-
1
-
-
34548093280
-
How shall I eat thee?
-
Klionsky DJ, Cuervo AM, Dunn WA Jr, Levine B, van der Klei I, Seglen PO. How shall I eat thee? Autophagy. 2007;3(5):413–416.
-
(2007)
Autophagy
, vol.3
, Issue.5
, pp. 413-416
-
-
Klionsky, D.J.1
Cuervo, A.M.2
Dunn, W.A.3
Levine, B.4
Van Der Klei, I.5
Seglen, P.O.6
-
2
-
-
79954422997
-
Chaperone-mediated autophagy in protein quality control
-
Arias E, Cuervo AM. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol. 2011;23(2):184–189.
-
(2011)
Curr Opin Cell Biol
, vol.23
, Issue.2
, pp. 184-189
-
-
Arias, E.1
Cuervo, A.M.2
-
3
-
-
78651423598
-
Microautophagy of cytosolic proteins by late endosomes
-
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell. 2011;20(1):131–139.
-
(2011)
Dev Cell
, vol.20
, Issue.1
, pp. 131-139
-
-
Sahu, R.1
Kaushik, S.2
Clement, C.C.3
-
5
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–293.
-
(2010)
Mol Cell
, vol.40
, Issue.2
, pp. 280-293
-
-
Kroemer, G.1
Mariño, G.2
Levine, B.3
-
6
-
-
84901346313
-
Autophagy–a key player in cellular and body metabolism
-
Kim KH, Lee MS. Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–337.
-
(2014)
Nat Rev Endocrinol
, vol.10
, Issue.6
, pp. 322-337
-
-
Kim, K.H.1
Lee, M.S.2
-
7
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741.
-
(2011)
Cell
, vol.147
, Issue.4
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
8
-
-
21044455137
-
Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, et al. Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–434.
-
(2005)
J Cell Biol
, vol.169
, Issue.3
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
-
9
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
-
10
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–889.
-
(2006)
Nature
, vol.441
, Issue.7095
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
-
11
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619–624.
-
(2007)
Nat Med
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
Yamaguchi, O.2
Takeda, T.3
-
12
-
-
84872035827
-
Butler PC. β-Cell mass and turnover in humans: Effects of obesity and aging
-
Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC. β-Cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–117.
-
(2013)
Diabetes Care
, vol.36
, Issue.1
, pp. 111-117
-
-
Saisho, Y.1
Butler, A.E.2
Manesso, E.3
Elashoff, D.4
Rizza, R.A.5
-
13
-
-
53549093011
-
Pancreatic β-cell mass in European subjects with type 2 diabetes
-
Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10 Suppl 4:32–42.
-
Diabetes Obes Metab. 2008;10 Suppl
, vol.4
, pp. 32-42
-
-
Rahier, J.1
Guiot, Y.2
Goebbels, R.M.3
Sempoux, C.4
Henquin, J.C.5
-
14
-
-
78650073927
-
An islet in distress: _ cell failure in type 2 diabetes
-
Ogihara T, Mirmira RG. An islet in distress: _ cell failure in type 2 diabetes. J Diabetes Investig. 2010;1(4):123–133.
-
(2010)
J Diabetes Investig
, vol.1
, Issue.4
, pp. 123-133
-
-
Ogihara, T.1
Mirmira, R.G.2
-
15
-
-
33745863033
-
Islet β cell failure in type 2 diabetes
-
Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–1812.
-
(2006)
J Clin Invest
, vol.116
, Issue.7
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
16
-
-
0042879951
-
Insulin granule dynamics in pancreatic β cells
-
Rorsman P, Renström E. Insulin granule dynamics in pancreatic β cells. Diabetologia. 2003;46(8):1029–1045.
-
(2003)
Diabetologia
, vol.46
, Issue.8
, pp. 1029-1045
-
-
Rorsman, P.1
Renström, E.2
-
17
-
-
39549093998
-
Inhibition of autophagyprevents hippocampal pyramidal neuron death after hypoxic-ischemic injury
-
Koike M, Shibata M, Tadakoshi M, et al. Inhibition of autophagyprevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172(2):454–469.
