-
1
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics 2009, 43:67-93. http://www.ncbi.nlm.nih.gov/pubmed/19653858, 10.1146/annurev-genet-102808-114910.
-
(2009)
Annual Review of Genetics
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
2
-
-
84912528393
-
MTOR and autophagy: a dynamic relationship governed by nutrients and energy
-
Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell and Developmental Biology 2014, 36C:121-129. http://www.ncbi.nlm.nih.gov/pubmed/25158238, 10.1016/j.semcdb.2014.08.006.
-
(2014)
Seminars in Cell and Developmental Biology
, vol.36 C
, pp. 121-129
-
-
Dunlop, E.A.1
Tee, A.R.2
-
3
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg H., Shvets E., Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annual Review of Biochemistry 2011, 80:125-156. http://www.ncbi.nlm.nih.gov/pubmed/21548784, 10.1146/annurev-biochem-052709-094552.
-
(2011)
Annual Review of Biochemistry
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
4
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry 2007, 282(33):24131-24145. http://www.ncbi.nlm.nih.gov/pubmed/17580304, 10.1074/jbc.M702824200.
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
-
5
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular Cell 2009, 33(4):505-516. http://www.ncbi.nlm.nih.gov/pubmed/19250911, 10.1016/j.molcel.2009.01.020.
-
(2009)
Molecular Cell
, vol.33
, Issue.4
, pp. 505-516
-
-
Kirkin, V.1
-
6
-
-
79959498837
-
Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1
-
Rozenknop A., et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. Journal of Molecular Biology 2011, 410(3):477-487. http://www.ncbi.nlm.nih.gov/pubmed/21620860, 10.1016/j.jmb.2011.05.003.
-
(2011)
Journal of Molecular Biology
, vol.410
, Issue.3
, pp. 477-487
-
-
Rozenknop, A.1
-
7
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports 2010, 11(1):45-51. http://www.ncbi.nlm.nih.gov/pubmed/20010802, 10.1038/embor.2009.256.
-
(2010)
EMBO Reports
, vol.11
, Issue.1
, pp. 45-51
-
-
Novak, I.1
-
8
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 2005, 8(1):3-5. http://www.ncbi.nlm.nih.gov/pubmed/15798367, 10.1089/rej.2005.8.3.
-
(2005)
Rejuvenation Research
, vol.8
, Issue.1
, pp. 3-5
-
-
Lemasters, J.J.1
-
9
-
-
84877628647
-
Autophagy in human health and disease
-
Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal ofMedicine 2013, 368(19):1845-1846. http://www.ncbi.nlm.nih.gov/pubmed/23656658, 10.1056/NEJMc1303158.
-
(2013)
New England Journal ofMedicine
, vol.368
, Issue.19
, pp. 1845-1846
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
10
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer 2012, 12(6):401-410. http://www.ncbi.nlm.nih.gov/pubmed/22534666, 10.1038/nrc3262.
-
(2012)
Nature Reviews Cancer
, vol.12
, Issue.6
, pp. 401-410
-
-
White, E.1
-
11
-
-
84920892844
-
Tumor suppression and promotion by autophagy
-
Ávalos Y., et al. Tumor suppression and promotion by autophagy. BioMed Research International 2014, 2014:603980. http://www.ncbi.nlm.nih.gov/pubmed/25328887, 10.1155/2014/603980.
-
(2014)
BioMed Research International
, vol.2014
, pp. 603980
-
-
Ávalos, Y.1
-
12
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
Kenific C.M., Debnath J. Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology 2014, http://www.ncbi.nlm.nih.gov/pubmed/25278333, 10.1016/j.tcb.2014.09.001.
-
(2014)
Trends in Cell Biology
-
-
Kenific, C.M.1
Debnath, J.2
-
13
-
-
80055008140
-
Hydrogen peroxide: a Jekyll and Hyde signalling molecule
-
Gough D.R., Cotter T.G. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death and Disease 2011, 2:e213. http://www.ncbi.nlm.nih.gov/pubmed/21975295, 10.1038/cddis.2011.96.
-
(2011)
Cell Death and Disease
, vol.2
, pp. e213
-
-
Gough, D.R.1
Cotter, T.G.2
-
14
-
-
0023229496
-
Oxygen radicals and human disease
-
Cross C.E., et al. Oxygen radicals and human disease. Annals of Internal Medicine 1987, 107(4):526-545. http://www.ncbi.nlm.nih.gov/pubmed/3307585.
-
(1987)
Annals of Internal Medicine
, vol.107
, Issue.4
, pp. 526-545
-
-
Cross, C.E.1
-
15
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
St-Pierre J., et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry 2002, 277(47):44784-44790. http://www.ncbi.nlm.nih.gov/pubmed/12237311, 10.1074/jbc.M207217200.
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.47
, pp. 44784-44790
-
-
St-Pierre, J.1
-
16
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochemistry Journal 2009, 417(1):1-13. http://www.ncbi.nlm.nih.gov/pubmed/19061483, 10.1042/BJ20081386.
-
(2009)
Biochemistry Journal
, vol.417
, Issue.1
, pp. 1-13
-
-
Murphy, M.P.1
-
17
-
-
2342629352
-
Oxidative stress and cell signalling
-
Poli G., et al. Oxidative stress and cell signalling. Current Med. Chem. 2004, 11(9):1163-1182. 10.2174/0929867043365323.
-
(2004)
Current Med. Chem.
, vol.11
, Issue.9
, pp. 1163-1182
-
-
Poli, G.1
-
18
-
-
33847349283
-
Reactive oxygen species: a breath of life or death?
-
Fruehauf J.P., Meyskens F.L. Reactive oxygen species: a breath of life or death?. Clinical Cancer Research 2007, 13(3):789-794. http://www.ncbi.nlm.nih.gov/pubmed/17289868, 10.1158/1078-0432.CCR-06-2082.
-
(2007)
Clinical Cancer Research
, vol.13
, Issue.3
, pp. 789-794
-
-
Fruehauf, J.P.1
Meyskens, F.L.2
-
19
-
-
84864545633
-
Molecular link mechanisms between inflammation and cancer
-
Vendramini-Costa D.B., Carvalho J.E. Molecular link mechanisms between inflammation and cancer. Current Pharmaceutical Design 2012, 18(26):3831-3852. http://www.ncbi.nlm.nih.gov/pubmed/22632748.
