.12 , Issue.2 , pp. 119-131
    • Geisler, S.1    Holmström, K.M.2    Skujat, D.3
  • 59
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010;107(1):378–383.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.1 , pp. 378-383
    • Vives-Bauza, C.1    Zhou, C.2    Huang, Y.3
  • 61
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012; 22(2):320–333.
    • (2012) Dev Cell , vol.22 , Issue.2 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 62
    • 78649300971 scopus 로고    scopus 로고
    • P62/ SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
    • Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/ SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 2010;6(8):1090–1106.
    • (2010) Autophagy , vol.6 , Issue.8 , pp. 1090-1106
    • Narendra, D.1    Kane, L.A.2    Hauser, D.N.3    Fearnley, I.M.4    Youle, R.J.5
  • 63
    • 77952409809 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
    • Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY). 2009;1(4):425–437.
    • (2009) Aging (Albany NY) , vol.1 , Issue.4 , pp. 425-437
    • Wu, J.J.1    Quijano, C.2    Chen, E.3
  • 64
    • 84896824550 scopus 로고    scopus 로고
    • Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic _-cell function in diabetes
    • Hoshino A, Ariyoshi M, Okawa Y, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic _-cell function in diabetes. Proc Natl Acad Sci USA. 2014;111(8):3116–3121.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.8 , pp. 3116-3121
    • Hoshino, A.1    Ariyoshi, M.2    Okawa, Y.3
  • 65
    • 84903196141 scopus 로고    scopus 로고
    • The diabetes susceptibility gene Clec16a regulates mitophagy
    • Soleimanpour SA, Gupta A, Bakay M, et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157(7): 1577–1590.
    • (2014) Cell , vol.157 , Issue.7 , pp. 1577-1590
    • Soleimanpour, S.A.1    Gupta, A.2    Bakay, M.3
  • 66
    • 58149463600 scopus 로고    scopus 로고
    • Protective role of autophagy in palmitate-induced INS-1 β-cell death
    • Choi SE, Lee SM, Lee YJ, et al. Protective role of autophagy in palmitate-induced INS-1 β-cell death. Endocrinology. 2009; 150(1):126–134.
    • (2009) Endocrinology , vol.150 , Issue.1 , pp. 126-134
    • Choi, S.E.1    Lee, S.M.2    Lee, Y.J.3
  • 67
    • 0036315888 scopus 로고    scopus 로고
    • Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated
    • Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51(5):1437–1442.
    • (2002) Diabetes , vol.51 , Issue.5 , pp. 1437-1442
    • Lupi, R.1    Dotta, F.2    Marselli, L.3
  • 68
    • 84860478719 scopus 로고    scopus 로고
    • Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets
    • Martino L, Masini M, Novelli M, et al. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One. 2012;7(5):e36188.
    • (2012) Plos One , vol.7 , Issue.5 , pp. e36188
    • Martino, L.1    Masini, M.2    Novelli, M.3
  • 69
    • 77958484950 scopus 로고    scopus 로고
    • Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway
    • Komiya K, Uchida T, Ueno T, et al. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway. Biochem Biophys Res Commun. 2010;401(4):561–567.
    • (2010) Biochem Biophys Res Commun , vol.401 , Issue.4 , pp. 561-567
    • Komiya, K.1    Uchida, T.2    Ueno, T.3
  • 70
    • 84870901484 scopus 로고    scopus 로고
    • Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity
    • Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell. 2012; 48(5):667–680.
    • (2012) Mol Cell , vol.48 , Issue.5 , pp. 667-680
    • Shen, S.1    Niso-Santano, M.2    Adjemian, S.3
  • 71
    • 84860372433 scopus 로고    scopus 로고
    • Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (Mammalian target of rapamycin)
    • Tan SH, Shui G, Zhou J, et al. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem. 2012; 287(18):14364–14376.
    • (2012) J Biol Chem , vol.287 , Issue.18 , pp. 14364-14376
    • Tan, S.H.1    Shui, G.2    Zhou, J.3
  • 72
  • 74
    • 35848963392 scopus 로고    scopus 로고
    • The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients
    • Marchetti P, Bugliani M, Lupi R, et al. The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients. Diabetologia. 2007;50(12):2486–2494.
    • (2007) Diabetologia , vol.50 , Issue.12 , pp. 2486-2494
    • Marchetti, P.1    Bugliani, M.2    Lupi, R.3
  • 75
    • 74949118681 scopus 로고    scopus 로고
    • The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
    • Rouschop KM, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120(1):127–141.
    • (2010) J Clin Invest , vol.120 , Issue.1 , pp. 127-141
    • Rouschop, K.M.1    Van Den Beucken, T.2    Dubois, L.3
  • 76
    • 33846211417 scopus 로고    scopus 로고
    • ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
    • Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230–239.