-
(2008)
Am J Pathol
, vol.172
, Issue.2
, pp. 454-469
-
-
Koike, M.1
Shibata, M.2
Tadakoshi, M.3
-
18
-
-
23244447063
-
Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice
-
Ohmuraya M, Hirota M, Araki M, et al. Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology. 2005;129(2):696–705.
-
(2005)
Gastroenterology
, vol.129
, Issue.2
, pp. 696-705
-
-
Ohmuraya, M.1
Hirota, M.2
Araki, M.3
-
19
-
-
70350343033
-
Autophagy regulates pancreatic β cell death in response to Pdx1 deficiency and nutrient deprivation
-
Fujimoto K, Hanson PT, Tran H, et al. Autophagy regulates pancreatic β cell death in response to Pdx1 deficiency and nutrient deprivation. J Biol Chem. 2009;284(40):27664–27673.
-
(2009)
J Biol Chem
, vol.284
, Issue.40
, pp. 27664-27673
-
-
Fujimoto, K.1
Hanson, P.T.2
Tran, H.3
-
20
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–467.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, Issue.7
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
21
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5(7):973–979.
-
(2009)
Autophagy
, vol.5
, Issue.7
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
22
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
-
23
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–1991.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.7
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
-
24
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-12305.
-
(2009)
J Biol Chem
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam Du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
25
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.
-
(2008)
J Cell Biol
, vol.182
, Issue.4
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
-
26
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Polson HE, de Lartigue J, Rigden DJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506–522.
-
(2010)
Autophagy
, vol.6
, Issue.4
, pp. 506-522
-
-
Polson, H.E.1
De Lartigue, J.2
Rigden, D.J.3
-
27
-
-
77957728513
-
The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
-
Di Bartolomeo S, Corazzari M, Nazio F, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010;191(1):155–168.
-
(2010)
J Cell Biol
, vol.191
, Issue.1
, pp. 155-168
-
-
Di Bartolomeo, S.1
Corazzari, M.2
Nazio, F.3
-
28
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013; 15(4):406–416.
-
(2013)
Nat Cell Biol
, vol.15
, Issue.4
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
-
29
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–750.
-
(2013)
Nat Cell Biol
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
-
30
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes byAMPKin nutrient stress and autophagy
-
Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes byAMPKin nutrient stress and autophagy. Cell. 2013;152(1–2):290–303.
-
(2013)
Cell
, vol.152
, Issue.12
, pp. 290-303
-
-
Kim, J.1
Kim, Y.C.2
Fang, C.3
-
31
-
-
84869147050
-
Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
-
Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science. 2012;338(6109):956–959.
-
(2012)
Science
, vol.338
, Issue.6109
, pp. 956-959
-
-
Wang, R.C.1
Wei, Y.2
An, Z.3
-
32
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.
-
(2008)
Cell
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
33
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
Ichimura Y, Kumanomidou T, Sou YS, et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem. 2008;283(33):22847–22857.
-
(2008)
J Biol Chem
, vol.283
, Issue.33
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
-
34
-
-
65549142204
-
A role for biquitin in selective autophagy
-
Kirkin V, McEwan DG, Novak I, Dikic I. A role for biquitin in selective autophagy. Mol Cell. 2009;34(3):259–269.
-
(2009)
Mol Cell
, vol.34
, Issue.3
, pp. 259-269
-
-
Kirkin, V.1
McEwan, D.G.2
Novak, I.3
Dikic, I.4
-
35
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA. 2014; 111(42):E4439–E4448.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.42
, pp. E4439-E4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
36
-
-
84870880174
-
The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151(6):1256–1269.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
37
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
-
38
-
-
84896970273
-
Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagyderived amino acids
-
Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagyderived amino acids. Autophagy. 2014;10(3):431–441.
-
(2014)
Autophagy
, vol.10
, Issue.3
, pp. 431-441
-
-
Sahani, M.H.1
Itakura, E.2
Mizushima, N.3
-
39
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet
-
Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of β cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325–332.
-
(2008)
Cell Metab
, vol.8
, Issue.4
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
-
40
-
-
52749094770
-
Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
-
Jung HS, Chung KW, Won Kim J, et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 2008;8(4):318–324.