-
(2012)
Current Pharmaceutical Design
, vol.18
, Issue.26
, pp. 3831-3852
-
-
Vendramini-Costa, D.B.1
Carvalho, J.E.2
-
20
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal 2007, 26(7):1749-1760.
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
-
21
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., Zhu T., Guan K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115(5):577-590.
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
22
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 2008, 30(2):214-226. http://www.ncbi.nlm.nih.gov/pubmed/18439900, 10.1016/j.molcel.2008.03.003.
-
(2008)
Molecular Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
-
23
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 2011, 13(2):132-141. http://www.ncbi.nlm.nih.gov/pubmed/21258367, 10.1038/ncb2152.
-
(2011)
Nature Cell Biology
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
-
24
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331(6016):456-461. http://www.ncbi.nlm.nih.gov/pubmed/21205641, 10.1126/science.1196371.
-
(2011)
Science
, vol.331
, Issue.6016
, pp. 456-461
-
-
Egan, D.F.1
-
25
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
Egan D., et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7(6):643-644. http://www.ncbi.nlm.nih.gov/pubmed/21460621.
-
(2011)
Autophagy
, vol.7
, Issue.6
, pp. 643-644
-
-
Egan, D.1
-
26
-
-
0035860237
-
The regulation of AMP-activated protein kinase by H(2)O(2)
-
Choi S.L., et al. The regulation of AMP-activated protein kinase by H(2)O(2). Biochemistry Biophysics Research Communication 2001, 287(1):92-97. http://www.ncbi.nlm.nih.gov/pubmed/11549258, 10.1006/bbrc.2001.5544.
-
(2001)
Biochemistry Biophysics Research Communication
, vol.287
, Issue.1
, pp. 92-97
-
-
Choi, S.L.1
-
27
-
-
37349067228
-
Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
-
Chen Y., et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death and Differentiation 2008, 15(1):171-182. http://www.ncbi.nlm.nih.gov/pubmed/17917680, 10.1038/sj.cdd.4402233.
-
(2008)
Cell Death and Differentiation
, vol.15
, Issue.1
, pp. 171-182
-
-
Chen, Y.1
-
28
-
-
33750071414
-
NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy
-
Djavaheri-Mergny M., et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. Journal of Biological Chemistry 2006, 281(41):30373-30382. http://www.ncbi.nlm.nih.gov/pubmed/16857678, 10.1074/jbc.M602097200.
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.41
, pp. 30373-30382
-
-
Djavaheri-Mergny, M.1
-
29
-
-
84903601805
-
The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells
-
Boyer-Guittaut M., et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014, 10(6):986-1003. http://www.ncbi.nlm.nih.gov/pubmed/24879149, 10.4161/auto.28390.
-
(2014)
Autophagy
, vol.10
, Issue.6
, pp. 986-1003
-
-
Boyer-Guittaut, M.1
-
30
-
-
80053575783
-
The multifaceted roles of autophagy in tumors-implications for breast cancer
-
Debnath J. The multifaceted roles of autophagy in tumors-implications for breast cancer. Journal of Mammary Gland Biology and Neoplasia 2011, 16(3):173-187. http://www.ncbi.nlm.nih.gov/pubmed/21779879, 10.1007/s10911-011-9223-3.
-
(2011)
Journal of Mammary Gland Biology and Neoplasia
, vol.16
, Issue.3
, pp. 173-187
-
-
Debnath, J.1
-
31
-
-
69349087479
-
Anti- and pro-tumor functions of autophagy
-
Morselli E., et al. Anti- and pro-tumor functions of autophagy. Biochimica et Biophysica Acta 2009, 1793(9):1524-1532. http://www.ncbi.nlm.nih.gov/pubmed/19371598, 10.1016/j.bbamcr.2009.01.006.
-
(2009)
Biochimica et Biophysica Acta
, vol.1793
, Issue.9
, pp. 1524-1532
-
-
Morselli, E.1
-
32
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang J., Ney P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death and Differentiation 2009, 16(7):939-946. http://www.ncbi.nlm.nih.gov/pubmed/19229244, 10.1038/cdd.2009.16.
-
(2009)
Cell Death and Differentiation
, vol.16
, Issue.7
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
33
-
-
84863430453
-
Mitophagy: a complex mechanism of mitochondrial removal
-
Novak I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxidants and Redox Signaling 2012, 17(5):794-802. http://www.ncbi.nlm.nih.gov/pubmed/22077334, 10.1089/ars.2011.4407.
-
(2012)
Antioxidants and Redox Signaling
, vol.17
, Issue.5
, pp. 794-802
-
-
Novak, I.1
-
34
-
-
84879606527
-
Molecular signaling toward mitophagy and its physiological significance
-
Feng D., et al. Molecular signaling toward mitophagy and its physiological significance. Experimental Cell Research 2013, 319(12):1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/23603281, 10.1016/j.yexcr.2013.03.034.
-
(2013)
Experimental Cell Research
, vol.319
, Issue.12
, pp. 1697-1705
-
-
Feng, D.1
-
36
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers R.L., et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States ofAmerica 2007, 104(49):19500-19505. http://www.ncbi.nlm.nih.gov/pubmed/18048346, 10.1073/pnas.0708818104.
-
(2007)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.104
, Issue.49
, pp. 19500-19505
-
-
Schweers, R.L.1
-
37
-
-
47049100413
-
Essential role for nix in autophagic maturation of erythroid cells
-
Sandoval H., et al. Essential role for nix in autophagic maturation of erythroid cells. Nature 2008, 454(7201):232-235. http://www.ncbi.nlm.nih.gov/pubmed/18454133, 10.1038/nature07006.
-
(2008)
Nature
, vol.454
, Issue.7201
, pp. 232-235
-
-
Sandoval, H.1
-
38
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology 2010, 189(2):211-221.
