메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 184-192

Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy

Author keywords

Antioxidant; Autophagy; Cancer; Mitochondria; Mitophagy; ROS

Indexed keywords

3 METHYLADENINE; ACETYLCYSTEINE; ADENYLATE KINASE; ARTEMISININ; AUTOPHAGY PROTEIN 5; BECLIN 1; CARNOSOL; CD11B ANTIGEN; CICLOPIROXOLAMINE; CRYOPYRIN; GLUTATHIONE PEROXIDASE; HIGH MOBILITY GROUP B1 PROTEIN; HONOKIOL; HYDROXYCHLOROQUINE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; JANUS KINASE; KELCH LIKE ECH ASSOCIATED PROTEIN 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MITOGEN ACTIVATED PROTEIN KINASE 1; MITOGEN ACTIVATED PROTEIN KINASE P38; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN P62; QUERCETIN; REACTIVE OXYGEN METABOLITE; RESVERATROL; SUPEROXIDE DISMUTASE; THIOREDOXIN; TRANSCRIPTION FACTOR NRF2; UNINDEXED DRUG; ANTINEOPLASTIC AGENT; APOPTOSIS REGULATORY PROTEIN; ATG4A PROTEIN, HUMAN; AUTOPHAGY RELATED PROTEIN; BECN1 PROTEIN, HUMAN; CYSTEINE PROTEINASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; KEAP1 PROTEIN, HUMAN; MEMBRANE PROTEIN; PROTEIN SERINE THREONINE KINASE; SERINE THREONINE PROTEIN KINASE ULK1; SIGNAL PEPTIDE; ULK1 PROTEIN, HUMAN;

EID: 84920971375     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2014.12.003     Document Type: Review
Times cited : (412)

References (135)
  • 1
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C., Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics 2009, 43:67-93. http://www.ncbi.nlm.nih.gov/pubmed/19653858, 10.1146/annurev-genet-102808-114910.
    • (2009) Annual Review of Genetics , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 2
    • 84912528393 scopus 로고    scopus 로고
    • MTOR and autophagy: a dynamic relationship governed by nutrients and energy
    • Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell and Developmental Biology 2014, 36C:121-129. http://www.ncbi.nlm.nih.gov/pubmed/25158238, 10.1016/j.semcdb.2014.08.006.
    • (2014) Seminars in Cell and Developmental Biology , vol.36 C , pp. 121-129
    • Dunlop, E.A.1    Tee, A.R.2
  • 3
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • Weidberg H., Shvets E., Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annual Review of Biochemistry 2011, 80:125-156. http://www.ncbi.nlm.nih.gov/pubmed/21548784, 10.1146/annurev-biochem-052709-094552.
    • (2011) Annual Review of Biochemistry , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 4
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry 2007, 282(33):24131-24145. http://www.ncbi.nlm.nih.gov/pubmed/17580304, 10.1074/jbc.M702824200.
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.33 , pp. 24131-24145
    • Pankiv, S.1
  • 5
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V., et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular Cell 2009, 33(4):505-516. http://www.ncbi.nlm.nih.gov/pubmed/19250911, 10.1016/j.molcel.2009.01.020.
    • (2009) Molecular Cell , vol.33 , Issue.4 , pp. 505-516
    • Kirkin, V.1
  • 6
    • 79959498837 scopus 로고    scopus 로고
    • Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1
    • Rozenknop A., et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. Journal of Molecular Biology 2011, 410(3):477-487. http://www.ncbi.nlm.nih.gov/pubmed/21620860, 10.1016/j.jmb.2011.05.003.
    • (2011) Journal of Molecular Biology , vol.410 , Issue.3 , pp. 477-487
    • Rozenknop, A.1
  • 7
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak I., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports 2010, 11(1):45-51. http://www.ncbi.nlm.nih.gov/pubmed/20010802, 10.1038/embor.2009.256.
    • (2010) EMBO Reports , vol.11 , Issue.1 , pp. 45-51
    • Novak, I.1
  • 8
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research 2005, 8(1):3-5. http://www.ncbi.nlm.nih.gov/pubmed/15798367, 10.1089/rej.2005.8.3.
    • (2005) Rejuvenation Research , vol.8 , Issue.1 , pp. 3-5
    • Lemasters, J.J.1
  • 9
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal ofMedicine 2013, 368(19):1845-1846. http://www.ncbi.nlm.nih.gov/pubmed/23656658, 10.1056/NEJMc1303158.
    • (2013) New England Journal ofMedicine , vol.368 , Issue.19 , pp. 1845-1846
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 10
    • 84861526009 scopus 로고    scopus 로고
    • Deconvoluting the context-dependent role for autophagy in cancer
    • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer 2012, 12(6):401-410. http://www.ncbi.nlm.nih.gov/pubmed/22534666, 10.1038/nrc3262.
    • (2012) Nature Reviews Cancer , vol.12 , Issue.6 , pp. 401-410
    • White, E.1
  • 11
    • 84920892844 scopus 로고    scopus 로고
    • Tumor suppression and promotion by autophagy
    • Ávalos Y., et al. Tumor suppression and promotion by autophagy. BioMed Research International 2014, 2014:603980. http://www.ncbi.nlm.nih.gov/pubmed/25328887, 10.1155/2014/603980.
    • (2014) BioMed Research International , vol.2014 , pp. 603980
    • Ávalos, Y.1
  • 12
    • 84918827750 scopus 로고    scopus 로고
    • Cellular and metabolic functions for autophagy in cancer cells
    • Kenific C.M., Debnath J. Cellular and metabolic functions for autophagy in cancer cells. Trends in Cell Biology 2014, http://www.ncbi.nlm.nih.gov/pubmed/25278333, 10.1016/j.tcb.2014.09.001.
    • (2014) Trends in Cell Biology
    • Kenific, C.M.1    Debnath, J.2
  • 13
    • 80055008140 scopus 로고    scopus 로고
    • Hydrogen peroxide: a Jekyll and Hyde signalling molecule
    • Gough D.R., Cotter T.G. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death and Disease 2011, 2:e213. http://www.ncbi.nlm.nih.gov/pubmed/21975295, 10.1038/cddis.2011.96.
    • (2011) Cell Death and Disease , vol.2 , pp. e213
    • Gough, D.R.1    Cotter, T.G.2
  • 14
    • 0023229496 scopus 로고
    • Oxygen radicals and human disease
    • Cross C.E., et al. Oxygen radicals and human disease. Annals of Internal Medicine 1987, 107(4):526-545. http://www.ncbi.nlm.nih.gov/pubmed/3307585.