-
(2008)
Cell Metab
, vol.8
, Issue.4
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Won Kim, J.3
-
41
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004; 432(7020):1032–1036.
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
-
42
-
-
84856764175
-
Autophagy deficiency in _ cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice
-
Quan W, Hur KY, Lim Y, et al. Autophagy deficiency in _ cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia. 2012;55(2):392-403.
-
(2012)
Diabetologia
, vol.55
, Issue.2
, pp. 392-403
-
-
Quan, W.1
Hur, K.Y.2
Lim, Y.3
-
43
-
-
84875416620
-
Stimulation ofautophagy improves endoplasmic reticulum stress-induced diabetes
-
Bachar-Wikstrom E, Wikstrom JD, Ariav Y, et al. Stimulation ofautophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes. 2013;62(4):1227–1237.
-
(2013)
Diabetes
, vol.62
, Issue.4
, pp. 1227-1237
-
-
Bachar-Wikstrom, E.1
Wikstrom, J.D.2
Ariav, Y.3
-
44
-
-
33845582804
-
Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes
-
Li X, Zhang L, Meshinchi S, et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55(11):2965–2973.
-
(2006)
Diabetes
, vol.55
, Issue.11
, pp. 2965-2973
-
-
Li, X.1
Zhang, L.2
Meshinchi, S.3
-
45
-
-
84888224672
-
Exendin-4 improves _-cell function in autophagy-deficient β-cells
-
Abe H, Uchida T, Hara A, et al. Exendin-4 improves _-cell function in autophagy-deficient β-cells. Endocrinology. 2013;154(12): 4512–4524.
-
(2013)
Endocrinology
, vol.154
, Issue.12
, pp. 4512-4524
-
-
Abe, H.1
Uchida, T.2
Hara, A.3
-
46
-
-
67349150186
-
Autophagy in human type 2 diabetes pancreatic β cells
-
Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic β cells. Diabetologia. 2009;52(6):1083–1086.
-
(2009)
Diabetologia
, vol.52
, Issue.6
, pp. 1083-1086
-
-
Masini, M.1
Bugliani, M.2
Lupi, R.3
-
47
-
-
84903516492
-
Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients
-
Mizukami H, Takahashi K, Inaba W, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37(7):1966–1974.
-
(2014)
Diabetes Care
, vol.37
, Issue.7
, pp. 1966-1974
-
-
Mizukami, H.1
Takahashi, K.2
Inaba, W.3
-
48
-
-
0036144410
-
Fuchsbichler A, et al. P62 Is a common component of cytoplasmic inclusions in protein aggregation diseases
-
Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol. 2002;160(1):255–263.
-
(2002)
Am J Pathol
, vol.160
, Issue.1
, pp. 255-263
-
-
Zatloukal, K.1
Stumptner, C.2
-
49
-
-
2442585133
-
Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: Possible mechanisms and the role in Lewy body formation in Parkinson’s disease
-
Nakaso K, Yoshimoto Y, Nakano T, et al. Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease. Brain Res. 2004;1012(1–2):42–51.
-
(2004)
Brain Res
, vol.1012
, Issue.1-2
, pp. 42-51
-
-
Nakaso, K.1
Yoshimoto, Y.2
Nakano, T.3
-
50
-
-
34047179973
-
Brumell JH. Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy
-
Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH. Ubiquitinated-protein aggregates form in pancreatic β-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes. 2007;56(4):930–939.
-
(2007)
Diabetes
, vol.56
, Issue.4
, pp. 930-939
-
-
Kaniuk, N.A.1
Kiraly, M.2
Bates, H.3
Vranic, M.4
Volchuk, A.5
-
51
-
-
77953784925
-
β-Cell autophagy: A novel mechanism regulating β-cell function and mass: Lessons from β-cell-specific Atg7-deficient mice
-
Fujitani Y, Ebato C, Uchida T, Kawamori R, Watada H. β-Cell autophagy: a novel mechanism regulating β-cell function and mass: lessons from β-cell-specific Atg7-deficient mice. Islets. 2009;1(2):151–153.