-
(2010)
Journal of Cell Biology
, vol.189
, Issue.2
, pp. 211-221
-
-
Matsuda, N.1
-
39
-
-
79956159030
-
Oncosuppressive functions of autophagy
-
Morselli E., et al. Oncosuppressive functions of autophagy. Antioxidants and Redox Signaling 2011, 14(11):2251-2269. http://www.ncbi.nlm.nih.gov/pubmed/20712403, 10.1089/ars.2010.3478.
-
(2011)
Antioxidants and Redox Signaling
, vol.14
, Issue.11
, pp. 2251-2269
-
-
Morselli, E.1
-
40
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A., et al. Autophagy-deficient mice develop multiple liver tumors. Genes & Development 2011, 25(8):795-800. 10.1101/gad.2016211.
-
(2011)
Genes & Development
, vol.25
, Issue.8
, pp. 795-800
-
-
Takamura, A.1
-
41
-
-
34249863298
-
Autophagy suppresses tumor progression by limiting chromosomal instability
-
Mathew R., et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes & Development 2007, 21(11):1367-1381. http://www.ncbi.nlm.nih.gov/pubmed/17510285, 10.1101/gad.1545107.
-
(2007)
Genes & Development
, vol.21
, Issue.11
, pp. 1367-1381
-
-
Mathew, R.1
-
42
-
-
34347404887
-
Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
-
Karantza-Wadsworth V., et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes & Development 2007, 21(13):1621-1635.
-
(2007)
Genes & Development
, vol.21
, Issue.13
, pp. 1621-1635
-
-
Karantza-Wadsworth, V.1
-
43
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 2010, 12(3):213-223. http://www.ncbi.nlm.nih.gov/pubmed/20173742, 10.1038/ncb2021.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
-
44
-
-
77953366801
-
A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62
-
Lau A., et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Molecular and Cellular Biology 2010, 30(13):3275-3285. http://www.ncbi.nlm.nih.gov/pubmed/20421418, 10.1128/MCB.00248-10.
-
(2010)
Molecular and Cellular Biology
, vol.30
, Issue.13
, pp. 3275-3285
-
-
Lau, A.1
-
45
-
-
84865287281
-
Keap1 degradation by autophagy for the maintenance of redox homeostasis
-
Taguchi K., et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of the National Academy of Sciences of the United States ofAmerica 2012, 109(34):13561-13566. http://www.ncbi.nlm.nih.gov/pubmed/22872865, 10.1073/pnas.1121572109.
-
(2012)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.109
, Issue.34
, pp. 13561-13566
-
-
Taguchi, K.1
-
46
-
-
77958115724
-
Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases
-
Villeneuve N.F., Lau A., Zhang D.D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxidants and Redox Signaling 2010, 13(11):1699-1712. http://www.ncbi.nlm.nih.gov/pubmed/20486766, 10.1089/ars.2010.3211.
-
(2010)
Antioxidants and Redox Signaling
, vol.13
, Issue.11
, pp. 1699-1712
-
-
Villeneuve, N.F.1
Lau, A.2
Zhang, D.D.3
-
47
-
-
48649109203
-
Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis
-
Sakurai T., et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008, 14(2):156-165. http://www.ncbi.nlm.nih.gov/pubmed/18691550, 10.1016/j.ccr.2008.06.016.
-
(2008)
Cancer Cell
, vol.14
, Issue.2
, pp. 156-165
-
-
Sakurai, T.1
-
48
-
-
84882827495
-
Decoding cell death signals in liver inflammation
-
Brenner C., et al. Decoding cell death signals in liver inflammation. Journal of Hepatology 2013, 59(3):583-594. http://www.ncbi.nlm.nih.gov/pubmed/23567086, 10.1016/j.jhep.2013.03.033.
-
(2013)
Journal of Hepatology
, vol.59
, Issue.3
, pp. 583-594
-
-
Brenner, C.1
-
49
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T., Fujita N., Jang M.H., Uematsu S., Yang B.G., Satoh T., Omori H., Noda T., Yamamoto N., Komatsu M., Tanaka K., Kawai T., Tsujimura T., Takeuchi O., Yoshimori T., Akira S. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268. http://www.ncbi.nlm.nih.gov/pubmed/18849965, 10.1038/nature07383.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
Omori, H.7
Noda, T.8
Yamamoto, N.9
Komatsu, M.10
Tanaka, K.11
Kawai, T.12
Tsujimura, T.13
Takeuchi, O.14
Yoshimori, T.15
Akira, S.16
-
50
-
-
70350575440
-
Modulation of intracellular ROS levels by TIGAR controls autophagy
-
Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO Journal 2009, 28(19):3015-3026. http://www.ncbi.nlm.nih.gov/pubmed/19713938, 10.1038/emboj.2009.242.
-
(2009)
EMBO Journal
, vol.28
, Issue.19
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
51
-
-
79951642032
-
Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
-
Nakahira K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 2011, 12(3):222-230. http://www.ncbi.nlm.nih.gov/pubmed/21151103, 10.1038/ni.1980.
-
(2011)
Nature Immunology
, vol.12
, Issue.3
, pp. 222-230
-
-
Nakahira, K.1
-
52
-
-
78651393239
-
A role for mitochondria in NLRP3 inflammasome activation
-
Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469(7329):221-225. http://www.ncbi.nlm.nih.gov/pubmed/21124315, 10.1038/nature09663.
-
(2011)
Nature
, vol.469
, Issue.7329
, pp. 221-225
-
-
Zhou, R.1
-
53
-
-
32944455363
-
Levels of IL-1beta control stimulatory/inhibitory growth of cancer cells
-
Roy D., Sarkar S., Felty Q. Levels of IL-1beta control stimulatory/inhibitory growth of cancer cells. Frontiers in Bioscience 2006, 11:889-898. http://www.ncbi.nlm.nih.gov/pubmed/16146780, 10.2741/1845.
-
(2006)
Frontiers in Bioscience
, vol.11
, pp. 889-898
-
-
Roy, D.1
Sarkar, S.2
Felty, Q.3
-
54
-
-
84881231803
-
HMGB1 in cancer: good, bad, or both?
-
Kang R., et al. HMGB1 in cancer: good, bad, or both?. Clinical Cancer Research 2013, 19(15):4046-4057. http://www.ncbi.nlm.nih.gov/pubmed/23723299, 10.1158/1078-0432.CCR-13-0495.