    • (1987) Annals of Internal Medicine , vol.107 , Issue.4 , pp. 526-545
    • Cross, C.E.1
  • 15
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • St-Pierre J., et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry 2002, 277(47):44784-44790. http://www.ncbi.nlm.nih.gov/pubmed/12237311, 10.1074/jbc.M207217200.
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.47 , pp. 44784-44790
    • St-Pierre, J.1
  • 16
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochemistry Journal 2009, 417(1):1-13. http://www.ncbi.nlm.nih.gov/pubmed/19061483, 10.1042/BJ20081386.
    • (2009) Biochemistry Journal , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 17
    • 2342629352 scopus 로고    scopus 로고
    • Oxidative stress and cell signalling
    • Poli G., et al. Oxidative stress and cell signalling. Current Med. Chem. 2004, 11(9):1163-1182. 10.2174/0929867043365323.
    • (2004) Current Med. Chem. , vol.11 , Issue.9 , pp. 1163-1182
    • Poli, G.1
  • 18
    • 33847349283 scopus 로고    scopus 로고
    • Reactive oxygen species: a breath of life or death?
    • Fruehauf J.P., Meyskens F.L. Reactive oxygen species: a breath of life or death?. Clinical Cancer Research 2007, 13(3):789-794. http://www.ncbi.nlm.nih.gov/pubmed/17289868, 10.1158/1078-0432.CCR-06-2082.
    • (2007) Clinical Cancer Research , vol.13 , Issue.3 , pp. 789-794
    • Fruehauf, J.P.1    Meyskens, F.L.2
  • 19
    • 84864545633 scopus 로고    scopus 로고
    • Molecular link mechanisms between inflammation and cancer
    • Vendramini-Costa D.B., Carvalho J.E. Molecular link mechanisms between inflammation and cancer. Current Pharmaceutical Design 2012, 18(26):3831-3852. http://www.ncbi.nlm.nih.gov/pubmed/22632748.
    • (2012) Current Pharmaceutical Design , vol.18 , Issue.26 , pp. 3831-3852
    • Vendramini-Costa, D.B.1    Carvalho, J.E.2
  • 20
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO Journal 2007, 26(7):1749-1760.
    • (2007) EMBO Journal , vol.26 , Issue.7 , pp. 1749-1760
    • Scherz-Shouval, R.1
  • 21
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K., Zhu T., Guan K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115(5):577-590.
    • (2003) Cell , vol.115 , Issue.5 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 22
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 2008, 30(2):214-226. http://www.ncbi.nlm.nih.gov/pubmed/18439900, 10.1016/j.molcel.2008.03.003.
    • (2008) Molecular Cell , vol.30 , Issue.2 , pp. 214-226
    • Gwinn, D.M.1
  • 23
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 2011, 13(2):132-141. http://www.ncbi.nlm.nih.gov/pubmed/21258367, 10.1038/ncb2152.
    • (2011) Nature Cell Biology , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1
  • 24
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331(6016):456-461. http://www.ncbi.nlm.nih.gov/pubmed/21205641, 10.1126/science.1196371.
    • (2011) Science , vol.331 , Issue.6016 , pp. 456-461
    • Egan, D.F.1
  • 25
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan D., et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011, 7(6):643-644. http://www.ncbi.nlm.nih.gov/pubmed/21460621.
    • (2011) Autophagy , vol.7 , Issue.6 , pp. 643-644
    • Egan, D.1
  • 26
    • 0035860237 scopus 로고    scopus 로고
    • The regulation of AMP-activated protein kinase by H(2)O(2)
    • Choi S.L., et al. The regulation of AMP-activated protein kinase by H(2)O(2). Biochemistry Biophysics Research Communication 2001, 287(1):92-97. http://www.ncbi.nlm.nih.gov/pubmed/11549258, 10.1006/bbrc.2001.5544.
    • (2001) Biochemistry Biophysics Research Communication , vol.287 , Issue.1 , pp. 92-97
    • Choi, S.L.1
  • 27
    • 37349067228 scopus 로고    scopus 로고
    • Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
    • Chen Y., et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death and Differentiation 2008, 15(1):171-182. http://www.ncbi.nlm.nih.gov/pubmed/17917680, 10.1038/sj.cdd.4402233.
    • (2008) Cell Death and Differentiation , vol.15 , Issue.1 , pp. 171-182
    • Chen, Y.1
  • 28
    • 33750071414 scopus 로고    scopus 로고
    • NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy
    • Djavaheri-Mergny M., et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. Journal of Biological Chemistry 2006, 281(41):30373-30382. http://www.ncbi.nlm.nih.gov/pubmed/16857678, 10.1074/jbc.M602097200.
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.41 , pp. 30373-30382
    • Djavaheri-Mergny, M.1
  • 29
    • 84903601805 scopus 로고    scopus 로고
    • The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells
    • Boyer-Guittaut M., et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014, 10(6):986-1003. http://www.ncbi.nlm.nih.gov/pubmed/24879149, 10.4161/auto.28390.
    • (2014) Autophagy , vol.10 , Issue.6 , pp. 986-1003
    • Boyer-Guittaut, M.1
  • 30
    • 80053575783 scopus 로고    scopus 로고
    • The multifaceted roles of autophagy in tumors-implications for breast cancer
    • Debnath J. The multifaceted roles of autophagy in tumors-implications for breast cancer. Journal of Mammary Gland Biology and Neoplasia 2011, 16(3):173-187. http://www.ncbi.nlm.nih.gov/pubmed/21779879, 10.1007/s10911-011-9223-3.
    • (2011) Journal of Mammary Gland Biology and Neoplasia , vol.16 , Issue.3 , pp. 173-187
    • Debnath, J.1
  • 31
    • 69349087479 scopus 로고    scopus 로고
    • Anti- and pro-tumor functions of autophagy
    • Morselli E., et al. Anti- and pro-tumor functions of autophagy. Biochimica et Biophysica Acta 2009, 1793(9):1524-1532. http://www.ncbi.nlm.nih.gov/pubmed/19371598, 10.1016/j.bbamcr.2009.01.006.
    • (2009) Biochimica et Biophysica Acta , vol.1793 , Issue.9 , pp. 1524-1532
    • Morselli, E.1
  • 32
    • 67549101188 scopus 로고    scopus 로고
    • Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
    • Zhang J., Ney P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death and Differentiation 2009, 16(7):939-946. http://www.ncbi.nlm.nih.gov/pubmed/19229244, 10.1038/cdd.2009.16.
    • (2009) Cell Death and Differentiation , vol.16 , Issue.7 , pp. 939-946
    • Zhang, J.1    Ney, P.A.2
  • 33
    • 84863430453 scopus 로고    scopus 로고
    • Mitophagy: a complex mechanism of mitochondrial removal
    • Novak I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxidants and Redox Signaling 2012, 17(5):794-802. http://www.ncbi.nlm.nih.gov/pubmed/22077334, 10.1089/ars.2011.4407.