    • (2007) Cell Death Differ , vol.14 , Issue.2 , pp. 230-239
    • Kouroku, Y.1    Fujita, E.2    Tanida, I.3
  • 77
    • 33845459165 scopus 로고    scopus 로고
    • Autophagy is activated for cell survival after endoplasmic reticulum stress
    • Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006; 26(24):9220–9231.
    • (2006) Mol Cell Biol , vol.26 , Issue.24 , pp. 9220-9231
    • Ogata, M.1    Hino, S.2    Saito, A.3
  • 78
    • 70349627027 scopus 로고    scopus 로고
    • XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy
    • Hetz C, Thielen P, Matus S, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009;23(19):2294–2306.
    • (2009) Genes Dev , vol.23 , Issue.19 , pp. 2294-2306
    • Hetz, C.1    Thielen, P.2    Matus, S.3
  • 79
    • 84906672871 scopus 로고    scopus 로고
    • Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment
    • Bartolomé A, Kimura-Koyanagi M, Asahara S, et al. Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes. 2014;63(9):2996–3008.
    • (2014) Diabetes , vol.63 , Issue.9 , pp. 2996-3008
    • Bartolomé, A.1    Kimura-Koyanagi, M.2    Asahara, S.3
  • 80
    • 84908348924 scopus 로고    scopus 로고
    • Increased expression of ERp57/GRP58 is protective against pancreatic β cell death caused by autophagic failure
    • Yamamoto E, Uchida T, Abe H, et al. Increased expression of ERp57/GRP58 is protective against pancreatic β cell death caused by autophagic failure. Biochem Biophys Res Commun. 2014; 453(1):19–24.
    • (2014) Biochem Biophys Res Commun , vol.453 , Issue.1 , pp. 19-24
    • Yamamoto, E.1    Uchida, T.2    Abe, H.3
  • 81
    • 77953543377 scopus 로고    scopus 로고
    • The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond
    • Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 2010; 20(6):355–362.
    • (2010) Trends Cell Biol , vol.20 , Issue.6 , pp. 355-362
    • Funderburk, S.F.1    Wang, Q.J.2    Yue, Z.3
  • 82
    • 43549100675 scopus 로고    scopus 로고
    • Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis
    • Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 2008; 29(3):303–316.
    • (2008) Endocr Rev , vol.29 , Issue.3 , pp. 303-316
    • Haataja, L.1    Gurlo, T.2    Huang, C.J.3    Butler, P.C.4
  • 83
    • 79951672803 scopus 로고    scopus 로고
    • Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: Protective role of p62-positive cytoplasmic inclusions
    • Rivera JF, Gurlo T, Daval M, et al. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. 2011;18(3):415–426.
    • (2011) Cell Death Differ , vol.18 , Issue.3 , pp. 415-426
    • Rivera, J.F.1    Gurlo, T.2    Daval, M.3
  • 84
    • 84905460021 scopus 로고    scopus 로고
    • Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy
    • Shigihara N, Fukunaka A, Hara A, et al. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124(8):3634–3644.
    • (2014) J Clin Invest , vol.124 , Issue.8 , pp. 3634-3644
    • Shigihara, N.1    Fukunaka, A.2    Hara, A.3
  • 85
    • 84905460026 scopus 로고    scopus 로고
    • Autophagy Defends Pancreatic Cells from human islet amyloid polypeptideinduced toxicity
    • Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptideinduced toxicity. J Clin Invest. 2014;124(8):3489–3500.
    • (2014) J Clin Invest , vol.124 , Issue.8 , pp. 3489-3500
    • Rivera, J.F.1    Costes, S.2    Gurlo, T.3    Glabe, C.G.4    Butler, P.C.5
  • 86
    • 84903635601 scopus 로고    scopus 로고
    • UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: Evidence of interplay between the ubiquitin/proteasome system and autophagy
    • Costes S, Gurlo T, Rivera JF, Butler PC. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 2014;10(6):1004–1014.
    • (2014) Autophagy , vol.10 , Issue.6 , pp. 1004-1014
    • Costes, S.1    Gurlo, T.2    Rivera, J.F.3    Butler, P.C.4
  • 87
    • 84905492806 scopus 로고    scopus 로고
    • Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes
    • Kim J, Cheon H, Jeong YT, et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest. 2014;124(8):3311–3324.
    • (2014) J Clin Invest , vol.124 , Issue.8 , pp. 3311-3324
    • Kim, J.1    Cheon, H.2    Jeong, Y.T.3
  • 88
    • 77957189194 scopus 로고    scopus 로고
    • β-Synuclein impairs macroautophagy: Implications for Parkinson’s disease
    • Winslow AR, Chen CW, Corrochano S, et al. β-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–1037.