-
(2009)
Islets
, vol.1
, Issue.2
, pp. 151-153
-
-
Fujitani, Y.1
Ebato, C.2
Uchida, T.3
Kawamori, R.4
Watada, H.5
-
52
-
-
61649124031
-
The role of autophagy in pancreatic β-cell and diabetes
-
Fujitani Y, Kawamori R, Watada H. The role of autophagy in pancreatic β-cell and diabetes. Autophagy. 2009;5(2):280–282.
-
(2009)
Autophagy
, vol.5
, Issue.2
, pp. 280-282
-
-
Fujitani, Y.1
Kawamori, R.2
Watada, H.3
-
53
-
-
84871005673
-
The pathways of mitophagy for quality control and clearance of mitochondria
-
Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013; 20(1):31-42.
-
(2013)
Cell Death Differ
, vol.20
, Issue.1
, pp. 31-42
-
-
Ashrafi, G.1
Schwarz, T.L.2
-
54
-
-
2442668926
-
Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1
-
Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary earlyonset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–1160.
-
(2004)
Science
, vol.304
, Issue.5674
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
-
55
-
-
0032499264
-
Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
-
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–608.
-
(1998)
Nature
, vol.392
, Issue.6676
, pp. 605-608
-
-
Kitada, T.1
Asakawa, S.2
Hattori, N.3
-
56
-
-
77950371695
-
PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
-
Kawajiri S, Saiki S, Sato S, et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 2010;584(6):1073–1079.
-
(2010)
FEBS Lett
, vol.584
, Issue.6
, pp. 1073-1079
-
-
Kawajiri, S.1
Saiki, S.2
Sato, S.3
-
57
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):1000298.
-
(2010)
Plos Biol
, vol.8
, Issue.1
, pp. 1000298
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
-
58
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–131.
-
(2010)
Nat Cell Biol
, vol.12
, Issue.2
, pp. 119-131
-
-
Geisler, S.1
Holmström, K.M.2
Skujat, D.3
-
59
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010;107(1):378–383.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.1
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
-
61
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012; 22(2):320–333.
-
(2012)
Dev Cell
, vol.22
, Issue.2
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
62
-
-
78649300971
-
P62/ SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both
-
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/ SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 2010;6(8):1090–1106.
-
(2010)
Autophagy
, vol.6
, Issue.8
, pp. 1090-1106
-
-
Narendra, D.1
Kane, L.A.2
Hauser, D.N.3
Fearnley, I.M.4
Youle, R.J.5
-
63
-
-
77952409809
-
Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
-
Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging (Albany NY). 2009;1(4):425–437.
-
(2009)
Aging (Albany NY)
, vol.1
, Issue.4
, pp. 425-437
-
-
Wu, J.J.1
Quijano, C.2
Chen, E.3
-
64
-
-
84896824550
-
Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic _-cell function in diabetes
-
Hoshino A, Ariyoshi M, Okawa Y, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic _-cell function in diabetes. Proc Natl Acad Sci USA. 2014;111(8):3116–3121.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.8
, pp. 3116-3121
-
-
Hoshino, A.1
Ariyoshi, M.2
Okawa, Y.3
-
65
-
-
84903196141
-
The diabetes susceptibility gene Clec16a regulates mitophagy
-
Soleimanpour SA, Gupta A, Bakay M, et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157(7): 1577–1590.
-
(2014)
Cell
, vol.157
, Issue.7
, pp. 1577-1590
-
-
Soleimanpour, S.A.1
Gupta, A.2
Bakay, M.3
-
66
-
-
58149463600
-
Protective role of autophagy in palmitate-induced INS-1 β-cell death
-
Choi SE, Lee SM, Lee YJ, et al. Protective role of autophagy in palmitate-induced INS-1 β-cell death. Endocrinology. 2009; 150(1):126–134.
-
(2009)
Endocrinology
, vol.150
, Issue.1
, pp. 126-134
-
-
Choi, S.E.1
Lee, S.M.2
Lee, Y.J.3
-
67
-
-
0036315888
-
Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated
-
Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51(5):1437–1442.