    • (2012) Antioxidants and Redox Signaling , vol.17 , Issue.5 , pp. 794-802
    • Novak, I.1
  • 34
    • 84879606527 scopus 로고    scopus 로고
    • Molecular signaling toward mitophagy and its physiological significance
    • Feng D., et al. Molecular signaling toward mitophagy and its physiological significance. Experimental Cell Research 2013, 319(12):1697-1705. http://www.ncbi.nlm.nih.gov/pubmed/23603281, 10.1016/j.yexcr.2013.03.034.
    • (2013) Experimental Cell Research , vol.319 , Issue.12 , pp. 1697-1705
    • Feng, D.1
  • 36
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • Schweers R.L., et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proceedings of the National Academy of Sciences of the United States ofAmerica 2007, 104(49):19500-19505. http://www.ncbi.nlm.nih.gov/pubmed/18048346, 10.1073/pnas.0708818104.
    • (2007) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.104 , Issue.49 , pp. 19500-19505
    • Schweers, R.L.1
  • 37
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for nix in autophagic maturation of erythroid cells
    • Sandoval H., et al. Essential role for nix in autophagic maturation of erythroid cells. Nature 2008, 454(7201):232-235. http://www.ncbi.nlm.nih.gov/pubmed/18454133, 10.1038/nature07006.
    • (2008) Nature , vol.454 , Issue.7201 , pp. 232-235
    • Sandoval, H.1
  • 38
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology 2010, 189(2):211-221.
    • (2010) Journal of Cell Biology , vol.189 , Issue.2 , pp. 211-221
    • Matsuda, N.1
  • 39
    • 79956159030 scopus 로고    scopus 로고
    • Oncosuppressive functions of autophagy
    • Morselli E., et al. Oncosuppressive functions of autophagy. Antioxidants and Redox Signaling 2011, 14(11):2251-2269. http://www.ncbi.nlm.nih.gov/pubmed/20712403, 10.1089/ars.2010.3478.
    • (2011) Antioxidants and Redox Signaling , vol.14 , Issue.11 , pp. 2251-2269
    • Morselli, E.1
  • 40
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Takamura A., et al. Autophagy-deficient mice develop multiple liver tumors. Genes & Development 2011, 25(8):795-800. 10.1101/gad.2016211.
    • (2011) Genes & Development , vol.25 , Issue.8 , pp. 795-800
    • Takamura, A.1
  • 41
    • 34249863298 scopus 로고    scopus 로고
    • Autophagy suppresses tumor progression by limiting chromosomal instability
    • Mathew R., et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes & Development 2007, 21(11):1367-1381. http://www.ncbi.nlm.nih.gov/pubmed/17510285, 10.1101/gad.1545107.
    • (2007) Genes & Development , vol.21 , Issue.11 , pp. 1367-1381
    • Mathew, R.1
  • 42
    • 34347404887 scopus 로고    scopus 로고
    • Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
    • Karantza-Wadsworth V., et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes & Development 2007, 21(13):1621-1635.
    • (2007) Genes & Development , vol.21 , Issue.13 , pp. 1621-1635
    • Karantza-Wadsworth, V.1
  • 43
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu M., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 2010, 12(3):213-223. http://www.ncbi.nlm.nih.gov/pubmed/20173742, 10.1038/ncb2021.
    • (2010) Nature Cell Biology , vol.12 , Issue.3 , pp. 213-223
    • Komatsu, M.1
  • 44
    • 77953366801 scopus 로고    scopus 로고
    • A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62
    • Lau A., et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Molecular and Cellular Biology 2010, 30(13):3275-3285. http://www.ncbi.nlm.nih.gov/pubmed/20421418, 10.1128/MCB.00248-10.
    • (2010) Molecular and Cellular Biology , vol.30 , Issue.13 , pp. 3275-3285
    • Lau, A.1
  • 45
    • 84865287281 scopus 로고    scopus 로고
    • Keap1 degradation by autophagy for the maintenance of redox homeostasis
    • Taguchi K., et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of the National Academy of Sciences of the United States ofAmerica 2012, 109(34):13561-13566. http://www.ncbi.nlm.nih.gov/pubmed/22872865, 10.1073/pnas.1121572109.
    • (2012) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.109 , Issue.34 , pp. 13561-13566
    • Taguchi, K.1
  • 46
    • 77958115724 scopus 로고    scopus 로고
    • Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases
    • Villeneuve N.F., Lau A., Zhang D.D. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxidants and Redox Signaling 2010, 13(11):1699-1712. http://www.ncbi.nlm.nih.gov/pubmed/20486766, 10.1089/ars.2010.3211.
    • (2010) Antioxidants and Redox Signaling , vol.13 , Issue.11 , pp. 1699-1712
    • Villeneuve, N.F.1    Lau, A.2    Zhang, D.D.3
  • 47
    • 48649109203 scopus 로고    scopus 로고
    • Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis
    • Sakurai T., et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008, 14(2):156-165. http://www.ncbi.nlm.nih.gov/pubmed/18691550, 10.1016/j.ccr.2008.06.016.
    • (2008) Cancer Cell , vol.14 , Issue.2 , pp. 156-165
    • Sakurai, T.1
  • 48
    • 84882827495 scopus 로고    scopus 로고
    • Decoding cell death signals in liver inflammation
    • Brenner C., et al. Decoding cell death signals in liver inflammation. Journal of Hepatology 2013, 59(3):583-594. http://www.ncbi.nlm.nih.gov/pubmed/23567086, 10.1016/j.jhep.2013.03.033.
    • (2013) Journal of Hepatology , vol.59 , Issue.3 , pp. 583-594
    • Brenner, C.1
  • 50
    • 70350575440 scopus 로고    scopus 로고
    • Modulation of intracellular ROS levels by TIGAR controls autophagy
    • Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO Journal 2009, 28(19):3015-3026. http://www.ncbi.nlm.nih.gov/pubmed/19713938, 10.1038/emboj.2009.242.
    • (2009) EMBO Journal , vol.28 , Issue.19 , pp. 3015-3026
    • Bensaad, K.1    Cheung, E.C.2    Vousden, K.H.3
  • 51
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 2011, 12(3):222-230. http://www.ncbi.nlm.nih.gov/pubmed/21151103, 10.1038/ni.1980.
    • (2011) Nature Immunology , vol.12 , Issue.3 , pp. 222-230
    • Nakahira, K.1
  • 52
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469(7329):221-225. http://www.ncbi.nlm.nih.gov/pubmed/21124315, 10.1038/nature09663.