    • (2010) J Cell Biol , vol.190 , Issue.6 , pp. 1023-1037
    • Winslow, A.R.1    Chen, C.W.2    Corrochano, S.3
  • 89
    • 84878253079 scopus 로고    scopus 로고
    • The type 2 diabetesassociated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells
    • Steneberg P, Bernardo L, Edfalk S, et al. The type 2 diabetesassociated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes. 2013;62(6):2004-2015.
    • (2013) Diabetes , vol.62 , Issue.6 , pp. 2004-2015
    • Steneberg, P.1    Bernardo, L.2    Edfalk, S.3
  • 90
    • 34548431826 scopus 로고    scopus 로고
    • Increased numbe of isletassociated macrophages in type 2 diabetes
    • Ehses JA, Perren A, Eppler E, et al. Increased numbe of isletassociated macrophages in type 2 diabetes. Diabetes. 2007;56(9): 2356–2370.
    • (2007) Diabetes , vol.56 , Issue.9 , pp. 2356-2370
    • Ehses, J.A.1    Perren, A.2    Eppler, E.3
  • 92
    • 23744439083 scopus 로고    scopus 로고
    • Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes
    • Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 2005;122(3):337–349.
    • (2005) Cell , vol.122 , Issue.3 , pp. 337-349
    • Gunton, J.E.1    Kulkarni, R.N.2    Yim, S.3
  • 93
    • 84873523692 scopus 로고    scopus 로고
    • Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic β cell dysfunction
    • Bugliani M, Liechti R, Cheon H, et al. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic β cell dysfunction. Mol Cell Endocrinol. 2013;367(1–2):1–10.
    • (2013) Mol Cell Endocrinol , vol.367 , Issue.12 , pp. 1-10
    • Bugliani, M.1    Liechti, R.2    Cheon, H.3
  • 94
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production
    • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature. 2008;456(7219):264–268.
    • (2008) Nature , vol.456 , Issue.7219 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 95
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–230.
    • (2011) Nat Immunol , vol.12 , Issue.3 , pp. 222-230
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.3
  • 96
    • 80052712323 scopus 로고    scopus 로고
    • Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IҝB kinase β (IKKβ)/NF-ҝB pathway
    • Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IҝB kinase β (IKKβ)/NF-ҝB pathway. J Biol Chem. 2011;286(37):32324–32332.
    • (2011) J Biol Chem , vol.286 , Issue.37 , pp. 32324-32332
    • Meng, Q.1    Cai, D.2
  • 97
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–737.
    • (2013) Nat Rev Immunol , vol.13 , Issue.10 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 98
    • 84886919052 scopus 로고    scopus 로고
    • Cathepsin B contributes to autophagyrelated 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line
    • Li S, Du L, Zhang L, et al. Cathepsin B contributes to autophagyrelated 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem. 2013;288(42):30094–30104.
    • (2013) J Biol Chem , vol.288 , Issue.42 , pp. 30094-30104
    • Li, S.1    Du, L.2    Zhang, L.3
  • 99
    • 0017329865 scopus 로고
    • Secretion and crinophagy in prolactin cells
    • Farquhar MG. Secretion and crinophagy in prolactin cells. Adv Exp Med Biol. 1977;80:37–94.
    • (1977) Adv Exp Med Biol , vol.80 , pp. 37-94
    • Farquhar, M.G.1
  • 100
    • 0021335764 scopus 로고
    • Insulin, not C-peptide (Proinsulin), is present in crinophagic bodies of the pancreatic B-cell
    • Orci L, Ravazzola M, Amherdt M, et al. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J Cell Biol. 1984;98(1):222–228.
    • (1984) J Cell Biol , vol.98 , Issue.1 , pp. 222-228
    • Orci, L.1    Ravazzola, M.2    Amherdt, M.3
  • 101
    • 0019311577 scopus 로고
    • Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content
    • Halban PA, Wollheim CB. Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content. J Biol Chem. 1980; 255(13):6003–6006.
    • (1980) J Biol Chem , vol.255 , Issue.13 , pp. 6003-6006
    • Halban, P.A.1    Wollheim, C.B.2
  • 102
    • 0038660725 scopus 로고    scopus 로고
    • Insulin secretory deficiency and glucose intolerance in Rab3A null mice
    • Yaekura K, Julyan R, Wicksteed BL, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278(11):9715–9721.
    • (2003) J Biol Chem , vol.278 , Issue.11 , pp. 9715-9721
    • Yaekura, K.1    Julyan, R.2    Wicksteed, B.L.3
  • 103
    • 34548368589 scopus 로고    scopus 로고
    • Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
    • Marsh BJ, Soden C, Alarcón C, et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol Endocrinol. 2007;21(9):2255–2269.
    • (2007) Mol Endocrinol , vol.21 , Issue.9 , pp. 2255-2269
    • Marsh, B.J.1    Soden, C.2    Alarcón, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.