-
(2002)
Diabetes
, vol.51
, Issue.5
, pp. 1437-1442
-
-
Lupi, R.1
Dotta, F.2
Marselli, L.3
-
68
-
-
84860478719
-
Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets
-
Martino L, Masini M, Novelli M, et al. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One. 2012;7(5):e36188.
-
(2012)
Plos One
, vol.7
, Issue.5
, pp. e36188
-
-
Martino, L.1
Masini, M.2
Novelli, M.3
-
69
-
-
77958484950
-
Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway
-
Komiya K, Uchida T, Ueno T, et al. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway. Biochem Biophys Res Commun. 2010;401(4):561–567.
-
(2010)
Biochem Biophys Res Commun
, vol.401
, Issue.4
, pp. 561-567
-
-
Komiya, K.1
Uchida, T.2
Ueno, T.3
-
70
-
-
84870901484
-
Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity
-
Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell. 2012; 48(5):667–680.
-
(2012)
Mol Cell
, vol.48
, Issue.5
, pp. 667-680
-
-
Shen, S.1
Niso-Santano, M.2
Adjemian, S.3
-
71
-
-
84860372433
-
Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (Mammalian target of rapamycin)
-
Tan SH, Shui G, Zhou J, et al. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem. 2012; 287(18):14364–14376.
-
(2012)
J Biol Chem
, vol.287
, Issue.18
, pp. 14364-14376
-
-
Tan, S.H.1
Shui, G.2
Zhou, J.3
-
72
-
-
82755195229
-
Fatty acids suppress autophagic turnover in β-cells
-
Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in β-cells. J Biol Chem. 2011; 286(49):42534–42544.
-
(2011)
J Biol Chem
, vol.286
, Issue.49
, pp. 42534-42544
-
-
Las, G.1
Serada, S.B.2
Wikstrom, J.D.3
Twig, G.4
Shirihai, O.S.5
-
74
-
-
35848963392
-
The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients
-
Marchetti P, Bugliani M, Lupi R, et al. The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients. Diabetologia. 2007;50(12):2486–2494.
-
(2007)
Diabetologia
, vol.50
, Issue.12
, pp. 2486-2494
-
-
Marchetti, P.1
Bugliani, M.2
Lupi, R.3
-
75
-
-
74949118681
-
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
-
Rouschop KM, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120(1):127–141.
-
(2010)
J Clin Invest
, vol.120
, Issue.1
, pp. 127-141
-
-
Rouschop, K.M.1
Van Den Beucken, T.2
Dubois, L.3
-
76
-
-
33846211417
-
ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
-
Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230–239.
-
(2007)
Cell Death Differ
, vol.14
, Issue.2
, pp. 230-239
-
-
Kouroku, Y.1
Fujita, E.2
Tanida, I.3
-
77
-
-
33845459165
-
Autophagy is activated for cell survival after endoplasmic reticulum stress
-
Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006; 26(24):9220–9231.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.24
, pp. 9220-9231
-
-
Ogata, M.1
Hino, S.2
Saito, A.3
-
78
-
-
70349627027
-
XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy
-
Hetz C, Thielen P, Matus S, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009;23(19):2294–2306.
-
(2009)
Genes Dev
, vol.23
, Issue.19
, pp. 2294-2306
-
-
Hetz, C.1
Thielen, P.2
Matus, S.3
-
79
-
-
84906672871
-
Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment
-
Bartolomé A, Kimura-Koyanagi M, Asahara S, et al. Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes. 2014;63(9):2996–3008.
-
(2014)
Diabetes
, vol.63
, Issue.9
, pp. 2996-3008
-
-
Bartolomé, A.1
Kimura-Koyanagi, M.2
Asahara, S.3
-
80
-
-
84908348924
-
Increased expression of ERp57/GRP58 is protective against pancreatic β cell death caused by autophagic failure
-
Yamamoto E, Uchida T, Abe H, et al. Increased expression of ERp57/GRP58 is protective against pancreatic β cell death caused by autophagic failure. Biochem Biophys Res Commun. 2014; 453(1):19–24.