    • (2011) Nature , vol.469 , Issue.7329 , pp. 221-225
    • Zhou, R.1
  • 53
    • 32944455363 scopus 로고    scopus 로고
    • Levels of IL-1beta control stimulatory/inhibitory growth of cancer cells
    • Roy D., Sarkar S., Felty Q. Levels of IL-1beta control stimulatory/inhibitory growth of cancer cells. Frontiers in Bioscience 2006, 11:889-898. http://www.ncbi.nlm.nih.gov/pubmed/16146780, 10.2741/1845.
    • (2006) Frontiers in Bioscience , vol.11 , pp. 889-898
    • Roy, D.1    Sarkar, S.2    Felty, Q.3
  • 54
    • 84881231803 scopus 로고    scopus 로고
    • HMGB1 in cancer: good, bad, or both?
    • Kang R., et al. HMGB1 in cancer: good, bad, or both?. Clinical Cancer Research 2013, 19(15):4046-4057. http://www.ncbi.nlm.nih.gov/pubmed/23723299, 10.1158/1078-0432.CCR-13-0495.
    • (2013) Clinical Cancer Research , vol.19 , Issue.15 , pp. 4046-4057
    • Kang, R.1
  • 55
    • 80052589806 scopus 로고    scopus 로고
    • High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress
    • Tang D., et al. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxidants and Redox Signaling 2011, 15(8):2185-2195.
    • (2011) Antioxidants and Redox Signaling , vol.15 , Issue.8 , pp. 2185-2195
    • Tang, D.1
  • 56
    • 77954951851 scopus 로고    scopus 로고
    • TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells
    • Mittal D., et al. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO Journal 2010, 29(13):2242-2252. 10.1038/emboj.2010.94.
    • (2010) EMBO Journal , vol.29 , Issue.13 , pp. 2242-2252
    • Mittal, D.1
  • 57
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
    • Lock R., et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell 2011, 22(2):165-178. http://www.ncbi.nlm.nih.gov/pubmed/21119005, 10.1091/mbc.E10-06-0500.
    • (2011) Molecular Biology of the Cell , vol.22 , Issue.2 , pp. 165-178
    • Lock, R.1
  • 58
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo J.Y., et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes & Development 2011, 25(5):460-470. http://www.ncbi.nlm.nih.gov/pubmed/21317241, 10.1101/gad.2016311.
    • (2011) Genes & Development , vol.25 , Issue.5 , pp. 460-470
    • Guo, J.Y.1
  • 59
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang S., et al. Pancreatic cancers require autophagy for tumor growth. Genes & Development 2011, 25(7):717-729. 10.1101/gad.2016111.
    • (2011) Genes & Development , vol.25 , Issue.7 , pp. 717-729
    • Yang, S.1
  • 60
    • 79953856887 scopus 로고    scopus 로고
    • Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation
    • Kim M.J., et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Journal of Biological Chemistry 2011, 286(15):12924-12932. http://www.ncbi.nlm.nih.gov/pubmed/21300795, 10.1074/jbc.M110.138958.
    • (2011) Journal of Biological Chemistry , vol.286 , Issue.15 , pp. 12924-12932
    • Kim, M.J.1
  • 61
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States ofAmerica 2010, 107(19):8788-8793. http://www.ncbi.nlm.nih.gov/pubmed/20421486, 10.1073/pnas.1003428107.
    • (2010) Proceedings of the National Academy of Sciences of the United States ofAmerica , vol.107 , Issue.19 , pp. 8788-8793
    • Weinberg, F.1
  • 62
    • 84885350394 scopus 로고    scopus 로고
    • Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
    • Strohecker A.M., et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discovery 2013, 3(11):1272-1285. http://www.ncbi.nlm.nih.gov/pubmed/23965987, 10.1158/2159-8290.CD-13-0397.
    • (2013) Cancer Discovery , vol.3 , Issue.11 , pp. 1272-1285
    • Strohecker, A.M.1
  • 63
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Guo J.Y., et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes & Development 2013, 27(13):1447-1461. http://www.ncbi.nlm.nih.gov/pubmed/23824538, 10.1101/gad.219642.113.
    • (2013) Genes & Development , vol.27 , Issue.13 , pp. 1447-1461
    • Guo, J.Y.1
  • 64
    • 33745713171 scopus 로고    scopus 로고
    • Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
    • Degenhardt K., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10(1):51-64. http://www.ncbi.nlm.nih.gov/pubmed/16843265, 10.1016/j.ccr.2006.06.001.
    • (2006) Cancer Cell , vol.10 , Issue.1 , pp. 51-64
    • Degenhardt, K.1
  • 65
    • 41249084239 scopus 로고    scopus 로고
    • The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis
    • Duran A., et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008, 13(4):343-354. http://www.ncbi.nlm.nih.gov/pubmed/18394557, 10.1016/j.ccr.2008.02.001.
    • (2008) Cancer Cell , vol.13 , Issue.4 , pp. 343-354
    • Duran, A.1
  • 66
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew R., et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009, 137(6):1062-1075. http://www.ncbi.nlm.nih.gov/pubmed/19524509, 10.1016/j.cell.2009.03.048.
    • (2009) Cell , vol.137 , Issue.6 , pp. 1062-1075
    • Mathew, R.1
  • 67
    • 79960401862 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
    • Wei H., et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & Development 2011, 25(14):1510-1527. http://www.ncbi.nlm.nih.gov/pubmed/21764854, 10.1101/gad.2051011.
    • (2011) Genes & Development , vol.25 , Issue.14 , pp. 1510-1527
    • Wei, H.1
  • 68
    • 0036359548 scopus 로고    scopus 로고
    • Hypoxia -a key regulatory factor in tumour growth
    • Harris A.L. Hypoxia -a key regulatory factor in tumour growth. Nature Reviews Cancer 2002, 2(1):38-47. http://www.ncbi.nlm.nih.gov/pubmed/11902584, 10.1038/nrc704.
    • (2002) Nature Reviews Cancer , vol.2 , Issue.1 , pp. 38-47
    • Harris, A.L.1
  • 71
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H., et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry 2008, 283(16):10892-10903. http://www.ncbi.nlm.nih.gov/pubmed/18281291, 10.1074/jbc.M800102200.
    • (2008) Journal of Biological Chemistry , vol.283 , Issue.16 , pp. 10892-10903
    • Zhang, H.1
  • 72
    • 66349121718 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
    • Bellot G., et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology 2009, 29(10):2570-2581. http://www.ncbi.nlm.nih.gov/pubmed/19273585, 10.1128/MCB.00166-09.