-
(2013)
Clinical Cancer Research
, vol.19
, Issue.15
, pp. 4046-4057
-
-
Kang, R.1
-
55
-
-
80052589806
-
High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress
-
Tang D., et al. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxidants and Redox Signaling 2011, 15(8):2185-2195.
-
(2011)
Antioxidants and Redox Signaling
, vol.15
, Issue.8
, pp. 2185-2195
-
-
Tang, D.1
-
56
-
-
77954951851
-
TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells
-
Mittal D., et al. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO Journal 2010, 29(13):2242-2252. 10.1038/emboj.2010.94.
-
(2010)
EMBO Journal
, vol.29
, Issue.13
, pp. 2242-2252
-
-
Mittal, D.1
-
57
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock R., et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell 2011, 22(2):165-178. http://www.ncbi.nlm.nih.gov/pubmed/21119005, 10.1091/mbc.E10-06-0500.
-
(2011)
Molecular Biology of the Cell
, vol.22
, Issue.2
, pp. 165-178
-
-
Lock, R.1
-
58
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo J.Y., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & Development 2011, 25(5):460-470. http://www.ncbi.nlm.nih.gov/pubmed/21317241, 10.1101/gad.2016311.
-
(2011)
Genes & Development
, vol.25
, Issue.5
, pp. 460-470
-
-
Guo, J.Y.1
-
59
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S., et al. Pancreatic cancers require autophagy for tumor growth. Genes & Development 2011, 25(7):717-729. 10.1101/gad.2016111.
-
(2011)
Genes & Development
, vol.25
, Issue.7
, pp. 717-729
-
-
Yang, S.1
-
60
-
-
79953856887
-
Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation
-
Kim M.J., et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Journal of Biological Chemistry 2011, 286(15):12924-12932. http://www.ncbi.nlm.nih.gov/pubmed/21300795, 10.1074/jbc.M110.138958.
-
(2011)
Journal of Biological Chemistry
, vol.286
, Issue.15
, pp. 12924-12932
-
-
Kim, M.J.1
-
61
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States ofAmerica 2010, 107(19):8788-8793. http://www.ncbi.nlm.nih.gov/pubmed/20421486, 10.1073/pnas.1003428107.
-
(2010)
Proceedings of the National Academy of Sciences of the United States ofAmerica
, vol.107
, Issue.19
, pp. 8788-8793
-
-
Weinberg, F.1
-
62
-
-
84885350394
-
Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
-
Strohecker A.M., et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discovery 2013, 3(11):1272-1285. http://www.ncbi.nlm.nih.gov/pubmed/23965987, 10.1158/2159-8290.CD-13-0397.
-
(2013)
Cancer Discovery
, vol.3
, Issue.11
, pp. 1272-1285
-
-
Strohecker, A.M.1
-
63
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo J.Y., et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes & Development 2013, 27(13):1447-1461. http://www.ncbi.nlm.nih.gov/pubmed/23824538, 10.1101/gad.219642.113.
-
(2013)
Genes & Development
, vol.27
, Issue.13
, pp. 1447-1461
-
-
Guo, J.Y.1
-
64
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10(1):51-64. http://www.ncbi.nlm.nih.gov/pubmed/16843265, 10.1016/j.ccr.2006.06.001.
-
(2006)
Cancer Cell
, vol.10
, Issue.1
, pp. 51-64
-
-
Degenhardt, K.1
-
65
-
-
41249084239
-
The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis
-
Duran A., et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008, 13(4):343-354. http://www.ncbi.nlm.nih.gov/pubmed/18394557, 10.1016/j.ccr.2008.02.001.
-
(2008)
Cancer Cell
, vol.13
, Issue.4
, pp. 343-354
-
-
Duran, A.1
-
66
-
-
66449099090
-
Autophagy suppresses tumorigenesis through elimination of p62
-
Mathew R., et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137(6):1062-1075. http://www.ncbi.nlm.nih.gov/pubmed/19524509, 10.1016/j.cell.2009.03.048.
-
(2009)
Cell
, vol.137
, Issue.6
, pp. 1062-1075
-
-
Mathew, R.1
-
67
-
-
79960401862
-
Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
-
Wei H., et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & Development 2011, 25(14):1510-1527. http://www.ncbi.nlm.nih.gov/pubmed/21764854, 10.1101/gad.2051011.
-
(2011)
Genes & Development
, vol.25
, Issue.14
, pp. 1510-1527
-
-
Wei, H.1
-
68
-
-
0036359548
-
Hypoxia -a key regulatory factor in tumour growth
-
Harris A.L. Hypoxia -a key regulatory factor in tumour growth. Nature Reviews Cancer 2002, 2(1):38-47. http://www.ncbi.nlm.nih.gov/pubmed/11902584, 10.1038/nrc704.
-
(2002)
Nature Reviews Cancer
, vol.2
, Issue.1
, pp. 38-47
-
-
Harris, A.L.1
-
69
-
-
79551628206
-
Hypoxia and energetic tumour metabolism
-
Brahimi-Horn M.C., Bellot G., Pouysségur J. Hypoxia and energetic tumour metabolism. Current Opinion in Genetics and Development 2011, 21(1):67-72. http://www.ncbi.nlm.nih.gov/pubmed/21074987, 10.1016/j.gde.2010.10.006.
-
(2011)
Current Opinion in Genetics and Development
, vol.21
, Issue.1
, pp. 67-72
-
-
Brahimi-Horn, M.C.1
Bellot, G.2
Pouysségur, J.3
-
71
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry 2008, 283(16):10892-10903. http://www.ncbi.nlm.nih.gov/pubmed/18281291, 10.1074/jbc.M800102200.
-
(2008)
Journal of Biological Chemistry
, vol.283
, Issue.16
, pp. 10892-10903
-
-
Zhang, H.1
-
72
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology 2009, 29(10):2570-2581. http://www.ncbi.nlm.nih.gov/pubmed/19273585, 10.1128/MCB.00166-09.
-
(2009)
Molecular and Cellular Biology
, vol.29
, Issue.10
, pp. 2570-2581
-
-
Bellot, G.1
-
73
-
-
69949112039
-
Autophagy is required during cycling hypoxia to lower production of reactive oxygen species
-
Rouschop K.M., et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiotherapy and Oncology 2009, 92(3):411-416. http://www.ncbi.nlm.nih.gov/pubmed/19616335, 10.1016/j.radonc.2009.06.029.