-
(2014)
Biochem Biophys Res Commun
, vol.453
, Issue.1
, pp. 19-24
-
-
Yamamoto, E.1
Uchida, T.2
Abe, H.3
-
81
-
-
77953543377
-
The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond
-
Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 2010; 20(6):355–362.
-
(2010)
Trends Cell Biol
, vol.20
, Issue.6
, pp. 355-362
-
-
Funderburk, S.F.1
Wang, Q.J.2
Yue, Z.3
-
82
-
-
43549100675
-
Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis
-
Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev. 2008; 29(3):303–316.
-
(2008)
Endocr Rev
, vol.29
, Issue.3
, pp. 303-316
-
-
Haataja, L.1
Gurlo, T.2
Huang, C.J.3
Butler, P.C.4
-
83
-
-
79951672803
-
Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: Protective role of p62-positive cytoplasmic inclusions
-
Rivera JF, Gurlo T, Daval M, et al. Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. 2011;18(3):415–426.
-
(2011)
Cell Death Differ
, vol.18
, Issue.3
, pp. 415-426
-
-
Rivera, J.F.1
Gurlo, T.2
Daval, M.3
-
84
-
-
84905460021
-
Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy
-
Shigihara N, Fukunaka A, Hara A, et al. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124(8):3634–3644.
-
(2014)
J Clin Invest
, vol.124
, Issue.8
, pp. 3634-3644
-
-
Shigihara, N.1
Fukunaka, A.2
Hara, A.3
-
85
-
-
84905460026
-
Autophagy Defends Pancreatic Cells from human islet amyloid polypeptideinduced toxicity
-
Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptideinduced toxicity. J Clin Invest. 2014;124(8):3489–3500.
-
(2014)
J Clin Invest
, vol.124
, Issue.8
, pp. 3489-3500
-
-
Rivera, J.F.1
Costes, S.2
Gurlo, T.3
Glabe, C.G.4
Butler, P.C.5
-
86
-
-
84903635601
-
UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: Evidence of interplay between the ubiquitin/proteasome system and autophagy
-
Costes S, Gurlo T, Rivera JF, Butler PC. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy. 2014;10(6):1004–1014.
-
(2014)
Autophagy
, vol.10
, Issue.6
, pp. 1004-1014
-
-
Costes, S.1
Gurlo, T.2
Rivera, J.F.3
Butler, P.C.4
-
87
-
-
84905492806
-
Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes
-
Kim J, Cheon H, Jeong YT, et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest. 2014;124(8):3311–3324.
-
(2014)
J Clin Invest
, vol.124
, Issue.8
, pp. 3311-3324
-
-
Kim, J.1
Cheon, H.2
Jeong, Y.T.3
-
88
-
-
77957189194
-
β-Synuclein impairs macroautophagy: Implications for Parkinson’s disease
-
Winslow AR, Chen CW, Corrochano S, et al. β-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–1037.
-
(2010)
J Cell Biol
, vol.190
, Issue.6
, pp. 1023-1037
-
-
Winslow, A.R.1
Chen, C.W.2
Corrochano, S.3
-
89
-
-
84878253079
-
The type 2 diabetesassociated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells
-
Steneberg P, Bernardo L, Edfalk S, et al. The type 2 diabetesassociated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes. 2013;62(6):2004-2015.
-
(2013)
Diabetes
, vol.62
, Issue.6
, pp. 2004-2015
-
-
Steneberg, P.1
Bernardo, L.2
Edfalk, S.3
-
90
-
-
34548431826
-
Increased numbe of isletassociated macrophages in type 2 diabetes
-
Ehses JA, Perren A, Eppler E, et al. Increased numbe of isletassociated macrophages in type 2 diabetes. Diabetes. 2007;56(9): 2356–2370.
-
(2007)
Diabetes
, vol.56
, Issue.9
, pp. 2356-2370
-
-
Ehses, J.A.1
Perren, A.2
Eppler, E.3
-
91
-
-
67650685521
-
Islet-associated macrophages in type 2 diabetes
-
Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. Islet-associated macrophages in type 2 diabetes. Diabetologia. 2009;52(8):1686–1688.