    • (2009) Molecular and Cellular Biology , vol.29 , Issue.10 , pp. 2570-2581
    • Bellot, G.1
  • 73
    • 69949112039 scopus 로고    scopus 로고
    • Autophagy is required during cycling hypoxia to lower production of reactive oxygen species
    • Rouschop K.M., et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiotherapy and Oncology 2009, 92(3):411-416. http://www.ncbi.nlm.nih.gov/pubmed/19616335, 10.1016/j.radonc.2009.06.029.
    • (2009) Radiotherapy and Oncology , vol.92 , Issue.3 , pp. 411-416
    • Rouschop, K.M.1
  • 74
    • 77951228508 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy: cell death or cell survival?
    • Mazure N.M., Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival?. Current Opinion in Cell Biology 2010, 22(2):177-180. http://www.ncbi.nlm.nih.gov/pubmed/20022734, 10.1016/j.ceb.2009.11.015.
    • (2010) Current Opinion in Cell Biology , vol.22 , Issue.2 , pp. 177-180
    • Mazure, N.M.1    Pouysségur, J.2
  • 75
    • 52149101812 scopus 로고    scopus 로고
    • Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
    • Papandreou I., et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death and Differentiation 2008, 15(10):1572-1581. http://www.ncbi.nlm.nih.gov/pubmed/18551130, 10.1038/cdd.2008.84.
    • (2008) Cell Death and Differentiation , vol.15 , Issue.10 , pp. 1572-1581
    • Papandreou, I.1
  • 76
    • 74949118681 scopus 로고    scopus 로고
    • The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
    • Rouschop K.M., et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. Journal of Clinical Investigation 2010, 120(1):127-141. http://www.ncbi.nlm.nih.gov/pubmed/20038797, 10.1172/JCI40027.
    • (2010) Journal of Clinical Investigation , vol.120 , Issue.1 , pp. 127-141
    • Rouschop, K.M.1
  • 77
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330(6009):1344-1348. http://www.ncbi.nlm.nih.gov/pubmed/21127245, 10.1126/science.1193497.
    • (2010) Science , vol.330 , Issue.6009 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 78
    • 81855194301 scopus 로고    scopus 로고
    • The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming
    • Eng C.H., Abraham R.T. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 2011, 30(47):4687-4696. http://www.ncbi.nlm.nih.gov/pubmed/21666712, 10.1038/onc.2011.220.
    • (2011) Oncogene , vol.30 , Issue.47 , pp. 4687-4696
    • Eng, C.H.1    Abraham, R.T.2
  • 79
    • 80053157914 scopus 로고    scopus 로고
    • Unravelling the complexity of metastasis -molecular understanding and targeted therapies
    • Sethi N., Kang Y. Unravelling the complexity of metastasis -molecular understanding and targeted therapies. Nature Reviews Cancer 2011, 11(10):735-748. http://www.ncbi.nlm.nih.gov/pubmed/21941285, 10.1038/nrc3125.
    • (2011) Nature Reviews Cancer , vol.11 , Issue.10 , pp. 735-748
    • Sethi, N.1    Kang, Y.2
  • 80
    • 80054686286 scopus 로고    scopus 로고
    • Tumor metastasis: molecular insights and evolving paradigms
    • Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147(2):275-292. http://www.ncbi.nlm.nih.gov/pubmed/22000009, 10.1016/j.cell.2011.09.024.
    • (2011) Cell , vol.147 , Issue.2 , pp. 275-292
    • Valastyan, S.1    Weinberg, R.A.2
  • 81
    • 84894593599 scopus 로고    scopus 로고
    • Molecular mechanisms of epithelial-mesenchymal transition
    • Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 2014, 15(3):178-196. http://www.ncbi.nlm.nih.gov/pubmed/24556840, 10.1038/nrm3758.
    • (2014) Nature Reviews Molecular Cell Biology , vol.15 , Issue.3 , pp. 178-196
    • Lamouille, S.1    Xu, J.2    Derynck, R.3
  • 82
    • 84856003912 scopus 로고    scopus 로고
    • Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome
    • Lazova R., Camp R.L., Klump V., Siddiqui S.F., Amaravadi R.K., Pawelek J.M. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clinical Cancer Research 2012, 18:370-379. http://www.ncbi.nlm.nih.gov/pubmed/22080440, 10.1158/1078-0432.CCR-11-1282.
    • (2012) Clinical Cancer Research , vol.18 , pp. 370-379
    • Lazova, R.1    Camp, R.L.2    Klump, V.3    Siddiqui, S.F.4    Amaravadi, R.K.5    Pawelek, J.M.6
  • 83
    • 79956003662 scopus 로고    scopus 로고
    • Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma
    • Ma X.H., et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clinical Cancer Research 2011, 17(10):3478-3489. http://www.ncbi.nlm.nih.gov/pubmed/21325076, 10.1158/1078-0432.CCR-10-2372.
    • (2011) Clinical Cancer Research , vol.17 , Issue.10 , pp. 3478-3489
    • Ma, X.H.1
  • 84
    • 81855169565 scopus 로고    scopus 로고
    • Cancer invasion and the microenvironment: plasticity and reciprocity
    • Friedl P., Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011, 147(5):992-1009. http://www.ncbi.nlm.nih.gov/pubmed/22118458, 10.1016/j.cell.2011.11.016.
    • (2011) Cell , vol.147 , Issue.5 , pp. 992-1009
    • Friedl, P.1    Alexander, S.2
  • 85
    • 84888361416 scopus 로고    scopus 로고
    • Crossing the endothelial barrier during metastasis
    • Reymond N., d'Agua B.B., Ridley A.J. Crossing the endothelial barrier during metastasis. Nature Reviews Cancer 2013, 13(12):858-870.
    • (2013) Nature Reviews Cancer , vol.13 , Issue.12 , pp. 858-870
    • Reymond, N.1    d'Agua, B.B.2    Ridley, A.J.3
  • 86
    • 41449109334 scopus 로고    scopus 로고
    • Induction of autophagy during extracellular matrix detachment promotes cell survival
    • Fung C., et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Biochimica et Biophysica Acta 2008, 19(3):797-806. http://www.ncbi.nlm.nih.gov/pubmed/18094039, 10.1091/mbc.E07-10-1092.
    • (2008) Biochimica et Biophysica Acta , vol.19 , Issue.3 , pp. 797-806
    • Fung, C.1
  • 87
    • 84887621878 scopus 로고    scopus 로고
    • Anoikis molecular pathways and its role in cancer progression
    • Paoli P., Giannoni E., Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta 2013, 1833(12):3481-3498. http://www.ncbi.nlm.nih.gov/pubmed/23830918, 10.1016/j.bbamcr.2013.06.026.
    • (2013) Biochimica et Biophysica Acta , vol.1833 , Issue.12 , pp. 3481-3498
    • Paoli, P.1    Giannoni, E.2    Chiarugi, P.3
  • 88
    • 84890850438 scopus 로고    scopus 로고
    • Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells
    • Peng Y.F., et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013, 9(12):2056-2068. http://www.ncbi.nlm.nih.gov/pubmed/24157892, 10.4161/auto.26398.