-
(2009)
Radiotherapy and Oncology
, vol.92
, Issue.3
, pp. 411-416
-
-
Rouschop, K.M.1
-
74
-
-
77951228508
-
Hypoxia-induced autophagy: cell death or cell survival?
-
Mazure N.M., Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival?. Current Opinion in Cell Biology 2010, 22(2):177-180. http://www.ncbi.nlm.nih.gov/pubmed/20022734, 10.1016/j.ceb.2009.11.015.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 177-180
-
-
Mazure, N.M.1
Pouysségur, J.2
-
75
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
Papandreou I., et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death and Differentiation 2008, 15(10):1572-1581. http://www.ncbi.nlm.nih.gov/pubmed/18551130, 10.1038/cdd.2008.84.
-
(2008)
Cell Death and Differentiation
, vol.15
, Issue.10
, pp. 1572-1581
-
-
Papandreou, I.1
-
76
-
-
74949118681
-
The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
-
Rouschop K.M., et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. Journal of Clinical Investigation 2010, 120(1):127-141. http://www.ncbi.nlm.nih.gov/pubmed/20038797, 10.1172/JCI40027.
-
(2010)
Journal of Clinical Investigation
, vol.120
, Issue.1
, pp. 127-141
-
-
Rouschop, K.M.1
-
77
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330(6009):1344-1348. http://www.ncbi.nlm.nih.gov/pubmed/21127245, 10.1126/science.1193497.
-
(2010)
Science
, vol.330
, Issue.6009
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
78
-
-
81855194301
-
The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming
-
Eng C.H., Abraham R.T. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 2011, 30(47):4687-4696. http://www.ncbi.nlm.nih.gov/pubmed/21666712, 10.1038/onc.2011.220.
-
(2011)
Oncogene
, vol.30
, Issue.47
, pp. 4687-4696
-
-
Eng, C.H.1
Abraham, R.T.2
-
79
-
-
80053157914
-
Unravelling the complexity of metastasis -molecular understanding and targeted therapies
-
Sethi N., Kang Y. Unravelling the complexity of metastasis -molecular understanding and targeted therapies. Nature Reviews Cancer 2011, 11(10):735-748. http://www.ncbi.nlm.nih.gov/pubmed/21941285, 10.1038/nrc3125.
-
(2011)
Nature Reviews Cancer
, vol.11
, Issue.10
, pp. 735-748
-
-
Sethi, N.1
Kang, Y.2
-
80
-
-
80054686286
-
Tumor metastasis: molecular insights and evolving paradigms
-
Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147(2):275-292. http://www.ncbi.nlm.nih.gov/pubmed/22000009, 10.1016/j.cell.2011.09.024.
-
(2011)
Cell
, vol.147
, Issue.2
, pp. 275-292
-
-
Valastyan, S.1
Weinberg, R.A.2
-
81
-
-
84894593599
-
Molecular mechanisms of epithelial-mesenchymal transition
-
Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 2014, 15(3):178-196. http://www.ncbi.nlm.nih.gov/pubmed/24556840, 10.1038/nrm3758.
-
(2014)
Nature Reviews Molecular Cell Biology
, vol.15
, Issue.3
, pp. 178-196
-
-
Lamouille, S.1
Xu, J.2
Derynck, R.3
-
82
-
-
84856003912
-
Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
-
Lazova R., Camp R.L., Klump V., Siddiqui S.F., Amaravadi R.K., Pawelek J.M. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clinical Cancer Research 2012, 18:370-379. http://www.ncbi.nlm.nih.gov/pubmed/22080440, 10.1158/1078-0432.CCR-11-1282.
-
(2012)
Clinical Cancer Research
, vol.18
, pp. 370-379
-
-
Lazova, R.1
Camp, R.L.2
Klump, V.3
Siddiqui, S.F.4
Amaravadi, R.K.5
Pawelek, J.M.6
-
83
-
-
79956003662
-
Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma
-
Ma X.H., et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clinical Cancer Research 2011, 17(10):3478-3489. http://www.ncbi.nlm.nih.gov/pubmed/21325076, 10.1158/1078-0432.CCR-10-2372.
-
(2011)
Clinical Cancer Research
, vol.17
, Issue.10
, pp. 3478-3489
-
-
Ma, X.H.1
-
84
-
-
81855169565
-
Cancer invasion and the microenvironment: plasticity and reciprocity
-
Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011, 147(5):992-1009. http://www.ncbi.nlm.nih.gov/pubmed/22118458, 10.1016/j.cell.2011.11.016.
-
(2011)
Cell
, vol.147
, Issue.5
, pp. 992-1009
-
-
Friedl, P.1
Alexander, S.2
-
85
-
-
84888361416
-
Crossing the endothelial barrier during metastasis
-
Reymond N., d'Agua B.B., Ridley A.J. Crossing the endothelial barrier during metastasis. Nature Reviews Cancer 2013, 13(12):858-870.
-
(2013)
Nature Reviews Cancer
, vol.13
, Issue.12
, pp. 858-870
-
-
Reymond, N.1
d'Agua, B.B.2
Ridley, A.J.3
-
86
-
-
41449109334
-
Induction of autophagy during extracellular matrix detachment promotes cell survival
-
Fung C., et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Biochimica et Biophysica Acta 2008, 19(3):797-806. http://www.ncbi.nlm.nih.gov/pubmed/18094039, 10.1091/mbc.E07-10-1092.
-
(2008)
Biochimica et Biophysica Acta
, vol.19
, Issue.3
, pp. 797-806
-
-
Fung, C.1
-
87
-
-
84887621878
-
Anoikis molecular pathways and its role in cancer progression
-
Paoli P., Giannoni E., Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta 2013, 1833(12):3481-3498. http://www.ncbi.nlm.nih.gov/pubmed/23830918, 10.1016/j.bbamcr.2013.06.026.