-
(2009)
Diabetologia
, vol.52
, Issue.8
, pp. 1686-1688
-
-
Richardson, S.J.1
Willcox, A.2
Bone, A.J.3
Foulis, A.K.4
Morgan, N.G.5
-
92
-
-
23744439083
-
Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes
-
Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 2005;122(3):337–349.
-
(2005)
Cell
, vol.122
, Issue.3
, pp. 337-349
-
-
Gunton, J.E.1
Kulkarni, R.N.2
Yim, S.3
-
93
-
-
84873523692
-
Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic β cell dysfunction
-
Bugliani M, Liechti R, Cheon H, et al. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic β cell dysfunction. Mol Cell Endocrinol. 2013;367(1–2):1–10.
-
(2013)
Mol Cell Endocrinol
, vol.367
, Issue.12
, pp. 1-10
-
-
Bugliani, M.1
Liechti, R.2
Cheon, H.3
-
94
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production
-
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature. 2008;456(7219):264–268.
-
(2008)
Nature
, vol.456
, Issue.7219
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
-
95
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–230.
-
(2011)
Nat Immunol
, vol.12
, Issue.3
, pp. 222-230
-
-
Nakahira, K.1
Haspel, J.A.2
Rathinam, V.A.3
-
96
-
-
80052712323
-
Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IҝB kinase β (IKKβ)/NF-ҝB pathway
-
Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IҝB kinase β (IKKβ)/NF-ҝB pathway. J Biol Chem. 2011;286(37):32324–32332.
-
(2011)
J Biol Chem
, vol.286
, Issue.37
, pp. 32324-32332
-
-
Meng, Q.1
Cai, D.2
-
97
-
-
84886797274
-
Autophagy in infection, inflammation and immunity
-
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–737.
-
(2013)
Nat Rev Immunol
, vol.13
, Issue.10
, pp. 722-737
-
-
Deretic, V.1
Saitoh, T.2
Akira, S.3
-
98
-
-
84886919052
-
Cathepsin B contributes to autophagyrelated 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line
-
Li S, Du L, Zhang L, et al. Cathepsin B contributes to autophagyrelated 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem. 2013;288(42):30094–30104.
-
(2013)
J Biol Chem
, vol.288
, Issue.42
, pp. 30094-30104
-
-
Li, S.1
Du, L.2
Zhang, L.3
-
99
-
-
0017329865
-
Secretion and crinophagy in prolactin cells
-
Farquhar MG. Secretion and crinophagy in prolactin cells. Adv Exp Med Biol. 1977;80:37–94.
-
(1977)
Adv Exp Med Biol
, vol.80
, pp. 37-94
-
-
Farquhar, M.G.1
-
100
-
-
0021335764
-
Insulin, not C-peptide (Proinsulin), is present in crinophagic bodies of the pancreatic B-cell
-
Orci L, Ravazzola M, Amherdt M, et al. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J Cell Biol. 1984;98(1):222–228.
-
(1984)
J Cell Biol
, vol.98
, Issue.1
, pp. 222-228
-
-
Orci, L.1
Ravazzola, M.2
Amherdt, M.3
-
101
-
-
0019311577
-
Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content
-
Halban PA, Wollheim CB. Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content. J Biol Chem. 1980; 255(13):6003–6006.
-
(1980)
J Biol Chem
, vol.255
, Issue.13
, pp. 6003-6006
-
-
Halban, P.A.1
Wollheim, C.B.2
-
102
-
-
0038660725
-
Insulin secretory deficiency and glucose intolerance in Rab3A null mice
-
Yaekura K, Julyan R, Wicksteed BL, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278(11):9715–9721.
-
(2003)
J Biol Chem
, vol.278
, Issue.11
, pp. 9715-9721
-
-
Yaekura, K.1
Julyan, R.2
Wicksteed, B.L.3
-
103
-
-
34548368589
-
Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
-
Marsh BJ, Soden C, Alarcón C, et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol Endocrinol. 2007;21(9):2255–2269.
-
(2007)
Mol Endocrinol
, vol.21
, Issue.9
, pp. 2255-2269
-
-
Marsh, B.J.1
Soden, C.2
Alarcón, C.3
|