    • (2013) Autophagy , vol.9 , Issue.12 , pp. 2056-2068
    • Peng, Y.F.1
  • 89
    • 84885582468 scopus 로고    scopus 로고
    • Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK
    • Avivar-Valderas A., et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 2013, 32(41):4932-4940. http://www.ncbi.nlm.nih.gov/pubmed/23160380, 10.1038/onc.2012.512.
    • (2013) Oncogene , vol.32 , Issue.41 , pp. 4932-4940
    • Avivar-Valderas, A.1
  • 90
    • 84861982020 scopus 로고    scopus 로고
    • The regulation of cancer cell death and metabolism by extracellular matrix attachment
    • Buchheit C.L., Rayavarapu R.R., Schafer Z.T. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Seminars in Cell and Developmental Biology 2012, 23(4):402-411. http://www.ncbi.nlm.nih.gov/pubmed/22579674, 10.1016/j.semcdb.2012.04.007.
    • (2012) Seminars in Cell and Developmental Biology , vol.23 , Issue.4 , pp. 402-411
    • Buchheit, C.L.1    Rayavarapu, R.R.2    Schafer, Z.T.3
  • 91
    • 80052342419 scopus 로고    scopus 로고
    • PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment
    • Avivar-Valderas A., et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Molecular and Cellular Biology 2011, 31(17):3616-3629. 10.1128/MCB.05164-11.
    • (2011) Molecular and Cellular Biology , vol.31 , Issue.17 , pp. 3616-3629
    • Avivar-Valderas, A.1
  • 92
    • 84861394761 scopus 로고    scopus 로고
    • Inhibition of autophagy impairs tumor cell invasion in an organotypic model
    • Macintosh R.L., et al. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 2012, 11(10):2022-2029.
    • (2012) Cell Cycle , vol.11 , Issue.10 , pp. 2022-2029
    • Macintosh, R.L.1
  • 93
    • 84873740471 scopus 로고    scopus 로고
    • The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells
    • Galavotti S., et al. The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 2013, 32(6):699-712. http://www.ncbi.nlm.nih.gov/pubmed/22525272, 10.1038/onc.2012.111.
    • (2013) Oncogene , vol.32 , Issue.6 , pp. 699-712
    • Galavotti, S.1
  • 94
    • 84878997506 scopus 로고    scopus 로고
    • Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition
    • Li J., et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013, 34(6):1343-1351. http://www.ncbi.nlm.nih.gov/pubmed/23430956, 10.1093/carcin/bgt063.
    • (2013) Carcinogenesis , vol.34 , Issue.6 , pp. 1343-1351
    • Li, J.1
  • 95
    • 77951212660 scopus 로고    scopus 로고
    • Autophagy and metastasis: another double-edged sword
    • Kenific C.M., Thorburn A., Debnath J. Autophagy and metastasis: another double-edged sword. Current Opinion in Cell Biology 2010, 22(2):241-245. http://www.ncbi.nlm.nih.gov/pubmed/19945838, 10.1016/j.ceb.2009.10.008.
    • (2010) Current Opinion in Cell Biology , vol.22 , Issue.2 , pp. 241-245
    • Kenific, C.M.1    Thorburn, A.2    Debnath, J.3
  • 96
    • 38549146376 scopus 로고    scopus 로고
    • Immune cells as mediators of solid tumor metastasis
    • DeNardo D.G., Johansson M., Coussens L.M. Immune cells as mediators of solid tumor metastasis. Cancer and Metastasis Reviews 2008, 27(1):11-18. http://www.ncbi.nlm.nih.gov/pubmed/18066650, 10.1007/s10555-007-9100-0.
    • (2008) Cancer and Metastasis Reviews , vol.27 , Issue.1 , pp. 11-18
    • DeNardo, D.G.1    Johansson, M.2    Coussens, L.M.3
  • 97
    • 33645739790 scopus 로고    scopus 로고
    • Tumor stroma and regulation of cancer development
    • Tlsty T.D., Coussens L.M. Tumor stroma and regulation of cancer development. Annual Review of Pathology 2006, 1:119-150. http://www.ncbi.nlm.nih.gov/pubmed/18039110, 10.1146/annurev.pathol.1.110304.100224.
    • (2006) Annual Review of Pathology , vol.1 , pp. 119-150
    • Tlsty, T.D.1    Coussens, L.M.2
  • 98
    • 84863578884 scopus 로고    scopus 로고
    • DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer
    • Lv Q., Wang W., Xue J., Hua F., Mu R., Lin H., Yan J., Lv X., Chen X., Hu Z.W. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Research 2012, 72:3238-3250. http://www.ncbi.nlm.nih.gov/pubmed/22719072, 10.1158/0008-5472.CAN-11-3832.
    • (2012) Cancer Research , vol.72 , pp. 3238-3250
    • Lv, Q.1    Wang, W.2    Xue, J.3    Hua, F.4    Mu, R.5    Lin, H.6    Yan, J.7    Lv, X.8    Chen, X.9    Hu, Z.W.10
  • 99
    • 84916202468 scopus 로고    scopus 로고
    • In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non-small cell lung cancer cell lines
    • Wang M.C., et al. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non-small cell lung cancer cell lines. Oncology Reports 2015, 33(1):239-249. http://www.ncbi.nlm.nih.gov/pubmed/25370413, 10.3892/or.2014.3583.
    • (2015) Oncology Reports , vol.33 , Issue.1 , pp. 239-249
    • Wang, M.C.1
  • 100
    • 0034648765 scopus 로고    scopus 로고
    • Angiogenesis in cancer and other diseases
    • Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407(6801):249-257. http://www.ncbi.nlm.nih.gov/pubmed/11001068, 10.1038/35025220.
    • (2000) Nature , vol.407 , Issue.6801 , pp. 249-257
    • Carmeliet, P.1    Jain, R.K.2
  • 101
    • 34249658435 scopus 로고    scopus 로고
    • Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
    • Nguyen T.M., et al. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 2007, 109(11):4793-4802. http://www.ncbi.nlm.nih.gov/pubmed/17272502, 10.1182/blood-2006-11-059352.
    • (2007) Blood , vol.109 , Issue.11 , pp. 4793-4802
    • Nguyen, T.M.1
  • 102
    • 34548067130 scopus 로고    scopus 로고
    • Autophagy and angiogenesis inhibition
    • Ramakrishnan S., et al. Autophagy and angiogenesis inhibition. Autophagy 2007, 3(5):512-515. http://www.ncbi.nlm.nih.gov/pubmed/17643071, 10.4161/auto.4734.