-
(2013)
Biochimica et Biophysica Acta
, vol.1833
, Issue.12
, pp. 3481-3498
-
-
Paoli, P.1
Giannoni, E.2
Chiarugi, P.3
-
88
-
-
84890850438
-
Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
-
Peng Y.F., et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013, 9(12):2056-2068. http://www.ncbi.nlm.nih.gov/pubmed/24157892, 10.4161/auto.26398.
-
(2013)
Autophagy
, vol.9
, Issue.12
, pp. 2056-2068
-
-
Peng, Y.F.1
-
89
-
-
84885582468
-
Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
-
Avivar-Valderas A., et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 2013, 32(41):4932-4940. http://www.ncbi.nlm.nih.gov/pubmed/23160380, 10.1038/onc.2012.512.
-
(2013)
Oncogene
, vol.32
, Issue.41
, pp. 4932-4940
-
-
Avivar-Valderas, A.1
-
90
-
-
84861982020
-
The regulation of cancer cell death and metabolism by extracellular matrix attachment
-
Buchheit C.L., Rayavarapu R.R., Schafer Z.T. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Seminars in Cell and Developmental Biology 2012, 23(4):402-411. http://www.ncbi.nlm.nih.gov/pubmed/22579674, 10.1016/j.semcdb.2012.04.007.
-
(2012)
Seminars in Cell and Developmental Biology
, vol.23
, Issue.4
, pp. 402-411
-
-
Buchheit, C.L.1
Rayavarapu, R.R.2
Schafer, Z.T.3
-
91
-
-
80052342419
-
PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment
-
Avivar-Valderas A., et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Molecular and Cellular Biology 2011, 31(17):3616-3629. 10.1128/MCB.05164-11.
-
(2011)
Molecular and Cellular Biology
, vol.31
, Issue.17
, pp. 3616-3629
-
-
Avivar-Valderas, A.1
-
92
-
-
84861394761
-
Inhibition of autophagy impairs tumor cell invasion in an organotypic model
-
Macintosh R.L., et al. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 2012, 11(10):2022-2029.
-
(2012)
Cell Cycle
, vol.11
, Issue.10
, pp. 2022-2029
-
-
Macintosh, R.L.1
-
93
-
-
84873740471
-
The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells
-
Galavotti S., et al. The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 2013, 32(6):699-712. http://www.ncbi.nlm.nih.gov/pubmed/22525272, 10.1038/onc.2012.111.
-
(2013)
Oncogene
, vol.32
, Issue.6
, pp. 699-712
-
-
Galavotti, S.1
-
94
-
-
84878997506
-
Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition
-
Li J., et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013, 34(6):1343-1351. http://www.ncbi.nlm.nih.gov/pubmed/23430956, 10.1093/carcin/bgt063.
-
(2013)
Carcinogenesis
, vol.34
, Issue.6
, pp. 1343-1351
-
-
Li, J.1
-
95
-
-
77951212660
-
Autophagy and metastasis: another double-edged sword
-
Kenific C.M., Thorburn A., Debnath J. Autophagy and metastasis: another double-edged sword. Current Opinion in Cell Biology 2010, 22(2):241-245. http://www.ncbi.nlm.nih.gov/pubmed/19945838, 10.1016/j.ceb.2009.10.008.
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 241-245
-
-
Kenific, C.M.1
Thorburn, A.2
Debnath, J.3
-
96
-
-
38549146376
-
Immune cells as mediators of solid tumor metastasis
-
DeNardo D.G., Johansson M., Coussens L.M. Immune cells as mediators of solid tumor metastasis. Cancer and Metastasis Reviews 2008, 27(1):11-18. http://www.ncbi.nlm.nih.gov/pubmed/18066650, 10.1007/s10555-007-9100-0.
-
(2008)
Cancer and Metastasis Reviews
, vol.27
, Issue.1
, pp. 11-18
-
-
DeNardo, D.G.1
Johansson, M.2
Coussens, L.M.3
-
97
-
-
33645739790
-
Tumor stroma and regulation of cancer development
-
Tlsty T.D., Coussens L.M. Tumor stroma and regulation of cancer development. Annual Review of Pathology 2006, 1:119-150. http://www.ncbi.nlm.nih.gov/pubmed/18039110, 10.1146/annurev.pathol.1.110304.100224.
-
(2006)
Annual Review of Pathology
, vol.1
, pp. 119-150
-
-
Tlsty, T.D.1
Coussens, L.M.2
-
98
-
-
84863578884
-
DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer
-
Lv Q., Wang W., Xue J., Hua F., Mu R., Lin H., Yan J., Lv X., Chen X., Hu Z.W. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Research 2012, 72:3238-3250. http://www.ncbi.nlm.nih.gov/pubmed/22719072, 10.1158/0008-5472.CAN-11-3832.
-
(2012)
Cancer Research
, vol.72
, pp. 3238-3250
-
-
Lv, Q.1
Wang, W.2
Xue, J.3
Hua, F.4
Mu, R.5
Lin, H.6
Yan, J.7
Lv, X.8
Chen, X.9
Hu, Z.W.10
-
99
-
-
84916202468
-
In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non-small cell lung cancer cell lines
-
Wang M.C., et al. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non-small cell lung cancer cell lines. Oncology Reports 2015, 33(1):239-249. http://www.ncbi.nlm.nih.gov/pubmed/25370413, 10.3892/or.2014.3583.
-
(2015)
Oncology Reports
, vol.33
, Issue.1
, pp. 239-249
-
-
Wang, M.C.1
-
100
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407(6801):249-257. http://www.ncbi.nlm.nih.gov/pubmed/11001068, 10.1038/35025220.
-
(2000)
Nature
, vol.407
, Issue.6801
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
101
-
-
34249658435
-
Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
-
Nguyen T.M., et al. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 2007, 109(11):4793-4802. http://www.ncbi.nlm.nih.gov/pubmed/17272502, 10.1182/blood-2006-11-059352.
-
(2007)
Blood
, vol.109
, Issue.11
, pp. 4793-4802
-
-
Nguyen, T.M.1
-
102
-
-
34548067130
-
Autophagy and angiogenesis inhibition
-
Ramakrishnan S., et al. Autophagy and angiogenesis inhibition. Autophagy 2007, 3(5):512-515. http://www.ncbi.nlm.nih.gov/pubmed/17643071, 10.4161/auto.4734.