    • (2007) Autophagy , vol.3 , Issue.5 , pp. 512-515
    • Ramakrishnan, S.1
  • 103
    • 84871388330 scopus 로고    scopus 로고
    • Oxidative stress mediates chemerin-induced autophagy in endothelial cells
    • Shen W., et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radical Biology and Medicine 2013, 55:73-82. http://www.ncbi.nlm.nih.gov/pubmed/23195684, 10.1016/j.freeradbiomed.2012.11.011.
    • (2013) Free Radical Biology and Medicine , vol.55 , pp. 73-82
    • Shen, W.1
  • 104
    • 33646384428 scopus 로고    scopus 로고
    • Fibroblasts in cancer
    • Kalluri R., Zeisberg M. Fibroblasts in cancer. Nature Reviews Cancer 2006, 6(5):392-401. http://www.ncbi.nlm.nih.gov/pubmed/16572188, 10.1038/nrc1877.
    • (2006) Nature Reviews Cancer , vol.6 , Issue.5 , pp. 392-401
    • Kalluri, R.1    Zeisberg, M.2
  • 105
    • 84879780600 scopus 로고    scopus 로고
    • Autophagy: shaping the tumor microenvironment and therapeutic response
    • Maes H., et al. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends in Molecular Medicine 2013, 19(7):428-446. http://www.ncbi.nlm.nih.gov/pubmed/23714574, 10.1016/j.molmed.2013.04.005.
    • (2013) Trends in Molecular Medicine , vol.19 , Issue.7 , pp. 428-446
    • Maes, H.1
  • 106
    • 78349266054 scopus 로고    scopus 로고
    • The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox
    • Martinez-Outschoorn U.E., et al. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": a simple solution to the autophagy paradox. Cell Cycle 2010, 9(21):4297-4306.
    • (2010) Cell Cycle , vol.9 , Issue.21 , pp. 4297-4306
    • Martinez-Outschoorn, U.E.1
  • 107
    • 77954162846 scopus 로고    scopus 로고
    • Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells
    • Martinez-Outschoorn U.E., et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 2010, 9(16):3256-3276. http://www.ncbi.nlm.nih.gov/pubmed/20814239, 10.4161/cc.9.16.12553.
    • (2010) Cell Cycle , vol.9 , Issue.16 , pp. 3256-3276
    • Martinez-Outschoorn, U.E.1
  • 108
    • 77956399968 scopus 로고    scopus 로고
    • The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism
    • Pavlides S., et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010, 9(17):3485-3505.
    • (2010) Cell Cycle , vol.9 , Issue.17 , pp. 3485-3505
    • Pavlides, S.1
  • 109
    • 79957902168 scopus 로고    scopus 로고
    • Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator
    • Martinez-Outschoorn U.E., et al. Cytokine production and inflammation drive autophagy in the tumor microenvironment: role of stromal caveolin-1 as a key regulator. Cell Cycle 2011, 10(11):1784-1793. http://www.ncbi.nlm.nih.gov/pubmed/21566463.
    • (2011) Cell Cycle , vol.10 , Issue.11 , pp. 1784-1793
    • Martinez-Outschoorn, U.E.1
  • 110
    • 84855434874 scopus 로고    scopus 로고
    • Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms
    • Sotgia F., et al. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annual Review of Pathology 2012, 7:423-467. http://www.ncbi.nlm.nih.gov/pubmed/22077552, 10.1146/annurev-pathol-011811-120856.
    • (2012) Annual Review of Pathology , vol.7 , pp. 423-467
    • Sotgia, F.1
  • 111
    • 79954504372 scopus 로고    scopus 로고
    • Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment
    • Martinez-Outschoorn U.E., et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. International Journal of Biochemistry & Cell Biology 2011, 43(7):1045-1051. 10.1016/j.biocel.2011.01.023.
    • (2011) International Journal of Biochemistry & Cell Biology , vol.43 , Issue.7 , pp. 1045-1051
    • Martinez-Outschoorn, U.E.1
  • 112
    • 33745918951 scopus 로고    scopus 로고
    • TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    • Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126(1):107-120. http://www.ncbi.nlm.nih.gov/pubmed/16839880, 10.1016/j.cell.2006.05.036.
    • (2006) Cell , vol.126 , Issue.1 , pp. 107-120
    • Bensaad, K.1
  • 113
    • 77957138161 scopus 로고    scopus 로고
    • Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment
    • Lisanti M.P., et al. Understanding the "lethal" drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biology & Therapy 2010, 10(6):537-542.
    • (2010) Cancer Biology & Therapy , vol.10 , Issue.6 , pp. 537-542
    • Lisanti, M.P.1
  • 114
    • 84868213165 scopus 로고    scopus 로고
    • Autophagic tumor stroma: mechanisms and roles in tumor growth and progression
    • Zhao X., He Y., Chen H. Autophagic tumor stroma: mechanisms and roles in tumor growth and progression. International Journal of Cancer 2013, 132(1):1-8. http://www.ncbi.nlm.nih.gov/pubmed/22684793, 10.1002/ijc.27664.
    • (2013) International Journal of Cancer , vol.132 , Issue.1 , pp. 1-8
    • Zhao, X.1    He, Y.2    Chen, H.3
  • 115
    • 84055225365 scopus 로고    scopus 로고
    • Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
    • Pavlides S., et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxidants and Redox Signaling 2012, 16(11):1264-1284. http://www.ncbi.nlm.nih.gov/pubmed/21883043, 10.1089/ars.2011.4243.
    • (2012) Antioxidants and Redox Signaling , vol.16 , Issue.11 , pp. 1264-1284
    • Pavlides, S.1
  • 116
    • 77956400210 scopus 로고    scopus 로고
    • Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment
    • Martinez-Outschoorn U.E., et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 2010, 9(17):3515-3533.
    • (2010) Cell Cycle , vol.9 , Issue.17 , pp. 3515-3533
    • Martinez-Outschoorn, U.E.1
  • 117
    • 77956419439 scopus 로고    scopus 로고
    • Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism
    • Bonuccelli G., et al. Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010, 9(17):3506-3514.
    • (2010) Cell Cycle , vol.9 , Issue.17 , pp. 3506-3514
    • Bonuccelli, G.1
  • 118
    • 80053437523 scopus 로고    scopus 로고
    • Autophagic tumor stroma: a biofuel for cancer growth
    • Iozzo R.V. Autophagic tumor stroma: a biofuel for cancer growth. Cell Cycle 2011, 10(19):3231-3232. http://www.ncbi.nlm.nih.gov/pubmed/21946523, 10.4161/cc.10.19.17124.
    • (2011) Cell Cycle , vol.10 , Issue.19 , pp. 3231-3232
    • Iozzo, R.V.1
  • 119
    • 79959282414 scopus 로고    scopus 로고
    • Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis
    • Castello-Cros R., et al. Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle 2011, 10(12):2021-2034. http://www.ncbi.nlm.nih.gov/pubmed/21646868, 10.4161/cc.10.12.16002.
    • (2011) Cell Cycle , vol.10 , Issue.12 , pp. 2021-2034
    • Castello-Cros, R.1
  • 120
    • 84870886414 scopus 로고    scopus 로고
    • Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells
    • Sotgia F., et al. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 2012, 11(23):4390-4401. 10.4161/cc.22777.
    • (2012) Cell Cycle , vol.11 , Issue.23 , pp. 4390-4401
    • Sotgia, F.1
  • 121
    • 84867723524 scopus 로고    scopus 로고
    • Autophagy as a target for cancer therapy: new developments
    • Carew J.S., Kelly K.R., Nawrocki S.T. Autophagy as a target for cancer therapy: new developments. Cancer Management and Research 2012, 4:357-365. http://www.ncbi.nlm.nih.gov/pubmed/23091399, 10.2147/CMAR.S26133.
    • (2012) Cancer Management and Research , vol.4 , pp. 357-365
    • Carew, J.S.1    Kelly, K.R.2    Nawrocki, S.T.3
  • 122
    • 84920952690 scopus 로고    scopus 로고
    • Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway
    • Zhou H., et al. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget 2014, 5:10140-10150. http://www.ncbi.nlm.nih.gov/pubmed/25294812.
    • (2014) Oncotarget , vol.5 , pp. 10140-10150
    • Zhou, H.1
  • 123
    • 84904600025 scopus 로고    scopus 로고
    • Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells
    • Hahm E.R., Sakao K., Singh S.V. Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 2014, 74(12):1209-1221. http://www.ncbi.nlm.nih.gov/pubmed/25043291, 10.1002/pros.22837.
    • (2014) Prostate , vol.74 , Issue.12 , pp. 1209-1221
    • Hahm, E.R.1    Sakao, K.2    Singh, S.V.3
  • 124
    • 84904264607 scopus 로고    scopus 로고
    • Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress
    • Gonzalez Y., et al. Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress. Oncotarget 2014, 5(6):1526-1537. http://www.ncbi.nlm.nih.gov/pubmed/24681637.
    • (2014) Oncotarget , vol.5 , Issue.6 , pp. 1526-1537
    • Gonzalez, Y.1
  • 125
    • 84893824463 scopus 로고    scopus 로고
    • Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells
    • Kim H., et al. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxidative Medicine and Cellular Longevity 2013, 2013:596496. http://www.ncbi.nlm.nih.gov/pubmed/24379902, 10.1155/2013/596496.
    • (2013) Oxidative Medicine and Cellular Longevity , vol.2013 , pp. 596496
    • Kim, H.1
  • 126
    • 84920944165 scopus 로고    scopus 로고
    • Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells
    • Zhang Q., et al. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 2014, 5(3-4):100-112. http://www.ncbi.nlm.nih.gov/pubmed/25053988.
    • (2014) Genes Cancer , vol.5 , Issue.3-4 , pp. 100-112
    • Zhang, Q.1
  • 127
    • 84907775913 scopus 로고    scopus 로고
    • Carnosol induces ROS-Mediated Beclin1-Independent autophagy and apoptosis in triple negative breast cancer
    • Al Dhaheri Y., et al. Carnosol induces ROS-Mediated Beclin1-Independent autophagy and apoptosis in triple negative breast cancer. PLOS One 2014, 9(10):e109630. http://www.ncbi.nlm.nih.gov/pubmed/25299698, 10.1371/journal.pone.0109630.
    • (2014) PLOS One , vol.9 , Issue.10 , pp. e109630
    • Al Dhaheri, Y.1
  • 128
    • 84907703078 scopus 로고    scopus 로고
    • Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells
    • Hao W., et al. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells. PeerJ 2014, 2:e555. http://www.ncbi.nlm.nih.gov/pubmed/25250213, 10.7717/peerj.555.
    • (2014) PeerJ , vol.2 , pp. e555
    • Hao, W.1
  • 129
    • 84858665870 scopus 로고    scopus 로고
    • Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells
    • Miki H., et al. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. International Journal of Oncology 2012, 40(4):1020-1028. http://www.ncbi.nlm.nih.gov/pubmed/22218562, 10.3892/ijo.2012.1325.
    • (2012) International Journal of Oncology , vol.40 , Issue.4 , pp. 1020-1028
    • Miki, H.1
  • 130
    • 84890114880 scopus 로고    scopus 로고
    • The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
    • Winterbourn C.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta 2014, 1840(2):730-738. http://www.ncbi.nlm.nih.gov/pubmed/23665586, 10.1016/j.bbagen.2013.05.004.
    • (2014) Biochimica et Biophysica Acta , vol.1840 , Issue.2 , pp. 730-738
    • Winterbourn, C.C.1
  • 131
    • 84904560848 scopus 로고    scopus 로고
    • Novel method for detection of reactive oxygen species in vivo in human skeletal muscle
    • La Favor J.D., Anderson E.J., Hickner R.C. Novel method for detection of reactive oxygen species in vivo in human skeletal muscle. Physiological Research 2014, 63(3):387-392. http://www.ncbi.nlm.nih.gov/pubmed/24564604.
    • (2014) Physiological Research , vol.63 , Issue.3 , pp. 387-392
    • La Favor, J.D.1    Anderson, E.J.2    Hickner, R.C.3
  • 132
    • 84864948661 scopus 로고    scopus 로고
    • Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance
    • Mrakic-Sposta S., et al. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxidative Medicine and Cellular Longevity 2012, 2012:973927. http://www.ncbi.nlm.nih.gov/pubmed/22900129, 10.1155/2012/973927.
    • (2012) Oxidative Medicine and Cellular Longevity , vol.2012 , pp. 973927
    • Mrakic-Sposta, S.1
  • 133
    • 0029786513 scopus 로고    scopus 로고
    • Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans
    • Roberts L.J., Moore K.P., Zackert W.E., Oates J.A., Morrow J.D. Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. Journal of Biological Chemistry 1996, 271:20617-20620. http://www.ncbi.nlm.nih.gov/pubmed/8702808, 10.1074/jbc.271.34.20617.
    • (1996) Journal of Biological Chemistry , vol.271 , pp. 20617-20620
    • Roberts, L.J.1    Moore, K.P.2    Zackert, W.E.3    Oates, J.A.4    Morrow, J.D.5
  • 135
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8(4):445-544.
    • (2012) Autophagy , vol.8 , Issue.4 , pp. 445-544
    • Klionsky, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.