-
(2007)
Autophagy
, vol.3
, Issue.5
, pp. 512-515
-
-
Ramakrishnan, S.1
-
103
-
-
84871388330
-
Oxidative stress mediates chemerin-induced autophagy in endothelial cells
-
Shen W., et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radical Biology and Medicine 2013, 55:73-82. http://www.ncbi.nlm.nih.gov/pubmed/23195684, 10.1016/j.freeradbiomed.2012.11.011.
-
(2013)
Free Radical Biology and Medicine
, vol.55
, pp. 73-82
-
-
Shen, W.1
-
104
-
-
33646384428
-
Fibroblasts in cancer
-
Kalluri R., Zeisberg M. Fibroblasts in cancer. Nature Reviews Cancer 2006, 6(5):392-401. http://www.ncbi.nlm.nih.gov/pubmed/16572188, 10.1038/nrc1877.
-
(2006)
Nature Reviews Cancer
, vol.6
, Issue.5
, pp. 392-401
-
-
Kalluri, R.1
Zeisberg, M.2
-
105
-
-
84879780600
-
Autophagy: shaping the tumor microenvironment and therapeutic response
-
Maes H., et al. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends in Molecular Medicine 2013, 19(7):428-446. http://www.ncbi.nlm.nih.gov/pubmed/23714574, 10.1016/j.molmed.2013.04.005.
-
(2013)
Trends in Molecular Medicine
, vol.19
, Issue.7
, pp. 428-446
-
-
Maes, H.1
-
106
-
-
78349266054
-
The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox
-
Martinez-Outschoorn U.E., et al. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox. Cell Cycle 2010, 9(21):4297-4306.
-
(2010)
Cell Cycle
, vol.9
, Issue.21
, pp. 4297-4306
-
-
Martinez-Outschoorn, U.E.1
-
107
-
-
77954162846
-
Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells
-
Martinez-Outschoorn U.E., et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 2010, 9(16):3256-3276. http://www.ncbi.nlm.nih.gov/pubmed/20814239, 10.4161/cc.9.16.12553.
-
(2010)
Cell Cycle
, vol.9
, Issue.16
, pp. 3256-3276
-
-
Martinez-Outschoorn, U.E.1
-
108
-
-
77956399968
-
The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism
-
Pavlides S., et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010, 9(17):3485-3505.
-
(2010)
Cell Cycle
, vol.9
, Issue.17
, pp. 3485-3505
-
-
Pavlides, S.1
-
109
-
-
79957902168
-
Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator
-
Martinez-Outschoorn U.E., et al. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 2011, 10(11):1784-1793. http://www.ncbi.nlm.nih.gov/pubmed/21566463.
-
(2011)
Cell Cycle
, vol.10
, Issue.11
, pp. 1784-1793
-
-
Martinez-Outschoorn, U.E.1
-
110
-
-
84855434874
-
Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms
-
Sotgia F., et al. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annual Review of Pathology 2012, 7:423-467. http://www.ncbi.nlm.nih.gov/pubmed/22077552, 10.1146/annurev-pathol-011811-120856.
-
(2012)
Annual Review of Pathology
, vol.7
, pp. 423-467
-
-
Sotgia, F.1
-
111
-
-
79954504372
-
Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment
-
Martinez-Outschoorn U.E., et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. International Journal of Biochemistry & Cell Biology 2011, 43(7):1045-1051. 10.1016/j.biocel.2011.01.023.
-
(2011)
International Journal of Biochemistry & Cell Biology
, vol.43
, Issue.7
, pp. 1045-1051
-
-
Martinez-Outschoorn, U.E.1
-
112
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126(1):107-120. http://www.ncbi.nlm.nih.gov/pubmed/16839880, 10.1016/j.cell.2006.05.036.
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
-
113
-
-
77957138161
-
Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment
-
Lisanti M.P., et al. Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biology & Therapy 2010, 10(6):537-542.
-
(2010)
Cancer Biology & Therapy
, vol.10
, Issue.6
, pp. 537-542
-
-
Lisanti, M.P.1
-
114
-
-
84868213165
-
Autophagic tumor stroma: mechanisms and roles in tumor growth and progression
-
Zhao X., He Y., Chen H. Autophagic tumor stroma: mechanisms and roles in tumor growth and progression. International Journal of Cancer 2013, 132(1):1-8. http://www.ncbi.nlm.nih.gov/pubmed/22684793, 10.1002/ijc.27664.
-
(2013)
International Journal of Cancer
, vol.132
, Issue.1
, pp. 1-8
-
-
Zhao, X.1
He, Y.2
Chen, H.3
-
115
-
-
84055225365
-
Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
-
Pavlides S., et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxidants and Redox Signaling 2012, 16(11):1264-1284. http://www.ncbi.nlm.nih.gov/pubmed/21883043, 10.1089/ars.2011.4243.
-
(2012)
Antioxidants and Redox Signaling
, vol.16
, Issue.11
, pp. 1264-1284
-
-
Pavlides, S.1
-
116
-
-
77956400210
-
Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment
-
Martinez-Outschoorn U.E., et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 2010, 9(17):3515-3533.
-
(2010)
Cell Cycle
, vol.9
, Issue.17
, pp. 3515-3533
-
-
Martinez-Outschoorn, U.E.1
-
117
-
-
77956419439
-
Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism
-
Bonuccelli G., et al. Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010, 9(17):3506-3514.
-
(2010)
Cell Cycle
, vol.9
, Issue.17
, pp. 3506-3514
-
-
Bonuccelli, G.1
-
118
-
-
80053437523
-
Autophagic tumor stroma: a biofuel for cancer growth
-
Iozzo R.V. Autophagic tumor stroma: a biofuel for cancer growth. Cell Cycle 2011, 10(19):3231-3232. http://www.ncbi.nlm.nih.gov/pubmed/21946523, 10.4161/cc.10.19.17124.
-
(2011)
Cell Cycle
, vol.10
, Issue.19
, pp. 3231-3232
-
-
Iozzo, R.V.1
-
119
-
-
79959282414
-
Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis
-
Castello-Cros R., et al. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle 2011, 10(12):2021-2034. http://www.ncbi.nlm.nih.gov/pubmed/21646868, 10.4161/cc.10.12.16002.
-
(2011)
Cell Cycle
, vol.10
, Issue.12
, pp. 2021-2034
-
-
Castello-Cros, R.1
-
120
-
-
84870886414
-
Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells
-
Sotgia F., et al. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 2012, 11(23):4390-4401. 10.4161/cc.22777.
-
(2012)
Cell Cycle
, vol.11
, Issue.23
, pp. 4390-4401
-
-
Sotgia, F.1
-
121
-
-
84867723524
-
Autophagy as a target for cancer therapy: new developments
-
Carew J.S., Kelly K.R., Nawrocki S.T. Autophagy as a target for cancer therapy: new developments. Cancer Management and Research 2012, 4:357-365. http://www.ncbi.nlm.nih.gov/pubmed/23091399, 10.2147/CMAR.S26133.
-
(2012)
Cancer Management and Research
, vol.4
, pp. 357-365
-
-
Carew, J.S.1
Kelly, K.R.2
Nawrocki, S.T.3
-
122
-
-
84920952690
-
Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway
-
Zhou H., et al. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget 2014, 5:10140-10150. http://www.ncbi.nlm.nih.gov/pubmed/25294812.
-
(2014)
Oncotarget
, vol.5
, pp. 10140-10150
-
-
Zhou, H.1
-
123
-
-
84904600025
-
Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells
-
Hahm E.R., Sakao K., Singh S.V. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 2014, 74(12):1209-1221. http://www.ncbi.nlm.nih.gov/pubmed/25043291, 10.1002/pros.22837.
-
(2014)
Prostate
, vol.74
, Issue.12
, pp. 1209-1221
-
-
Hahm, E.R.1
Sakao, K.2
Singh, S.V.3
-
124
-
-
84904264607
-
Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress
-
Gonzalez Y., et al. Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress. Oncotarget 2014, 5(6):1526-1537. http://www.ncbi.nlm.nih.gov/pubmed/24681637.
-
(2014)
Oncotarget
, vol.5
, Issue.6
, pp. 1526-1537
-
-
Gonzalez, Y.1
-
125
-
-
84893824463
-
Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells
-
Kim H., et al. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxidative Medicine and Cellular Longevity 2013, 2013:596496. http://www.ncbi.nlm.nih.gov/pubmed/24379902, 10.1155/2013/596496.
-
(2013)
Oxidative Medicine and Cellular Longevity
, vol.2013
, pp. 596496
-
-
Kim, H.1
-
126
-
-
84920944165
-
Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells
-
Zhang Q., et al. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 2014, 5(3-4):100-112. http://www.ncbi.nlm.nih.gov/pubmed/25053988.
-
(2014)
Genes Cancer
, vol.5
, Issue.3-4
, pp. 100-112
-
-
Zhang, Q.1
-
127
-
-
84907775913
-
Carnosol induces ROS-Mediated Beclin1-Independent autophagy and apoptosis in triple negative breast cancer
-
Al Dhaheri Y., et al. Carnosol induces ROS-Mediated Beclin1-Independent autophagy and apoptosis in triple negative breast cancer. PLOS One 2014, 9(10):e109630. http://www.ncbi.nlm.nih.gov/pubmed/25299698, 10.1371/journal.pone.0109630.
-
(2014)
PLOS One
, vol.9
, Issue.10
, pp. e109630
-
-
Al Dhaheri, Y.1
-
128
-
-
84907703078
-
Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells
-
Hao W., et al. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells. PeerJ 2014, 2:e555. http://www.ncbi.nlm.nih.gov/pubmed/25250213, 10.7717/peerj.555.
-
(2014)
PeerJ
, vol.2
, pp. e555
-
-
Hao, W.1
-
129
-
-
84858665870
-
Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells
-
Miki H., et al. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. International Journal of Oncology 2012, 40(4):1020-1028. http://www.ncbi.nlm.nih.gov/pubmed/22218562, 10.3892/ijo.2012.1325.
-
(2012)
International Journal of Oncology
, vol.40
, Issue.4
, pp. 1020-1028
-
-
Miki, H.1
-
130
-
-
84890114880
-
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
-
Winterbourn C.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta 2014, 1840(2):730-738. http://www.ncbi.nlm.nih.gov/pubmed/23665586, 10.1016/j.bbagen.2013.05.004.
-
(2014)
Biochimica et Biophysica Acta
, vol.1840
, Issue.2
, pp. 730-738
-
-
Winterbourn, C.C.1
-
131
-
-
84904560848
-
Novel method for detection of reactive oxygen species in vivo in human skeletal muscle
-
La Favor J.D., Anderson E.J., Hickner R.C. Novel method for detection of reactive oxygen species in vivo in human skeletal muscle. Physiological Research 2014, 63(3):387-392. http://www.ncbi.nlm.nih.gov/pubmed/24564604.
-
(2014)
Physiological Research
, vol.63
, Issue.3
, pp. 387-392
-
-
La Favor, J.D.1
Anderson, E.J.2
Hickner, R.C.3
-
132
-
-
84864948661
-
Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance
-
Mrakic-Sposta S., et al. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxidative Medicine and Cellular Longevity 2012, 2012:973927. http://www.ncbi.nlm.nih.gov/pubmed/22900129, 10.1155/2012/973927.
-
(2012)
Oxidative Medicine and Cellular Longevity
, vol.2012
, pp. 973927
-
-
Mrakic-Sposta, S.1
-
133
-
-
0029786513
-
Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans
-
Roberts L.J., Moore K.P., Zackert W.E., Oates J.A., Morrow J.D. Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. Journal of Biological Chemistry 1996, 271:20617-20620. http://www.ncbi.nlm.nih.gov/pubmed/8702808, 10.1074/jbc.271.34.20617.
-
(1996)
Journal of Biological Chemistry
, vol.271
, pp. 20617-20620
-
-
Roberts, L.J.1
Moore, K.P.2
Zackert, W.E.3
Oates, J.A.4
Morrow, J.D.5
-
135
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8(4):445-544.
-
(2012)
Autophagy
, vol.8
, Issue.4
, pp. 445-544
-
-
Klionsky, D.J.1
|